

Elective in Robotics/Control Problems in Robotics

Physical Human-Robot Interaction Collision Detection and Reaction

Prof. Alessandro De Luca

DIPARTIMENTO DI INGEGNERIA INFORMATICA Automatica e Gestionale Antonio Ruberti

Handling of robot collisions

- safety in physical Human-Robot Interaction (pHRI)
- robot dependability
 - mechanics: lightweight construction and inclusion of compliance
 - next generation with variable stiffness actuation devices
 - typically, more/additional exteroceptive sensing needed
 - human-oriented motion planning ("legible" robot trajectories)
 - control strategies with safety objectives/constraints
- prevent, avoid, detect and react to collisions
 - possibly, using only robot proprioceptive sensors
- different phases in the collision event pipeline

European projects that have funded our research developments

Collision event pipeline

S. Haddadin, A. De Luca, A. Albu-Schäffer: "Robot Collisions: A Survey on Detection, Isolation, and Identification," *IEEE Trans. on Robotics*, vol. 33, no. 6, pp. 1292-1312, 2017

Collision detection in industrial robots

- advanced option available for some robots (ABB, KUKA, UR ...)
- mainly intended for detection only, not for isolation
 - based on large variations of control torques (or motor currents)

 $\|\tau(t_k) - \tau(t_{k-1})\| \ge \varepsilon \quad \Leftrightarrow \quad |\tau_i(t_k) - \tau_i(t_{k-1})| \ge \varepsilon_i$, for at least one joint *i*

based on comparison with nominal torque on the desired trajectory

 $\tau_d = M(q_d) \ddot{q}_d + S(q_d, \dot{q}_d) \dot{q}_d + g(q_d) + f(q_d, \dot{q}_d) \quad \Rightarrow \ \|\tau - \tau_d\| \geq \varepsilon$

- based on robot state and numerical estimate of its acceleration $\ddot{q}_N = \frac{d\dot{q}}{dt} \Rightarrow \tau_N = M(q)\ddot{q}_N + S(q,\dot{q})\dot{q} + g(q) + f(q,\dot{q}) \Rightarrow ||\tau - \tau_N|| \ge \varepsilon$
- based on the parallel simulation of robot dynamics

 $\ddot{q}_{C} = M^{-1}(q) [\tau - S(q, \dot{q})\dot{q} - g(q) - f(q, \dot{q})] \implies \|\dot{q} - \dot{q}_{C}\| \ge \varepsilon_{\dot{q}}, \|q - q_{C}\| \ge \varepsilon_{q}$

- sensitive to the actual control law and reference trajectory
- require noisy acceleration estimates or on-line inversion of the robot inertia matrix

ABB collision detection

ABB IRB 7600 (heavy!)

the only feasible robot reaction is to stop!

A COLOR OF STREET

Collisions as system faults

robot model with (possible) collisions

control torque

$$M(q)\ddot{q} + S(q,\dot{q})\dot{q} + g(q) = \overset{\forall}{\tau} + \overbrace{\tau_{K}} = \tau_{\text{tot}}$$

inertia Coriolis/centrifugal matrix (with "good" factorization): $\dot{M} - 2S$ is skew-symmetric

$$\boldsymbol{\tau}_{K} = \boldsymbol{J}_{K}^{T}(\boldsymbol{q})\boldsymbol{F}_{K}$$

with transpose of the Jacobian

joint torque caused by link collision

associated to the contact point/area

- collisions may occur at any (unknown) location along the whole robot body, and with any (unknown) force
- simplifying assumptions (some may be relaxed)
 - manipulator is an open kinematic chain
 - single contact/collision
 - negligible friction (else, to be identified and used in the model)

Analysis of a collision

$${f V}_K = \left[egin{array}{c} v_K \ \omega_K \end{array}
ight] = \left[egin{array}{c} J_{K,{
m lin}}(q) \ J_{K,{
m ang}}(q) \end{array}
ight] \dot{q} = {f J}_K(q) \dot{q} \in \mathbb{R}^6 \qquad {f F}_K = \left[egin{array}{c} f_K \ m_K \end{array}
ight] \in \mathbb{R}^6$$

in static conditions a contact force/torque on *i*th link is balanced ONLY by torques at preceding joints $j \leq i$

in dynamic conditions a contact force/torque on *i*th link produces accelerations at ALL joints

same effect
at the joint!
$$F_K$$
 q_2 $J_{K,2}^T(q)$
 $J_{K,1}^T(q)$ q_1 $J_{K,1}^T(q)$

Relevant dynamic properties

total energy and its variation

$$E = T + U = \frac{1}{2} \dot{\boldsymbol{q}}^T \boldsymbol{M}(\boldsymbol{q}) \dot{\boldsymbol{q}} + U_g(\boldsymbol{q}) \qquad \dot{E} = \dot{\boldsymbol{q}}^T \boldsymbol{\tau}_{\text{tot}}$$

generalized momentum and its decoupled dynamics

$$egin{aligned} p &= M(m{q}) \dot{m{q}} \ \dot{m{p}} &= m{ au}_{ ext{tot}} + m{S}^T\!(m{q}, \dot{m{q}}) \dot{m{q}} - m{g}(m{q}) \end{aligned}$$

using the skew-symmetric property $\dot{M}(q) = S(q, \dot{q}) + S^{T}(q, \dot{q})$

Monitoring collisions

scalar residual (computable) also via N-E algorithm!

$$\sigma(t) = k_D \left[E(t) - \int_0^t (\dot{\boldsymbol{q}}^T \boldsymbol{\tau} + \sigma) ds - E(0) \right]$$
$$\sigma(0) = 0 \qquad k_D > 0$$

... and its dynamics (needed only for analysis)

$$\dot{\sigma} = -k_D \,\sigma + k_D (\dot{\boldsymbol{q}}^T \boldsymbol{\tau}_K)$$

a stable first-order linear filter, excited by a collision!

Block diagram of residual generator energy-based scalar signal

pHRI

prove this!

- a very simple scheme (scalar signal)
- rewritten as a monitor of the kinetic energy T, by replacing total energy E with T and adding $-\dot{q}^T g(q)$ in the integral
- it can only detect the presence of collision forces/torques (wrenches) that produce work on the linear/angular velocities (twists) at the contact
- moreover, it does not succeed when the robot stands still...

$$\dot{\boldsymbol{q}}^T \boldsymbol{\tau}_K = \dot{\boldsymbol{q}}^T \boldsymbol{J}_K^T(\boldsymbol{q}) \boldsymbol{F}_K = \boldsymbol{V}_K^T \boldsymbol{F}_K = 0 \iff \boldsymbol{V}_K \perp \boldsymbol{F}_K$$
$$\boldsymbol{V}_K = \begin{bmatrix} \boldsymbol{v}_K \\ \boldsymbol{\omega}_K \end{bmatrix} = \begin{bmatrix} \boldsymbol{J}_{K,\text{lin}}(\boldsymbol{q}) \\ \boldsymbol{J}_{K,\text{ang}}(\boldsymbol{q}) \end{bmatrix} \dot{\boldsymbol{q}} = \boldsymbol{J}_K(\boldsymbol{q}) \dot{\boldsymbol{q}} \in \mathbb{R}^6 \qquad \boldsymbol{F}_K = \begin{bmatrix} \boldsymbol{f}_K \\ \boldsymbol{m}_K \end{bmatrix} \in \mathbb{R}^6$$

Collision detection simulation with a 7R robot

detection of a collision with a fixed obstacle in the work space during the execution of a Cartesian trajectory (redundant robot)

Collision detection experiment with a 6R robot

robot at rest or moving under Cartesian impedance control on a straight horizontal line (with a F/T sensor at wrist for analysis)

6 phases

- A: contact force applied is acting against motion direction \Rightarrow detection
- B: no force applied, with robot at rest
- C: force increases gradually, but robot is at rest \Rightarrow no detection
- D: robot starts moving again, with force being applied \Rightarrow detection
- E: robot stands still and a strong force is applied in z-direction \Rightarrow no detection
- F: robot moves, with a *z*-force applied \approx orthogonal to motion direction \Rightarrow poor detection

Momentum-based isolation of collisions

residual vector (computable) ^{in case, needs modified or multiple N-E algorithm!}

$$oldsymbol{r}(t) = oldsymbol{K}_I \left[oldsymbol{p}(t) - \int_0^t ig(oldsymbol{ au} + oldsymbol{S}^T (oldsymbol{q}, \dot{oldsymbol{q}}) \dot{oldsymbol{q}} - oldsymbol{g}(oldsymbol{q}) + oldsymbol{r} ig) \, ds - oldsymbol{p}(0)
ight]
onumber \ oldsymbol{r}(0) = oldsymbol{0} \qquad oldsymbol{K}_I > oldsymbol{0} \ (ext{diagonal})$$

and its decoupled dynamics

$$\dot{\boldsymbol{r}} = -\boldsymbol{K}_{I}\boldsymbol{r} + \boldsymbol{K}_{I}\boldsymbol{\tau}_{K} \qquad \qquad \frac{r_{j}(s)}{\tau_{K,j}(s)} = \frac{K_{I,j}}{s + K_{I,j}}$$
$$j = 1, \dots, N$$

N first-order, linear filters with unitary gains, excited by a collision! (all residuals go back to zero if there is no longer contact = post-impact phase)

Block diagram of residual generator

momentum-based vector signal

ideal situation (no noise/uncertainties)

$$oldsymbol{K}_I
ightarrow \infty \;\;\;\;\; \Rightarrow \;\;\;\; oldsymbol{r} pprox oldsymbol{ au}_K$$

 isolation property: collision has generically occurred in an area located up to the *i*th link if

 residual vector contains directional information on the torque at the robot joints resulting from link collision (useful for robot reaction in post-impact phase)

Robot reaction strategy

"zero-gravity" control in any operative mode

$$au = au' + g(q)$$

- upon detection of a collision (*r* is over some threshold)
 - no reaction (strategy 0): robot continues its planned motion...
 - stop robot motion (strategy 1): either by braking or by stopping the motion reference generator and switching to a high-gain position control law
 - reflex* strategy: switch to a residual-based control law

$$au' = K_R r$$
 $K_R > 0$ (diagonal)

"joint torque command in same direction of collision torque"

* = in robots with transmission/joint elasticity, the reflex strategy can be implemented in different ways (strategies 2, 3, 4)

Zero gravity operation

video

http://handbookofrobotics.org/view-chapter/69/videodetails/611

WAM Barrett

$$\boldsymbol{\tau} = \boldsymbol{\tau}' + \boldsymbol{g}(\boldsymbol{q})$$

KUKA LWR4

here, only as result of human pushes ...

21

video

Analysis of the reflex strategy

 in ideal conditions, this control strategy is equivalent to a reduction of the effective robot inertia as seen by the collision force/torque

 $(\boldsymbol{I} + \boldsymbol{K}_R)^{-1} (\boldsymbol{M}(\boldsymbol{q})\ddot{\boldsymbol{q}} + \boldsymbol{S}(\boldsymbol{q}, \dot{\boldsymbol{q}})\dot{\boldsymbol{q}}) = \boldsymbol{\tau}_K$

"a lighter robot that can be easily pushed way"

from a cow ...

 lightweight (14 kg) 7R anthropomorfic robot with harmonic drives (elastic joints) and joint torque sensors

Exploded joint of LWR-III robot

Collision isolation for LWR-III robot elastic joint case

- few alternatives for extending the rigid case results
- for collision isolation, the simplest one takes advantage of the presence of joint torque sensors

"replace the commanded torque to the motors with the elastic torque measured at the joints"

$$\boldsymbol{r}_{\mathrm{EJ}}(t) = \boldsymbol{K}_{I} \left[\boldsymbol{p}(t) - \int_{0}^{t} \left(\boldsymbol{\tau}_{J} + \boldsymbol{S}^{T}(\boldsymbol{q}, \dot{\boldsymbol{q}}) \dot{\boldsymbol{q}} - \boldsymbol{g}(\boldsymbol{q}) + \boldsymbol{r}_{\mathrm{EJ}} \right) ds - \boldsymbol{p}(0) \right]$$
$$\dot{\boldsymbol{r}}_{\mathrm{EJ}} = -\boldsymbol{K}_{I} \boldsymbol{r}_{\mathrm{EJ}} + \boldsymbol{K}_{I} \boldsymbol{\tau}_{K}$$

- other alternatives use
 - link+motor position measures \Rightarrow needs knowledge also of joint stiffness K
 - link+motor momentum + commanded torque ⇒ affected by motor friction
- motion control is more complex in the presence of joint elasticity
- different active strategies of reaction to collisions are possible

Control of DLR LWR-III robot elastic joint case

 general control law using full state feedback (motor position and velocity, joint elastic torque and its derivative)

$$\boldsymbol{\tau} = \boldsymbol{K}_{P}(\boldsymbol{\theta}_{d} - \boldsymbol{\theta}) - \boldsymbol{K}_{D} \dot{\boldsymbol{\theta}} + \boldsymbol{K}_{P\tau}(\boldsymbol{\tau}_{J,d} - \boldsymbol{\tau}_{J}) - \boldsymbol{K}_{D\tau} \dot{\boldsymbol{\tau}}_{J} + \boldsymbol{\tau}_{J,d}$$

$$\boldsymbol{\uparrow} \qquad \boldsymbol{\uparrow} \qquad \boldsymbol{\downarrow} \qquad \boldsymbol{\uparrow} \qquad \boldsymbol{\uparrow} \qquad \boldsymbol{\downarrow} \qquad \boldsymbol{\uparrow} \qquad \boldsymbol{\downarrow} \qquad \boldsymbol{\uparrow} \qquad \boldsymbol{\downarrow} \qquad \boldsymbol{\downarrow} \qquad \boldsymbol{\uparrow} \qquad \boldsymbol{\downarrow} \qquad \boldsymbol{\uparrow} \qquad \boldsymbol{\uparrow} \qquad \boldsymbol{\uparrow} \qquad \boldsymbol{\uparrow} \qquad \boldsymbol{\uparrow} \qquad \boldsymbol{\downarrow} \qquad \boldsymbol{\uparrow} \qquad \boldsymbol{\downarrow} \qquad \boldsymbol{\uparrow} \qquad \boldsymbol{\uparrow} \qquad \boldsymbol{\downarrow} \qquad \boldsymbol{\uparrow} \qquad \boldsymbol{\uparrow} \qquad \boldsymbol{\downarrow} \qquad \boldsymbol{\uparrow} \qquad \boldsymbol{\downarrow} \qquad \boldsymbol{\uparrow} \qquad \boldsymbol{\downarrow} \qquad \boldsymbol{\downarrow} \qquad \boldsymbol{\downarrow} \qquad \boldsymbol{\downarrow} \qquad \boldsymbol{\uparrow} \qquad \boldsymbol{\downarrow} \qquad \qquad \boldsymbol{\downarrow} \qquad \boldsymbol{$$

 DLR "zero-gravity" condition is realized in a (quasi-static) approximate way, using just motor position measures

$$\begin{split} \bar{g}(\theta) &= g(q), \ \forall (\theta,q) \in \Omega := \{(\theta,q) | \ K(\theta-q) = g(q)\} \\ \uparrow & \uparrow & \uparrow & \uparrow \\ \text{motor} & \text{link} & (\text{diagonal}) \text{ matrix} \\ \text{position} & \text{position} & \text{of joint stiffness} \end{split}$$

Exact gravity cancellation
in robots with elastic joints

$$M(q)\ddot{q} + c(q, \dot{q}) + g(q) + D_q \dot{q} + K(q - \theta) = 0$$
impose the behavior of the
same robot without gravity

$$q(t) = q_0(t) \quad \forall t \ge 0 \qquad \tau = \tau_g + \tau_0$$

$$\Rightarrow \qquad T_g = g(q) + D_\theta K^{-1} \dot{g}(q) + BK^{-1} \ddot{g}(q)$$

$$\dot{g}(q) = \frac{\partial g(q)}{\partial q} \dot{q}$$

$$\ddot{g}(q) = \frac{\partial g(q)}{\partial q} M^{-1}(q) (K(\theta - q) - c(q, \dot{q}) - g(q) - D_q \dot{q}) + \sum_{i=1}^n \frac{\partial^2 g(q)}{\partial q \partial q_i} \dot{q} \dot{q}_i$$
it requires full state feedback

it requires full state feedback

A. De Luca, F. Flacco, *IEEE CDC 2010*

Reaction strategies specific for elastic joint robots

strategy 2 floating reaction (robot ≈ in "zero-gravity")

$$oldsymbol{ au}_{J,d} = ar{oldsymbol{g}}(oldsymbol{ heta}) \qquad oldsymbol{K}_P = oldsymbol{0}$$

strategy 3 reflex torque reaction (closest to the rigid case)

$$oldsymbol{ au}_{J,d} = oldsymbol{K}_R oldsymbol{r}_{ ext{EJ}} + oldsymbol{ar{g}}(oldsymbol{ heta}) \qquad oldsymbol{K}_P = oldsymbol{0}$$

• strategy 4 admittance mode reaction (residual $r_{\rm EJ}$ is used as the new reference for the motor velocity)

$$\boldsymbol{\tau}_{J,d} = \bar{\boldsymbol{g}}(\boldsymbol{\theta}) \qquad \dot{\boldsymbol{\theta}}_d = \boldsymbol{K}_{R,\boldsymbol{\theta}} \, \boldsymbol{r}_{\mathrm{EJ}}$$

- further possible reaction strategies (rigid or elastic case)
 - based on impedance control
 - sequence of strategies (e.g., 4 + 2)
 - time scaling: stop/reprise of reference trajectory, keeping the path
 - Cartesian task preservation: exploits robot redundancy by projecting reaction torque in a task-related dynamic null space

Experiments with LWR-III robot "dummy" head

dummy head equipped with an accelerometer robot straighten horizontally, mostly motion of joint 1 @30°/sec

Dummy head impact

video

strategy 0: no reaction

planned trajectory ends just after the position of the dummy head

strategy 2: floating reaction

impact velocity is rather low here and the robot stops switching to float mode

Delay in collision detection

impact with the dummy head

— measured (elastic) joint torque

—— residual r_1

— 0/1 index for detection

_ dummy head acceleration

gain $K_I = \text{diag}\{25\}$

threshold = 5-10% of max rated torque

Delay in collision detection

Experiments with LWR-III robot balloon impact

possibility of repeatable comparison of different reaction strategies at high speed conditions

Balloon impact

coordinated joint motion @90°/sec

strategy 4: admittance mode reaction

Experimental comparison of strategies balloon impact

residual and velocity at joint 4 with various reaction strategies

impact at 90°/sec with coordinated joint motion

Human-Robot Interaction

DLR

first impact @60°/sec

video

strategy 4: admittance mode

strategy 3: reflex torque

pHRI

video

Human-Robot Interaction

strategy 3: reflex torque

video

Need for a good dynamic model ...

Fast Research Interface: Using initialization file "D:\Kuka_software\Fast_reseau ch_interface_lib\FRILibrary\etc\980039-FRI-Driver.init". IP 192.168.0.100 - Port 49938 IP 192.168.0.100 - Port 49938 IP 169.254.53.154 - Port 49938 IP 169.254.50.251 - Port 49938 Program is going to stop the robot. Restarting the joint position control scheme. CycleTime: 0.005000

Move to ''pick'' position...

Please, mount the payload/tool; press [ENTER] when it is mounted

- performance of model-based detection/isolation methods is limited by uncertainties and unmodeled dynamics (e.g., when adding an unknown payload)
- there is a need for accurate (and fast) online schemes for identification
- here, ~10 small motions are sufficient to capture the mass and CoM of a payload (becoming part of dynamic parameters of the last link)

video @IROS17 https://youtu.be/fNP6smdp7aE

Simultaneous use of two residuals

- use of the two types of introduced residuals, with different thresholds
 - momentum-based vector r + energy-based scalar σ (less sensitive at slow speed)
 - more robust to dynamic uncertainties (in particular, to unmodeled friction)

Other uses of residuals

- the design concept of a residual can be used also to estimate online any "missing" dynamic term in the model of a (mechanical) system
 - it has in fact the structure of a "disturbance" or "input" observer
- we have used it to estimate (and control) at run time the time-varying nonlinear stiffness of a VSA device (which cannot be directly measured ...)
- being a (first-order) filtered version of the unknown/missing term, it may be used as a compensation signal within any control law, without having "algebraic loops" or attempting a (difficult) model-based identification
- consider a (relevant) motor-side friction τ_F in a robot with elastic joints

$$B\ddot{\theta} + K(\theta - q) = B\ddot{\theta} + \tau_J = \tau + \tau_F$$

$$r_F = K_F \left[B\dot{\theta} - \int_0^t (\tau - \tau_J + r_F) \, ds \right] \qquad \Rightarrow \dot{r}_F = K_F \left[\tau_F - r_F \right] \\ \Rightarrow r_{F,i}(s) = \frac{\tau_{F,i}(s)}{1 + (1/k_{F,i})s}$$

 \Rightarrow model-less friction compensation: $\tau = \tau_{anycontrol} - r_F$

pHRI

"Portfolio" of reaction strategies

residual amplitude \propto severity level of collision

Experiments with LWR-III robot time scaling

- robot is position-controlled (on a given geometric path)
- timing law slows down, stops, possibly reverses (and then reprises)

pHRI

Reaction with time scaling

video

Use of kinematic redundancy

■ collision detection ⇒ robot reacts so as to preserve as much as possible (and if possible at all) the execution of the planned Cartesian trajectory for the end-effector

Task kinematics

• task coordinates $oldsymbol{x}~\in~\mathbf{R}^m$ with m < n (redundancy)

$$\dot{x} = J(q)\dot{q}$$
 $\ddot{x} = \dot{J}(q)\dot{q} + J(q)\ddot{q}$

(all) generalized inverses of the task Jacobian

$$\boldsymbol{J}(\boldsymbol{q})\boldsymbol{G}(\boldsymbol{q})\boldsymbol{J}(\boldsymbol{q})=\boldsymbol{J}(\boldsymbol{q}),\qquad\forall\boldsymbol{q}$$

 all joint accelerations realizing a desired task acceleration (at a given robot state)

$$\ddot{q} = G(q)(\ddot{x} - \dot{J}(q)\dot{q}) + (I - G(q)J(q))\ddot{q}_0$$
arbitrary joint acceleration

Dynamic redundancy resolution

set for compactness $~~ m{n}(m{q}, \dot{m{q}}) = m{S}(m{q}, \dot{m{q}}) \dot{m{q}} + m{g}(m{q})$

 all joint torques realizing a precise control of the desired (Cartesian) task

$$\begin{aligned} \ddot{x}_d + K_P e + K_D \dot{e} \\ \tau &= M(q) G(q) \begin{bmatrix} & & \\$$

for any generalized inverse G, the joint torque has two contributions: one imposes the task acceleration control, the other does not affect it

Dynamically consistent solution inertia-weighted pseudoinverse

- the most natural choice for matrix G is to use the dynamically consistent generalized inverse of J
- in a dual way, denoting by H a generalized inverse of J^T , the joint torques can always be decomposed as

$$\boldsymbol{\tau} = \boldsymbol{J}^T(\boldsymbol{q}) \boldsymbol{F} + (\boldsymbol{I} - \boldsymbol{J}^T(\boldsymbol{q}) \boldsymbol{H}(\boldsymbol{q})) \boldsymbol{\tau}_0$$

the inertia-weighted choices for H and G are then

$$\begin{split} \boldsymbol{H}_{\boldsymbol{M}}(\boldsymbol{q}) &= \left(\boldsymbol{J}(\boldsymbol{q}) \boldsymbol{M}^{-1}(\boldsymbol{q}) \boldsymbol{J}^{T}(\boldsymbol{q}) \right)^{-1} \boldsymbol{J}(\boldsymbol{q}) \boldsymbol{M}^{-1}(\boldsymbol{q}) \\ &=: \ \boldsymbol{\Lambda}(\boldsymbol{q}) \boldsymbol{J}(\boldsymbol{q}) \boldsymbol{M}^{-1}(\boldsymbol{q}), \\ & \boldsymbol{G} = \boldsymbol{H}_{\boldsymbol{M}}^{T} = \boldsymbol{M}^{-1} \boldsymbol{J}^{T} \boldsymbol{\Lambda} \end{split}$$

$$\begin{split} \boldsymbol{\Lambda}(\boldsymbol{q}) \text{ is the effective } \\ & \text{Cartesian inertial} \end{split}$$

thus, the dynamically consistent solution is given by

$$egin{aligned} m{ au} &= m{J}^T(m{q}) m{\Lambda}(m{q}) (\ddot{m{x}} - \dot{m{J}}(m{q}) \dot{m{q}} + m{J}(m{q}) m{M}^{-1}(m{q}) m{n}(m{q}, \dot{m{q}})) \ &+ (m{I} - m{J}^T(m{q}) m{H}_{m{M}}(m{q})) m{ au}_0 \end{aligned}$$

Cartesian task preservation

- wish to preserve the whole Cartesian task (end-effector position & orientation) reacting to collisions by using only self-motions in the joint space
- if the residual (∝ contact force) grows too large, orientation is relaxed first and then, if necessary, the full task is abandoned (priority is given to safety)

Cartesian task preservation experiments with LWR4+ robot

video @IROS 2017

Human-Robot Coexistence and Contact Handling with Redundant Robots

Emanuele Magrini

Alessandro De Luca

Robotics Lab, DIAG Sapienza Università di Roma

February 2017

idle \Leftrightarrow relax \Leftrightarrow abort

Combined use 6D F/T sensor at the robot wrist + residuals

video

- include the F/T measures in the expression of the residual: $J_{EE}^T(q)F_m$
- may be used to distinguish intentional contacts vs. unexpected collisions
- ... but only at the end-effector level!
- in case of intentional contacts, what should a robot do other than react to contacts/collisions by stopping or escaping? ⇒ physical collaboration (pHRC)

- the momentum-based residual method has been implemented worldwide in a large number of robotic systems (industrial robots, prototypes, VSA-based manipulators, ...)
- a different computation of residuals is needed for "floating base" humanoids and UAVs

Collision detection and reaction with full VSA-based DLR HASY robot

with a momentum-based residual method

Collision detection and isolation using a joint velocity observer in the residual

- numerical differentiation of encoders vs. dynamic reduced-order observer
- 6 link collisions in sequence (over 30 s): L4 (twice, \pm) \Rightarrow L5 (twice, \pm) \Rightarrow L2 (twice, \pm)
- both methods detect collisions correctly
- ND has two false isolations (#5 and #6)
- OBS isolates the colliding link correctly

video *only first 5 residuals are shown (out of 7)*

pHRI in closed control architectures KUKA KR5 Sixx R650 robot

- low-level control laws are not known nor accessible by the user: no current or torque commands can be used
- user programs, based also on other exteroceptive sensors (vision, Kinect, F/T sensor) can be implemented on an external PC via the RSI (RobotSensorInterface), communicating with the KUKA controller every 12 ms
- robot measures available to the user: joint positions (by encoders) and [absolute value of] motor currents
- controller reference is given as a velocity or a position in joint space (also Cartesian commands are accepted)

Collision detection and stop

https://youtu.be/18RsAxkf7kk

video @ICRA 2013

high-pass filtering of motor currents (a signal-based detection...)

pHRI

Collisions vs intentional contact distinguish and then collaborate ...

video @ICRA 2013

with both high-pass and low-pass filtering of motor currents — here collaboration mode is manual guidance of the robot

Other possible robot reactions after collaboration mode is established

video @ICRA 2013

collaboration mode

collaboration mode

pushing/pulling

the robot

compliant-like robot behavior

here, time-varying thresholds based on the desired trajectory

... we are "control-cheating" a bit: no torque command is ever issued!

video @ICRA 2013

Dynamic modeling KUKA KR5 Sixx R650 robot (in 2021)

simulation test

39/39 segments of motor currents correctly handled (assign right +/-)

- identify signs of motor currents by means of a Tree Penalty-Based Parameter Retrieval algorithm
- use the method in experimental identification of robot dynamic model, followed by validation tests

Collision detection and isolation KUKA KR5 Sixx R650 robot

use of extra residuals for motor currents of a priori unknown signs *pHRI*

Further pHRI results

obtained within/beyond the SAPHARI project

- integrated control approach with
 - collision avoidance (using exteroceptive sensors)
 - collision detection (with residual methods, whenever safe coexistence fails)
 - collision reaction (not limited to retracting the robot from contact areas)
- distinguish intentional contact from unexpected collision without F/T sensor
 - more general types of contacts (at any location, not just at the end-effector)
- understanding human intentions of motion
 - gesture recognition and classification
 - incremental learning of motion/interaction primitives (kinesthetic teaching)
- Human-Robot Collaboration (HRC)
 - search/detect an intentional contact
 - keep the contact while regulating exchanged forces (without force sensing) or
 - impose a generalized human-robot impedance behavior at the contact
- portfolio of complex reactive actions to perform HRC in a robust way
 - sequencing of tasks, monitoring progress, switching control laws in real time

Bibliography

- A. De Luca, R. Mattone, "Sensorless robot collision detection and hybrid force/motion control," IEEE Int. Conf. on Robotics and Automation, pp. 999-1004, 2005
- A. De Luca, A. Albu-Schäffer, S. Haddadin, G. Hirzinger, "Collision detection and safe reaction with the DLR-III lightweight manipulator arm," IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1623-1630, 2006
- S. Haddadin, A. Albu-Schäffer, A. De Luca, G. Hirzinger, "Collision detection and reaction: A contribution to safe physical human-robot interaction," IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3356-3363, 2008 (IROS 2008 Best Application Paper Award)
- L. Le Tien, A. Albu-Schäffer, A. De Luca, G. Hirzinger, "Friction observer and compensation for control of robots with joint torque measurements," IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3789-3795, 2008
- A. De Luca, L. Ferrajoli, "Exploiting robot redundancy in collision detection and reaction," IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3299-3305, 2008
- A. De Luca, F. Flacco, "Dynamic gravity cancellation in robots with flexible transmissions ," 49th IEEE Conf. on Decision and Control, pp. 288-295, 2010
- A. De Luca, L. Ferrajoli, "A modified Newton-Euler method for dynamic computations in robot fault detection and control," IEEE Int. Conf. on Robotics and Automation, pp. 3359-3364, 2009

Bibliography

- M. Geravand, F. Flacco, A. De Luca, "Human-robot physical interaction and collaboration using an industrial robot with a closed control architecture," IEEE Int. Conf. on Robotics and Automation, pp. 3985-3992, 2013
- F. Flacco, A. Paolillo, A. Kheddar, "Residual-based contacts estimation for humanoid robots," 16th IEEE Int. Conf. on Humanoids, pp. 409-415, 2016
- C. Gaz, A. De Luca, "Payload estimation based on identified coefficients of robot dynamics --with an application to collision detection," IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3033-3040, 2017
- E. Magrini, A. De Luca, "Human-robot coexistence and contact handling with redundant robots," IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 4611-4617, 2017
- S. Haddadin, A. De Luca, A. Albu-Schäffer, "Robot collisions: A survey on detection, isolation, and identification," IEEE Trans. on Robotics, vol. 33, no. 6, pp. 1292-1312, 2017
- F. Flacco, A. Kheddar, "Contact detection and physical interaction for low cost personal robots," 26th IEEE Int. Symp. on Robot and Human Interactive Communication, pp. 495-501, 2017
- M. Pennese, C. Gaz, M. Capotondi, V. Modugno, A. De Luca, "Identification of robot dynamics from motor currents/torques with unknown signs," 3rd Italian Conf. on Robotics and Intelligente Machines, pp. 125-128, 2021 (I-RIM 2021 Best Student Paper Award)
- D. Zurlo, T. Heitmann, M. Morlock, A. De Luca "Collision detection and contact point estimation using virtual joint torque sensing applied to a cobot", IEEE ICRA, May 2023

Reduced-order velocity observer for rigid robots

- for use in position-only feedback control laws and for collision detection/isolation
- nice to have the same first-order structure of a momentum-based residual
- should work in closed-loop or open-loop mode (with possibly unbounded velocity)

$$egin{aligned} oldsymbol{M}(oldsymbol{q})\dot{oldsymbol{z}} &= oldsymbol{ au} - oldsymbol{S}(oldsymbol{q}, \hat{oldsymbol{q}}) \,\hat{oldsymbol{d}} - oldsymbol{g}(oldsymbol{q}) - oldsymbol{f}(oldsymbol{q}, \hat{oldsymbol{q}}) - k_0 \,oldsymbol{M}(oldsymbol{q}) \hat{oldsymbol{q}} \ \hat{oldsymbol{q}} &= oldsymbol{z} + k_0 \,oldsymbol{q} \ \hat{oldsymbol{q}} &= oldsymbol{z} + k_0 \,oldsymbol{q} \end{aligned}$$

Theorem 1. Assume that $\|\dot{q}\| \le v_{max}$ is known. Then, for any fixed $\eta > 0$, by choosing $k_0 \ge (c_0 v_{max} + \eta) / \lambda_{min}(\boldsymbol{M}(\boldsymbol{q}))$

we obtain **local exponential stability** of the observation error $\varepsilon = \dot{q} - \hat{q}$ with a region of attraction $\mathcal{E}(\eta)$

Theorem 2. Assume that $\limsup_{n \to \infty} ||\dot{q}|| \le v$ exists but is yet unknown. Then, using a switching logic to adjust the gain with a hybrid dynamics scheme, we obtain **local exponential stability** of the observation error $\varepsilon = \dot{q} - \hat{q}$

 A. Cristofaro, A. De Luca, "Reduced-order observer design for robot manipulators" IEEE Control Systems Lett., vol. 7, pp. 520-525, 2023