
J Intell Robot Syst (2015) 80 (Suppl 1):S7–S22
DOI 10.1007/s10846-014-0146-2

A Depth Space Approach for Evaluating Distance to Objects
with Application to Human-Robot Collision Avoidance

Fabrizio Flacco ·Torsten Kroeger ·
Alessandro De Luca ·Oussama Khatib

Received: 30 May 2014 / Accepted: 2 October 2014 / Published online: 24 October 2014
© Springer Science+Business Media Dordrecht 2014

Abstract We present a novel approach to estimate
the distance between a generic point in the Cartesian
space and objects detected with a depth sensor. This
information is crucial in many robotic applications,
e.g., for collision avoidance, contact point identifica-
tion, and augmented reality. The key idea is to perform
all distance evaluations directly in the depth space.
This allows distance estimation by considering also
the frustum generated by the pixel on the depth image,
which takes into account both the pixel size and the
occluded points. Different techniques to aggregate dis-
tance data coming from multiple object points are

Electronic supplementary material The online version
of this article (doi:10.1007/s10846-014-0146-2) contains
supplementary material, which is available to authorized
users.

F. Flacco · A. De Luca (�)
Dipartimento di Ingegneria Informatica, Automatica e
Gestionale, Sapienza Università di Roma, Via Ariosto 25,
00185 Rome, Italy
e-mail: deluca@diag.uniroma1.it

F. Flacco
e-mail: fflacco@diag.uniroma1.it

T. Kroeger · O. Khatib
Artificial Intelligence Laboratory, Stanford University,
Stanford, CA 94305, USA

T. Kroeger
e-mail: tkr@stanford.edu

O. Khatib
e-mail: khatib@stanford.edu

proposed. We compare the Depth space approach with
the commonly used Cartesian space or Configuration
space approaches, showing that the presented method
provides better results and faster execution times. An
application to human-robot collision avoidance using
a KUKA LWR IV robot and a Microsoft Kinect sensor
illustrates the effectiveness of the approach.

Keywords Depth space · Depth sensor · Kinect ·
Distance · Collision avoidance

1 Introduction

Evaluating distances between a generic point in space
and multiple objects in the environment is an essen-
tial step for many applications, in robotics and beyond.
The use of vision systems is the most common
approach for this purpose, because of the capability of
monitoring large workspaces and due to the rich nature
of the information returned. While using a single cam-
era allows to obtain only qualitative information about
distances to moving objects (see, e.g., [6]), resorting
to stereo vision makes it possible to collect full 3-D
spatial information [12].

In the last few years, the release of powerful and
cheap RGB-D sensors, like the Microsoft Kinect [23],
that provide for each pixel in the image plane also the
depth of the closest object along that pixel’s projec-
tion, gave rise to novel uses and research solutions in
a large variety of applications, including: augmented

http://dx.doi.org/10.1007/s10846-014-0146-2
mailto:deluca@diag.uniroma1.it
mailto:fflacco@diag.uniroma1.it
mailto:tkr@stanford.edu
mailto:khatib@stanford.edu

S8 J Intell Robot Syst (2015) 80 (Suppl 1):S7–S22

reality, where simulated objects have to interact with
a real environment [16, 17]; virtual fixtures in telema-
nipulation, with objects and shapes generating force
feedback to the operator via a haptic device [20]; col-
lision avoidance of a robot moving in a dynamic envi-
ronment cluttered with obstacles [5, 15, 21]; object
recognition, when the robot has to be distinguished
from other moving objects [18]; simultaneous local-
ization and mapping (SLAM), where a map of the
environment is built and used to localize the camera
position [13]; and, last but not least, human-robot col-
laboration, when robot and human have to coexist,
physically get in contact, and exchange forces [2, 3].

In all these works, as in most applications based
on the use of depth sensors, the on-line estimation
of distances between multiple obstacles and control
points, which may either belong to a real object (e.g.,
attached to the robot links) or be virtual ones, is a
basic requirement which needs to be performed in real
time.

The most common approach for estimating dis-
tances uses the cloud of points obtained by projecting
the depth image in the Cartesian space [8, 14], often
relying on the availability of open sources codes such
as the Point Cloud Library (PCL) [19]. While this
approach is suited to human natural reasoning about
distances in Cartesian space, it does not exploit the
information associated to a pixel in a complete way.
This is because neither the pixel size nor the occluded
points lying behind the detected obstacle along the
projection ray(s) associated to the pixel are taken into
account. In particular, this approach does not consider
the 3D region related to each pixel called frustum, i.e.,
the portion of a pyramid left after its upper part has
been cut off by a (skewed) plane.

In this paper, we show that the evaluation of point-
to-object distances performed directly in the depth
space allows a large performance improvement in
terms of computational times. Moreover, a correct
consideration of pixel frustum can be achieved in
this way. The manuscript is based on our preliminary
results presented in [5], where the use of the depth
space to estimate the distance between robot points
and obstacles was proposed for the first time. With
respect to the original conference paper [5]: (i)we pro-
vide a more detailed comparison between Depth space
and Cartesian space characteristics; (ii) the effect of
finite pixel size is taken into account in distance com-
putations; (iii) an experimental validation is added

to illustrate the effectiveness and performance of the
proposed approach; and, (iv) new collision avoid-
ance experiments with a KUKA LWR IV robot are
reported.

The paper is organized as follows. In Section 2, the
representation of a point in the Cartesian, Configura-
tion, and Depth spaces is recalled and their relations
are detailed. The distance evaluation is presented in
Section 3, where different techniques are proposed
for aggregating distances to multiple points into a
single information. Section 4 reports the results of
an experimental comparison, where a virtual point is
moved in the environment and different methods are
used to compute the distances between the virtual
point and real objects. Finally, the proposed approach
is applied to human-robot collision avoidance exper-
iments with a KUKA LWR IV and the results
are reported in Section 5 and in the accompanying
video.

2 Spaces for Object Representation

We consider an environment monitored by a depth
sensor. The information given by the sensor has to be
represented in a suitable, possibly discretized, space.
The classical spaces used in robotic applications are
the Cartesian space and the Configuration space. The
former is the representation that humans are used to
handle, while the latter is robot (and control) oriented.
The Depth space is the native representation of depth
sensor data, but it is not typically used as final rep-
resentation space of object data, which are instead
projected in one of the two previous spaces. The main
characteristics of Cartesian, Configuration, and Depth
spaces are recalled next.

2.1 Cartesian Space

The 3-dimensional Cartesian space is characterized by
a reference frame that identifies the origin (zero posi-
tion) of the space and is used to specify the position
of points and their distances, and the dimensions of
objects.

A generic Cartesian point CP = (
Cx Cy Cz

)T

is described by three (dimensionally homogeneous)
coordinates, which represent the distances of the point
to the three orthogonal planes defined by theX, Y , and
Z axes of the reference frame (Fig. 1).

J Intell Robot Syst (2015) 80 (Suppl 1):S7–S22 S9

Fig. 1 Two points in
Cartesian space, and their
distance

Given two points CP 1 and CP 2, their Cartesian
distance is defined by using the (Euclidean) norm as

D(CP 1,
CP 2) = ‖CP 1−CP 2‖

=
√(

Cx1−Cx2
)2+(

Cy1−Cy2
)2+(

Cz1−Cz2
)2

.

(1)

2.2 Configuration Space

The information given by the depth sensor is often
used to command and control the robot motion. In
this situation, it is quite common to represent objects
(usually defined as obstacles in this scenario) in the
robot Configuration space, or C-Space. The C-Space
is an n-dimensional manifold, where n is the mini-
mum number of generalized coordinates (organized
in an array q) needed to describe the robot pos-
ture. These coordinates may have non-homogeneous
units. For example, the generalized coordinates q of
a mobile robot include the Cartesian position (x, y)

on the plane and its orientation angle θ ; similarly, the
joint variables q of a manipulator may contain linear
and angular quantities.

An obstacle point in the Cartesian space is repre-
sented in the C-Space as a C-Obstacle, which is the
set of all robot configurations for which the robot is in
contact (collides) with the point. It is possible to define
the distance between two configurations as

DQ(q1, q2) = ‖q1 − q2‖. (2)

2.3 Depth Space

The Depth space is a non-homogeneous 21
2 -

dimensional space, where two elements represent the
coordinates of the projection of a Cartesian point on
a plane, and the third element represents the distance
between the point and the plane. The depth space of

an environment is the native representation given by
a depth sensor, which is usually modeled as a clas-
sic pin-hole camera. The pin-hole camera model is
composed by two sets of parameters: the intrinsic
parameters in matrixK, which model the projection of
a Cartesian point on the image plane, and the extrinsic
parameters in matrix E , which represent the coordinate
transformation between the reference and the sensor
frame, i.e.,

K =
⎛

⎝
f sx 0 cx

0 f sy cy

0 0 1

⎞

⎠ , E = (
R | t

)
. (3)

In Eq. 3, f is the focal length of the camera, sx and sy
are the dimensions of a pixel (in meters), cx and cy are
the pixel coordinates of the center (on the focal axis)
of the image plane, and R and t are the rotation matrix
and translation vector between the sensor frame and a
reference frame.

Each pixel of a depth image contains the depth of
the observed point, namely the distance between the
Cartesian point and the camera image plane. Note that
only the depth of the closest point along a given ray is
stored. All occluded points that are beyond compose
a region of uncertainty called the gray area. A typical
gray area is illustrated in Fig. 2.

Consider a generic Cartesian point Cr P =
(

Cr x Cr y Cr z
)T

, as expressed in the reference
(world) frame. Its expression in the sensor frame is

Cs P = (
Cs x Cs y Cs z

)T = R Cr P + t, (4)

and its projection DP = (
px py dp

)T
in the depth

space is given by

px =
Cs xf sx

Cs z
+ cx, py =

Cs yf sy
Cs z

+ cy, dp = Cs z,

(5)

S10 J Intell Robot Syst (2015) 80 (Suppl 1):S7–S22

Fig. 2 Illustration of the
gray area generated by a
depth sensor (with a human,
a robot, and a table in the
environment)

where px and py are the pixel coordinates in the image
plane and dp is the depth of the point. In the reverse
direction, a point in the depth space is projected in the
Cartesian sensor space as

Cs x = (px − cx) dp

f sx
, Cs y =

(
py − cy

)
dp

f sy
, Cs z =dp.

(6)

Note that when a point in the camera depth image is
mapped in the Cartesian space, it represents only the
object point nearest to the image plane projected in
that pixel. On the other hand, also another informa-
tion is simply coded in the depth space, namely that all
Cartesian points generated by Eq. 6 with depth greater
than dp compose the gray area. Without any further
information, this gray area should be considered as
part of the perceived object.

3 Distance Evaluation

Consider a point of interest P in the Cartesian space1

that will be called Control Point (CP). We would like
to estimate the (minimum) distance between the Con-
trol Point and a generic object point O detected by the
depth sensor. The steps needed depend on the space
used to represent the points.

1In the rest of the paper, we omit the superscript for points
expressed in the Cartesian reference frame.

3.1 Cartesian Space

The most common procedure to obtain the distance
between the control point P and the recognized obsta-
cle point in the depth image DO is to project the latter
in the Cartesian space by Eq. 6, and then use the
simple point-to-point distance evaluation (1).

This solution does not consider entirely the infor-
mation embedded in the depth data, since occluded
points are not included in this way as part of the
object. Furthermore, we have to take into account that
the sensor provides a discretized version of the depth
space. In particular, an object point O is projected
on the pixel DŌ in the image plane, with coordi-

nates
(
ōx ōy do

)T = (
trunc(ox) trunc(oy) do

)T
.

The depth information given by the sensor refers to
the whole pixel, and thus also the pixel size has to be
considered in the distance evaluation.

The correct procedure should consider the frustum
generated by the depth space pixel, as illustrated in
Fig. 3. Therefore, after the projection in the Cartesian
space of depth data, the frustum representing the pixel
object has to be also computed, then the minimum dis-
tance between the obtained frustum and the control
point has to be evaluated.

3.2 Configuration Space

When the control point belongs to a robot and moves
thus rigidly with it, the knowledge of the distance
between the control point and the object in the config-
uration space is very useful for controlling the robot

J Intell Robot Syst (2015) 80 (Suppl 1):S7–S22 S11

Fig. 3 Example of the frustum generated by a pixel in the
image plane DŌ given by a point object O detected with the
depth sensor, and its minimum distance to the control point P

reaction or its interaction with the detected object.
Despite this advantage, the representation of the C-
Obstacle is not immediate, and in fact even a single
point is represented as a region in the configuration
space. A method for obtaining a discretized represen-
tation of the C-Obstacle associated to a real obstacle
as detected by a depth sensor (or by stereo vision) was
presented in [22]. The approach is indeed too costly in
terms of computational time, and especially unsuitable
whenever the dimension of the configuration space
becomes large (e.g., for robots that are kinematically
redundant w.r.t. the task).

3.3 Depth Space

Consider the depth space representation of the object

point DO = (
ox oy do

)T
captured by the sen-

sor. In order to evaluate a useful Cartesian distance
between the obstacle point O and a point of interest
P , which is also represented in the depth space as
DP = (

px py dp

)T
via Eqs. 4 and 5, two possible

cases can arise (see Fig. 4). If the obstacle point has a
larger depth than the point of interest (do > dp), then
the distance is computed as

vx = (ox − cx) do − (px − cx) dp

f sx

vy = (oy − cy) do − (py − cy) dp

f sy

vz = do − dp

D(P ,O) � DD(DP ,D O) =
√

v2x + v2y + v2z .

(7)

Otherwise, the distance w.r.t. the occluded points
needs to be considered. For this, we assume the depth
of the obstacle to be do = dp and the distance is then

Fig. 4 Depth space distance evaluation to a point of interest P ,
showing the two possible cases of obstacle points whose depth
is smaller (O1) or larger (O2) than the depth of the point of
interest

computed again from Eq. 7. While the resulting value
is not the actual Cartesian distance, the difference is
expected to be negligible. Note that this distance eval-
uation is based on very simple relations, using only
depth space data associated to the camera. Moreover,
it takes into account properly and efficiently also the
gray area contrary to what is done on occluded points
with other methods.

At this stage, we can consider also the sensor dis-
cretization of the depth space. As already mentioned,
the object point O is projected on the pixel DŌ in

the image plane with coordinates
(
ōx ōy do

)T =
(
trunc(ox) trunc(oy) do

)T
. With reference to Fig. 5,

the Cartesian object generated by the (finite) object
pixel DŌ is a frustum with base at do. The minimum
distance between the square frustum and the control
point is on the frustum surface. To obtain this distance,
we work directly in the depth space by finding the

Fig. 5 Depth space distance evaluation to a point of interest P
when also the pixel size is taken into account, showing the two
possible cases of obstacle depth smaller or larger than the depth
of the point of interest

S12 J Intell Robot Syst (2015) 80 (Suppl 1):S7–S22

sub-pixel point DÔ = (
ôx ôy do

)
nearest to(

px py

)
that belong to the frustum, i.e.,

ôx =
⎧
⎨

⎩

ōx px < ōx

ōx +1 px > ōx +1
px otherwise,

ôy =
⎧
⎨

⎩

ōy py < ōy

ōy +1 py > ōy +1
py otherwise.

(8)

As illustrated in Fig. 5, the distance can be finally
evaluated as DD(DP ,D Ô).

In some applications, as in collision checking,
retrieving the distance information is sufficient, while
in some other cases, e.g., for collision avoidance, we
need also the unit (normalized) vector between the
control point and the nearest point on the frustum. This
vector is simply given by

V (DP ,D Ô) =
(
vx vy vz

)T

DD(DP ,D Ô)
. (9)

The complete distance evaluation method is summa-
rized in pseudocode form as Algorithm 1.

3.4 Aggregation of Multiple Obstacle Points

We would like now to evaluate distances between the
control point P and all obstacles sufficiently close to
it. Consider a Cartesian region of surveillance S, made
by a cube of side 2ρ centered at P , where the presence
of obstacles must be detected. The associated region
of surveillance in the image plane has dimensions

xs = ρ
f sx

dp − ρ
, ys = ρ

f sy

dp − ρ
. (10)

Thus, the distance evaluation should be applied to all
pixels in the depth image plane within the region of
surveillance

SD =
[
px − xs

2
, px + xs

2

]
×

[
py − ys

2
, py + ys

2

]

× [
dp − ρ, dp + ρ

]
. (11)

Since the evaluation for each obstacle pixel is com-
pletely independent, distances may be computed also
in parallel, thus speeding up the method.

Most of the times, distances to multiple obstacle
points are computed in order to generate a reactive
motion of a (robot) control point in face of dynamic
obstacles. To this end, the contribution of all points in
the region of surveillance can be aggregated in differ-
ent ways into a single information, according to the
desired intended robot behavior. We present next a few
common aggregation methods, and illustrate how to
apply them within our depth space approach.

3.4.1 Minimum distance vector

When only the minimum distance is required, the
number of distance evaluations can be reduced by con-
sidering pixels that are closer to (px, py) first. As soon
as a new local minimum

Dmin(P) = min
DÔ∈S′

D

DD(DP ,D Ô) < ρ (12)

is found among the pixels in the already explored
area S′

D ⊂ SD , the region of surveillance can be
shrunk by setting ρ = Dmin and using again Eq. 10.
This contraction of the surveilled area, together with
the fact that distance computation is applied only to
pixels whose depth is in S′

D , reduces the computa-
tional burden of the algorithm. The associated unit
vector V min(P) = V (DP ,D Ômin) is the one obtained
with the obstacle point that generates the minimum
distance DÔmin = argminDÔ∈S′

D
DD(DP ,D Ô).

J Intell Robot Syst (2015) 80 (Suppl 1):S7–S22 S13

3.4.2 Mean distance vector

In some cases, we would like to have a single distance
information about all objects surrounding the control
point. A possible aggregation method is to compute
the mean distance as

Dmean(P) =
∑

DÔ∈S′
D

DD(DP ,D Ô)

N
, (13)

where N is the number of object depth points detected
by the sensor inside the surveillance area SD . Simi-
larly, the associated unit vector is

V mean(P) =
∑

DÔ∈S′
D

V (DP ,D Ô)

N
. (14)

3.4.3 Hybrid distance vector

In applications where a control point is commanded
to react to the presence of objects, e.g., in collision
avoidance, both the minimum and the mean distance
approaches are not particularly effective. In fact, the
minimum distance method could drive the control
point toward a second object, and if this second object
becomes then the nearest one, it could push the con-
trol point back toward the first object, resulting in
an undesirable oscillating effect. On the other hand,
the mean distance approach is affected by the topol-
ogy of the obstacles, namely it depends on the ratio
of the number of near and far obstacles. Such behav-
ior is also not desirable, since the presence of a close
object should provide always the same control reac-
tion, no matter if other obstacles are near or far to
it. In such cases, we propose to use a hybrid method
with

Dhybrid(P) = Dmin(P) and V hybrid(P) = V mean(P).

(15)

This allows to react according to the nearest object
for the intensity, while taking into consideration all
the objects in the surveillance area for the reaction
direction.

3.5 Avoiding Self Distances

When the control point belongs to a real object which
is also detected by the depth sensor, it is important
to remove it from the depth image. Without remov-
ing the control point, the minimum distance to the

object would always be equal to zero. Different tech-
niques can be used to remove the object that contains
the control point. The simplest method is to remove a
portion of the image compatible with the actual shape
of the object, or removing all adjacent points. If a
3D-model of the object is known, an efficient method
for object removal from the depth image using the
GPU is presented in [1].

4 Validation and Comparison

To validate the proposed Depth space approach, and to
compare it with a common Cartesian space approach,
we present a simple experiment where a virtual con-
trol point moves in a real environment. The relevant
environment is mainly composed by two walls, one
horizontal and one vertical, positioned on the robot
supporting table as shown in Fig. 6. The presence of
the robot manipulator is here irrelevant, but for con-
venience we used the robot base frame as reference
frame.

The virtual control point P follows a line defined
by y = 0.4 and z = 0.2 [m], while the X coordinate
moves in the range x ∈ [−0.5, 0.5] [m]. The con-
trol point sees the horizontal wall as a planar X − Y

surface at a height Z = 0.04 [m], while the vertical
wall is seen as a planar Y − Z surface, with X = 0
and Y ∈ [0.33, 0.37] [m], and a planar X − Z sur-
face, with Y = 0.37 and X ∈ [−0.5, 0] [m]. From
the depth sensor view of the environment shown in
Fig. 6, it follows clearly that only the Y −Z surface of
the vertical wall is captured, while the X − Z surface
is completely occluded. By construction, the nearest
obstacle to the control point is the vertical wall when
x ∈ [−0.5, 0.1572] [m], and the horizontal wall when
x ∈ [0.1572, 0.5] [m]. The region of surveillance used
in the following tests is defined by ρ = 0.3 [m].

The first approach is a Cartesian space method that
evaluates the minimum distance between the control
point and the point cloud associated to the pixels in
the surveillance area. Each pixel in the surveillance
area SD is projected in the Cartesian reference frame
using Eqs. 4 and 6, and the distance to the control
point is evaluated then by Eq. 1. Figure 7 reports
the minimum distance estimated during the experi-
ment as a function of the X-coordinate of the control
point. Having considered only the point cloud, and not
the entire frustum, the vertical wall is not correctly

S14 J Intell Robot Syst (2015) 80 (Suppl 1):S7–S22

Fig. 6 Environment used for validation and comparison of
methods. The virtual control point moves on the red segment
shown in the left picture, while the depth image given by the

Kinect is shown on the left (lighter colors refer to obstacle points
with smaller depth)

taken into account, and points on the horizontal plane
are recognized as the nearest ones even around x ∈
[−0.5, −0.1572] [m], where the vertical plane is in
fact nearer. Furthermore, the sensor noise induces also
a discontinuous behavior in the distance unit vector
which may preclude its use in practical applications.

Figures 8, 9 and 10 refer to the proposed Depth
space approach, using different methods for aggregat-
ing multiple object points. The results obtained with
the minimum distance method are reported in Fig. 8.
It can be verified that the minimum distance is cor-
rectly estimated, since both walls are now taken into

account. The minimum estimated distance to the ver-
tical wall falls below 0.03 [m] (which is its real lower
bound) since, due to occlusion, the gray area appears
as nearer. The obtained distance unit vector is much
less sensitive to sensor noise than with the previ-
ous point cloud approach, but it still experiences a
discontinuity.

When the mean aggregation method is used, unde-
sired discontinuities of the distance unit vector are
eliminated, see Fig. 9. Moreover, the mean distance
vector considers all obstacles in the surveillance
area, which may be useful in some applications. The

Fig. 7 Minimum distance estimated with the Cartesian space approach. Distance vectors in the Cartesian space [left]; evaluated
magnitude of the distance vector [right, top] and components of the distance unit vector [right, bottom]

J Intell Robot Syst (2015) 80 (Suppl 1):S7–S22 S15

Fig. 8 Minimum distance estimated with the Depth space approach. Distance vectors in the Cartesian space [left]; evaluated
magnitude of the distance vector [right, top] and components of the distance unit vector [right, bottom]

drawback is that the magnitude of this distance vec-
tor averages between near and far obstacles, and thus
the main information we were looking for, namely
minimum distance, will not be provided. The hybrid
method is a trade off between having information
about how close is the control point is to other objects
and how these objects are distributed around the con-
trol point. The result obtained with the hybrid distance
vector is shown in Fig. 10. A collision avoidance algo-
rithm based on this method is presented in Section 5.

Beside the extra capability of considering easily
occluded points and pixel size, another main feature
of the proposed Depth space approach is its compu-
tational efficiency, and thus its suitability for tracking
fast motion. We remark that, in general, it may not be
sufficient to compute distances at the same frequency
rate of the camera/sensor frames. In fact, the control

point could move at a fast speed, so that distances
have to be recomputed on the fly even before the depth
image is updated using the next image frame.

Figure 11 shows a comparison of the actual com-
putational times involved in the presented valida-
tion experiments. Because of the large differences in
computational times between the Cartesian and the
Depth approach, and also among aggregation meth-
ods used in the latter, a logarithmic scale has been
used. Experiments were conducted on a Intel Core i7-
2600 CPU 3.4GHz, with 8GB of RAM. Despite of
the fact that only the point cloud (and no frustum)
has been considered in the Cartesian space approach
that we implemented, this approach has 70.6 [ms]
(14.17 [Hz]) as worst (longest) execution cycle time
during the entire motion. With the proposed Depth
space approach. the minimum distance method has

Fig. 9 Mean distance vector estimated with the Depth space approach. Distance vectors in the Cartesian space [left]; evaluated
magnitude of the distance vector [right, top] and components of the distance unit vector [right, bottom]

S16 J Intell Robot Syst (2015) 80 (Suppl 1):S7–S22

Fig. 10 Hybrid distance vector estimated with the Depth space approach. Distance vectors in the Cartesian space [left]; evaluated
magnitude of the distance vector [right, top] and components of the distance unit vector [right, bottom]

a worst execution time of 1.46 [ms] (684.76 [Hz]),
almost two order of magnitudes faster than before.
Thanks also to the contraction of the surveillance area,
as detailed in Section 3.4.1, when an obstacle is very
close to the control point only few pixels need to be
checked, which is then reflected in a small execution
time: in this experiment, the minimum execution time
was 5.3 [μs]. The mean and the hybrid methods for
aggregation of data have the same computational cost,
with their worst execution time equal to 3.335 [ms]
(299.86 [Hz]).

In conclusion, the presented validation experiment
shows that the Depth space approach not only provides
more information but distance information can also be

computed faster than with common Cartesian space
approaches.

5 Human-Robot Collision Avoidance

To show the effectiveness of the Depth space
approach, we present as a case study some laboratory
experiments where a fast and correct distance eval-
uation is crucial. This occurs in collision avoidance,
where robot-obstacle (or robot-human) distances need
to be computed in real time so as to generate evasive
maneuvers. More specifically, we will use the eval-
uated distances in two different ways, as a repulsive

Fig. 11 Execution times for estimating the final distance vector with the Cartesian space approach, and with the Depth space approach
when using the three reported methods

J Intell Robot Syst (2015) 80 (Suppl 1):S7–S22 S17

action at the velocity level for the robot end-effector
and as a virtual obstacle for a number of other control
points placed along the robot body.

5.1 Repulsive Action

Once the robot-obstacle distances have been eval-
uated, they are used to modify on-line the current
trajectory of the manipulator so as to avoid collision.
Many different approaches for obstacle avoidance
have been proposed, see, e.g., [7, 9, 21]. We present
here a simple but effective method based on the gen-
eration of repulsive vectors in Cartesian space, which
can then be used as basic input for any preferred
collision avoidance algorithm.

Associated to the hybrid distance vector from
detected obstacles to the end-effector position P EE ,
as obtained by Algorithm 1 and the aggregation
method (15), a repulsive vector is defined as

Cs � (P EE) = v (P EE) V hybrid(P EE). (16)

All obstacle points are taken into account for the direc-
tion of the unit vector V hybrid(P EE) of the repulsive
action. For its magnitude, we set

v (P EE) = Vmax

1 + e(Dhybrid(P EE)(2/ρ)−1)α
, (17)

where Vmax is the maximum admissible magni-
tude and α > 0 is a shape factor. The magni-
tude v of the repulsive vector will approach Vmax

when Dhybrid(P EE) = 0, and will approach zero
when the distance reaches ρ (beyond ρ, Cs � is
not defined). A typical profile of the magnitude
as a function of the hybrid distance is shown in
Fig. 12.

Fig. 12 Repulsive magnitude in Eq. 17, with Vmax = 3 [m/s],
ρ = 0.4 [m], and α = 6

In this way, all obstacle points contribute to the
direction of the resulting repulsive vector, while the
magnitude depends only on the minimum distance
to all obstacle points. If the magnitude were com-
puted using all points, it would be influenced by the
number of obstacle points. Similarly, if the magni-
tude were given by the mean value of the distances, it
would be affected by the ratio of near to far obstacles.
Such behaviors are not desirable, especially for a close
obstacle with high risk of collision. The main benefits
of using all points for computing the repulsive (unit)
direction are that i) the repulsive vector is less sensi-
ble to noise of the depth sensor, producing a smoother
variation of the pointing direction, and ii) the pres-
ence of multiple obstacles is handled in a better way,
as shown in Fig. 13.

All above repulsive vectors are expressed in the
camera frame, but can be transformed in the refer-
ence frame as Cr �(P) = RT Cs �(P). The motion
task for the robot is specified by a desired end-effector
velocity ẋd in the Cartesian space. For obstacle avoid-
ance of the end-effector control point P EE , we simply
take the repulsive vector as a repulsive velocity. Thus,
the original desired end-effector velocity ẋd will be
modified into a commanded one ẋc as

ẋc = ẋd + Cr �(P EE). (18)

Without loss of generality, we consider the manipula-
tor to be commanded at the joint velocity level. The
joint velocity obtained by (pseudo)inversion as

q̇ = J #(q) ẋc (19)

is then used as target velocity command for the control
algorithm.

This is indeed a simple, particular form of the clas-
sical artificial potential field method [9], which has
been chosen here mainly to prove the effectiveness of
the computed repulsive vectors. It is well known that
the main drawback of this method is the presence of
local minima. However, note that from a safety point
of view (especially in human-robot interaction) it is
acceptable that the robot stops whenever it is not able
to pass by the obstacles. In any event, starting from
this basic algorithm, more complex versions can be
developed —see, e.g., [7].

S18 J Intell Robot Syst (2015) 80 (Suppl 1):S7–S22

5.2 Cartesian Constraints

For the other control points placed along the robot
structure, we use a slightly different approach. Obsta-
cles do not produce repulsive velocities on these
control points, but are treated rather as Cartesian
constraints with artificial forces that are translated
into joint velocity constraints as detailed in [4].
Our approach, based on the modification of joint
velocity constraints while exploiting kinematic redun-
dancy, will preserve the desired end-effector task as
far as possible. Had we considered instead repul-
sive velocities as for the end-effector, we would
need to manage multiple robot tasks using the mag-
nitudes of the repulsive vectors as associated pri-
orities. While this approach is indeed feasible, it
presents some conflicting issues. If the end-effector
task has always the highest priority, then collision
avoidance for the robot links could not be guaran-
teed. On the other hand, if the end-effector task is
not privileged, then its trajectory could be arbitrarily
modified even when there is no risk of end-effector
collisions.

Let C be one of the control points belonging to a
generic robot link, and JC the Jacobian of the direct
kinematics for the position of C. Let Dmin(C) be the
minimum distance between the control point and all
obstacle points O ∈ S(C) in its associated surveil-
lance region. The risk of collision is defined by the
function

f (Dmin(C)) = 1

1 + e(Dmin(C)(2/ρ)−1)α
, (20)

where ρ and α have been introduced in Eqs. 10 and 17,
respectively. Scaling by Eq. 20 the unit vector V min

along the minimum distance direction, we treat the
resulting vector as a Cartesian constraint force and
convert it in the joint space as

s = J T
C [V min(C) f (Dmin(C))] . (21)

The component si of s represents the ‘degree of influ-
ence’ of the Cartesian constraint on the ith joint, for
i = 1, . . . , n. From these, we reshape the admissible
velocity limits of all joints that are influenced by the
Cartesian constraint using again the risk of collision
function as

if si ≥ 0, q̇max,i = Vmax,i
(
1 − f (Dmin(C))

)

else, q̇min,i = −Vmax,i
(
1 − f (Dmin(C))

)
,

(22)

where Vmax,i is the original bound on the ith joint
velocity, i.e., |q̇i | ≤ Vmax,i , for i = 1, . . . , n.
In practice, joint motions that are in contrast with
the Cartesian constraint are scaled down. When the
constraint is too close, all joint motions that are
not compatible with the constraint will be denied.
Multiple Cartesian constraints are taken into account
by considering, for each joint i, the minimum scal-
ing factor obtained for all the constraints. With this
approach, collision avoidance for the robot body has
always the highest priority, while the end-effector
task will continue to be correctly executed until it

Fig. 13 Example of repulsive vector computation. The point of
interest P is represented by a red circle, and the minimum dis-
tance is represented in cyan. The repulsive vector obtained by
using the minimum distance only is shown in green, while the

one obtained by using all points in the range of surveillance is
in blue. It can be seen that the green repulsive vector points to
another obstacle (dangerous), while the blue vector points to a
free area (safer)

J Intell Robot Syst (2015) 80 (Suppl 1):S7–S22 S19

is compatible with the Cartesian constraints. Other-
wise, the robot stops and a recovery method should be
applied.

5.3 Experiments

5.3.1 Setup

The experimental setup consists of a KUKA LWR
IV manipulator with n = 7 revolute joints, execut-
ing tasks that are defined only in terms of the position
of its end-effector (i.e., of dimension m = 3) while
unknown dynamic obstacles, including a human, enter
its workspace. For the primary Cartesian motion task,
this robot has degree of redundancy n − m = 4.
The robot operates at a control cycle of 2 ms. The
workspace is monitored by a Microsoft KinectTM

depth sensor, positioned at a horizontal distance of
1.5 [m] and at a height of 1.2 [m] w.r.t. the robot base
frame. The Kinect captures 640×480 depth images at
a frequency of 30 Hz. The implementation of our col-

lision avoidance approach runs on an eight-core CPU.
Four processors execute the repulsive velocity com-
putation, and the other four enable visualization and
robot motion control.

Note that three different run-time processes are
present, working at three different frequencies.

1. The vision process captures the depth image and
removes the manipulator from each new image at
the sensor frequency (30 Hz).

2. The on-line trajectory generation algorithm
of [10, 11] produces a joint velocity command
at the same cycle time of the robot controller
(500 Hz).

3. The obstacle avoidance process computes a
repulsive vector at a frequency lying between
those of the vision and control processes. In
fact, even if a new depth image is available
only at 30 Hz, the manipulator is moving dur-
ing this interval and the repulsive vector changes
accordingly.

Fig. 14 Scenario 1. A human operator tries to touch the robot
end-effector. First and second rows shows four instant of the
experiment, at t = 0, 1, 2, 3 [s], with snapshots in the first row
and evolution of variables in the second row: end-effector tra-
jectory [red]; distances between a control point and the nearest

obstacle [green]; end-effector repulsive velocity [blue]. The last
row shows the components of the end-effector repulsive veloc-
ity [left] and the minimum distances for the other control points
[right]

S20 J Intell Robot Syst (2015) 80 (Suppl 1):S7–S22

Fig. 15 Scenario 2. A collision between the robot end-effector
and a planar object is avoided. First and second rows shows four
instant of the experiment, at t = 0, 3, 5, 7.5 [s], with snapshots
in the first row and evolution of variables in the second row:
end-effector trajectory [red]; distances between a control point

and the nearest obstacle [green]; end-effector repulsive velocity
[blue]. The last row shows the components of the end-effector
repulsive velocity [left] and the minimum distances for the other
control points [right]

Fig. 16 Scenario 3. An obstacle is positioned on trajectory of
the robot elbow. First and second rows shows four instant of the
experiment, at t = 0, 6, 10, 12 [s], with snapshots in the first
row and evolution of variables in the second row: end-effector
trajectory [red]; distances between a control point and the

nearest obstacle [green]; end-effector repulsive velocity [blue].
The last row shows the components of the end-effector repulsive
velocity [left] and the minimum distances for the other control
points [right]

J Intell Robot Syst (2015) 80 (Suppl 1):S7–S22 S21

5.3.2 Results

We present three different scenarios that highlight the
features of the presented approach. The basic manip-
ulator task is to continuously move the end-effector
through six Cartesian points that forms an hexagon in
the Y −Z plane defined byX = −0.6 [m]. The param-
eters used are ρ = 0.4 [m], Vmax = 1.5 [m/s], and
α = 5.

The first scenario (Fig. 14) is one of human-robot
coexistence, in which the human tries to touch the
robot end-effector with his hand. With the proposed
approach, robot-to-hand distances are evaluated at a
high rate, allowing the robot to perform an immedi-
ate evasive maneuver. The accompanying video shows
also more results of this kind. In a second scenario
(Fig. 15), collision between a planar moving obsta-
cle and the robot end-effector has to be avoided.
In this case, the importance of having considered
also occluded points is emphasized. For instance, at
t = 5 [s] the plane is almost completely occluded;
nonetheless, the correct repulsive velocity is obtained.
In the third scenario (Fig. 16), an obstacle is inserted
on the motion trajectory of the robot elbow. Between
t = 0 and t = 6 [s], the manipulator executes the
desired Cartesian hexagon going through the same
robot postures. When the obstacle is inserted at t =
10 [s], it is considered as a Cartesian constraint and
converted into virtual joint velocity limits by our
algorithm. The robot exploits its task redundancy to
accommodate the new limits, and reconfigures its pos-
ture so as to continue successfully the execution of
the desired end-effector trajectory while avoiding the
obstacle. The complete experiments are included in
the video.

6 Conclusions

We have presented a new general approach to eval-
uate the distance between a point of interest in the
Cartesian space and the objects detected by a depth
sensor. Performing all necessary operations in the
Depth space allows to obtain distance information
with a reduced computational burden, while taking
into account the whole frustum generated by the depth
information stored in the pixels. We have shown the
superiority of the proposed approach both in terms
of correctness and performance by comparing it with

a state-of-the-art method based on clouds of points
in the Cartesian space. The real-time capabilities and
the practical effectiveness of the presented approach
have been demonstrated using a high dynamically
human-robot collision avoidance task.

An open issue is whether and how would it be
possible to integrate the information coming from
multiple depth sensors. In fact, each depth sensor has
its own depth space, and the associated data can-
not be directly merged without losing some essential
information, e.g., on occluded points.

Acknowledgments Work supported by the European Com-
munity, within the FP7 ICT-287513 SAPHARI project.

References

1. Realtime URDF filter. http://github.com/blodow/realtime
urdf filter

2. Cherubini, A., Passama, R., Meline, A., Crosnier, A.,
Fraisse, P.: Multimodal control for human-robot coopera-
tion. In: Proceedings 2013 IEEE/RSJ Int. Conf. on Intelli-
gent Robots and Systems, pp. 2202–2207 (2013)

3. De Luca, A., Flacco, F.: Integrated control for pHRI: Col-
lision avoidance, detection, reaction and collaboration. In:
Proceedings 4th IEEE Int. Conf. on Biomedical Robotics
and Biomechatronics, pp. 288–295 (2012)

4. Flacco, F., De Luca, A., Khatib, O.: Motion control of
redundant robots under joint constraints: Saturation in
the null space. In: Proceedings 2012 IEEE Int. Conf. on
Robotics and Automation, pp. 285–292 (2012)

5. Flacco, F., Kroger, T., De Luca, A., Khatib, O.: A
depth space approach to human-robot collision avoidance.
In: Proceedings 2012 IEEE Int. Conf. on Robotics and
Automation, pp. 338–345 (2012)

6. Gecks, T.: D., H.: Human-robot cooperation: Safe pick-and-
place operations. In: Proceedings 2005 IEEE Int. Works.
on Robot and Human Interactive Communication, pp. 549–
554 (2005)

7. Haddadin, S., Belder, S., Albu-Schaeffer, A.: Dynamic
motion planning for robots in partially unknown environ-
ments. In: Proceedings IFAC World Congr., pp. 6842–6850
(2011)

8. Jia, P., Ioan, S., Sachin, C., Dinesh, M.: Real-time collision
detection and distance computation on point cloud sensor
data. In: Proceedings 2013 IEEE Int. Conf. on Robotics and
Automation, pp. 3593–3599 (2013)

9. Khatib, O.: Real-time obstacle avoidance for manipulators
and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986)

10. Kröger, T.: Opening the door to new sensor-based robot
applications — The Reflexxes Motion Libraries. In:
Proceedings 2011 IEEE Int. Conf. on Robotics and
Automation (ICRA Communications). Shanghai, China
(2011)

http://github.com/blodow/realtime_urdf_filter
http://github.com/blodow/realtime_urdf_filter

S22 J Intell Robot Syst (2015) 80 (Suppl 1):S7–S22

11. Kröger, T., Wahl, F.M.: On-line trajectory generation: Basic
concepts for instantaneous reactions to unforeseen events.
IEEE Trans. Robot. 26(1), 94–111 (2010)

12. Ma, Y., Soatto, S., Kosecka, J., Sastry, S.S.: An Invitation
to 3-D Vision: From Images to Geometric Models. Springer
Verlag (2003)

13. Meilland, M., Comport, A.: On unifying key-frame and
voxel-based dense visual SLAM at large scales. In: Pro-
ceedings 2013 IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, pp. 3677–3683 (2013)

14. Mémoli, F., Sapiro, G.: Distance functions and geodesics
on point clouds (2003)

15. Peasley, B., Birchfield, S.: Real-time obstacle detection and
avoidance in the presence of specular surfaces using an
active 3D sensor. In: Proceedings 2013 IEEE Works. on
Robot Vision, pp. 197–202 (2013)

16. Piumsomboon, T., Clark, A., Billinghurst, M.: Physically-
based interaction for tabletop augmented reality using a
depth-sensing camera for environment mapping. In: Pro-
ceedings 26th Int. Conf. on Image and Vision Computing
New Zealand, pp. 161–166 (2011)

17. Placitelli, A., Gallo, L.: Low-cost augmented reality sys-
tems via 3D point cloud sensors. In: Proceedings 7th Int.

Conf. on Signal-Image Technology and Internet-Based Sys-
tems, pp. 188–192 (2011)

18. Rakprayoon, P., Ruchanurucks, M., Coundoul, A.: Kinect-
based obstacle detection for manipulator. In: Proceedings
2011 IEEE/SICE Int. Symp. on System Integration, pp. 68–
73 (2011)

19. Rusu, R.B., Cousins, S.: 3D is here: Point Cloud
Library (PCL). In: Proceedinds 2011 IEEE Int. Conf.
on Robotics and Automation (ICRA Communications).
Shanghai, China (2011)

20. Ryden, F., Chizeck, H.: A method for constraint-based six
degree-of-freedom haptic interaction with streaming point
clouds. In: Proceedings 2013 IEEE Int. Conf. on Robotics
and Automation, pp. 2353–2359 (2013)

21. Saveriano, M., Lee, D.: Point cloud based dynamical sys-
tem modulation for reactive avoidance of convex and con-
cave obstacles. In: Proceedings 2013 IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems, pp. 5380–5387 (2013)

22. Schiavi, R., Flacco, F., Bicchi, A.: Integration of active and
passive compliance control for safe human-robot coexis-
tence. In: Proceedings 2009 IEEE Int. Conf. on Robotics
and Automation, pp. 259–264 (2009)

23. Zhang, Z.: Microsoft Kinect sensor and its effect. IEEE
MultiMedia 19(2), 4–10 (2012)

	A Depth Space Approach for Evaluating Distance to Objects
	Abstract
	Introduction
	Spaces for Object Representation
	Cartesian Space
	Configuration Space
	Depth Space

	Distance Evaluation
	Cartesian Space
	Configuration Space
	Depth Space
	Aggregation of Multiple Obstacle Points
	Minimum distance vector
	Mean distance vector
	Hybrid distance vector

	Avoiding Self Distances

	Validation and Comparison
	Human-Robot Collision Avoidance
	Repulsive Action
	Cartesian Constraints
	Experiments
	Setup
	Results

	Conclusions
	Acknowledgments
	References

