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process executors to check on-the-fly whether a running process instance satisfies business constraints of
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expressed in ltlf , a variant of the classical ltl (Linear-time Temporal Logic) that is interpreted over finite

traces, and in its extension ldlf , a powerful logic obtained by combining ltlf with regular expressions. We

show that ldlf is able to declaratively express, in the logic itself, not only the constraints to be monitored, but

also the de facto standard rv-LTL monitors. On the one hand, this enables us to directly employ the standard

characterization of ldlf based on finite-state automata to monitor constraints in a fine-grained way. On the

other hand, it provides the basis for declaratively expressing sophisticated metaconstraints that predicate on

the monitoring state of other constraints, and to check them by relying on standard logical services instead

of ad hoc algorithms. We then report on how this approach has been effectively implemented using Java to

manipulate ldlf formulae and their corresponding monitors, and the RuM rule mining suite as underlying

infrastructure.
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1 INTRODUCTION

In recent years, process mining has transformed business process management by accompanying
traditional analysis techniques for operational processes with a full range of techniques based on
the factual event data recorded during the actual execution of such processes.

While traditional process mining techniques start from event data of already completed process
instances, operational decision support [53] lifts process mining to running, live process executions,
whose constitutive events are dynamically recorded. Operational support techniques must hence
deal with evolving, incomplete executions for which the past is completely known, but the future
is yet to happen.

In this work, we concentrate on one of the most important tasks within operational support:
(prescriptive) monitoring. The goal of monitoring is to check on-the-fly whether a running pro-
cess instance conforms to business constraints of interest, tracking the evolving states of such
constraints and promptly detecting violations [32]. The so-obtained information can be used to
calculate and return to domain experts interpretable conformance results and aggregated confor-
mance metrics. This, in turn, forms the basis for taking informed countermeasures aimed at miti-
gating the effect of undesired behaviors and at positively intervening on the future continuation
of the monitored execution. In this respect, monitoring is an essential component to enable action-

oriented process mining, where the runtime detection of deviations and the enforcement of suitable
countermeasures are paired in a virtuous circle [41].

In addition to the setting of operational support, runtime monitoring is in general instrumental
in all those scenarios where the system to be checked is either a black box (being unknown or
not accessible for verification and analysis in its internal specification) or highly unstructured
[4]. An example of black-box process is the behavior of third-party, non-trusted customers when
accessing online services offered by the company of interest via APIs. Here, service invocations
with their payload and sender information are logged by the IT infrastructure of the company.
While it is impossible to certify a priori whether users will behave as expected, logging makes
it possible to monitor customer flows against fraud-detection rules and to promptly intervene in
case of violations. An example of highly unstructured process is that of an emergency ward in a
sanitary facility. Here, healthcare professionals handle patients on a per-case basis, continuously
adapting the emergency treatment depending on newly collected data and the specific patient
record. Monitoring becomes in this setting instrumental to detect whether clinical pathway rules
as well as background medical rules on treatments are indeed respected [12].

To build provably correct runtime monitors equipped with a well-defined semantics and a solid
formal background, monitoring is typically rooted into the field of formal verification, the branch
of formal methods aimed at checking whether a system meets some property of interest. Being the
system dynamic, properties/constraints to be monitored are usually expressed in some temporal
logic, that is, a modal logic whose modal operators predicate about the evolution of the system
along time.

Among all temporal logics used in verification, Linear-time Temporal Logic (ltl) is particu-
larly suited for monitoring, as it matches the fact that a system execution can be captured as of
an evolving, linear sequence of events. Since the traditional interpretation of ltl is over infinite
traces, an ltl monitor considers the trace of a running execution as the prefix of an infinite trace
that will continue forever [4, 5]. This hypothesis falls short when monitoring executions of op-
erational (business) processes, such as the aforementioned customer flows and clinical pathways.
Here, the standard assumption is that each trace produced by the system is in fact finite, as each
process instance is expected to eventually reach one of the foreseen ending states of the process
[44]. In this setting, a monitored trace is the known prefix of a still-to-happen, finite-length full
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trace. Importantly, the overall length of such a full trace is unknown and not even bounded by a
maximum value. This makes monitoring technically challenging, as the future continuation of a
monitored trace will be one of infinitely many different suffixes of finite length.

To handle this type of setting, finite-trace variants of ltl have to be considered. We stress, again,
that in a finite-trace setting each trace contains finitely many elements, but no bound exists on
the length of the continuation of the trace, nor on the number of continuations that have to be
potentially taken into account. In this work, we start from the well-studied logic ltlf (ltl on
finite traces), introduced in Reference [19], which constitutes the formal basis for one of the main
declarative process modeling approaches: declare [33, 39, 44].

Following Reference [33], monitoring in ltlf amounts to checking whether the current execu-
tion belongs to the set of admissible prefixes for the traces of a given ltlf formula φ. To achieve
such a task,φ is usually first translated into a corresponding finite-state automaton that recognizes
all and only those finite traces that satisfy φ. This supports combined reasoning on the monitored
trace and its possible future continuations, providing fine-grained feedback on the satisfaction
of constraints, and in particular detection of violations as early as possible [33, 34]. Despite the
presence of previous operational decision support techniques to monitoring ltlf constraints over
finite traces [33, 34], two main challenges have not yet been tackled in a systematic way.

First, several alternative semantics have been proposed to make ltl suitable for monitoring,
considering the key fact that during monitoring, the truth value of a formula may change over time
[5]. Among the different semantics for runtime verification of temporal logics, we consider the de
facto standard rv monitor conditions [4], which interpret ltl formulae using four distinct truth
values that account at once for the current trace and its possible future continuations. Specifically,
in the rv-ltl framework, a formula is associated to a corresponding rv state, which may witness:
(i) permanent violation (the formula is currently violated, and the violation cannot be repaired
anymore); (ii) temporary violation (the formula is currently violated but it is possible to continue
the execution in a way that makes the formula satisfied); (iii) permanent satisfaction (the formula is
currently satisfied and it will stay satisfied no matter how the execution continues); (iv) temporary

satisfaction (the formula is currently satisfied but may become violated in the future). The main
issue here is that no comprehensive, formal framework based on finite traces is available to handle
such rv states. On the one hand, this is because runtime verification for temporal logics has been
systematically studied only in the infinite-trace setting [4]. On the other hand, the incorporation of
such an rv semantics in a finite-trace setting has only been tackled so far with ad hoc techniques.
This is in particular the case of Reference [33], which operationally proposes to “color” automata
with the rv states, but it does not come with an underlying formal counterpart justifying the
correctness of the approach.

A second, fundamental challenge is the incorporation of advanced forms of monitoring, going
beyond what can be expressed with ltlf . In particular, contemporary monitoring approaches do
not systematically account for metaconstraints that predicate on the rv state of other constraints.
This is especially important in a monitoring setting, where it is often of interest to consider cer-
tain constraints only when specific circumstances arise, such as when other constraints become
violated.

In this article, we attack these two challenges by proposing an end-to-end formal and operational
framework for monitoring constraints expressed in ltlf and in its extension ldlf [19]. ldlf is a
powerful logic that completely captures Monadic Second-order Logic over finite traces and that is,
in turn, expressively equivalent to the language of regular expressions. ldlf does so by combining
regular expressions with ltlf , adopting the syntax of Propositional Dynamic Logic (pdl). This
provides a balanced integration between the expressiveness of regular expressions, and the declar-
ativeness of ltlf . Interestingly, in spite of the greater expressivity of ldlf with respect to ltlf ,
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68:4 G. De Giacomo et al.

reasoning in ldlf is performed with the same algorithms and hence has the same computational
complexity of ltlf .

Our first, technical contribution is the formal development, accompanied by a proof-of-concept
implementation, of a framework for monitoring ltlf and ldlf constraints using the four truth
values of the rv approach. The framework is based on standard finite-state automata, without
a detour to Büchi automata that a treatment based on infinite trace setting would require. We
do this in two steps. In the first step, we devise a direct translation of ldlf (and hence of ltlf )
formulae into nondeterministic automata. The technique is grounded on alternating automata
(afw), but it actually avoids their introduction all together: in fact, the technique directly produces
a standard non-deterministic finite-state automaton (nfa), which can then be manipulated
using conventional automata techniques (such as determinization and minimization). In the second
step, we show that ldlf is able to capture, in the logic itself, special formulae that capture all rv
monitoring conditions. More specifically, given an arbitrary ldlf formula φ, we show how to
construct, for each rv monitor condition, another ldlf formula that characterizes all and only
those traces culminating in a time point where φ is associated to that rv state. By studying the
so-obtained four ldlf special formulae, we then describe how to construct a single automaton that,
given a trace, outputs the rv state associated to φ by that trace. This, in turn, provides for the first
time a proof of correctness of the “colored automata” approach proposed in Reference [33].

We exploit this meta-level ability of ldlf in our second contribution, which shows how to use
the logic to capture metaconstraints, and how to monitor them by relying on the standard logical
reasoning procedures of satisfiability and model checking instead of ad hoc algorithms. Metacon-
straints provide a well-founded, declarative basis to specify and monitor constraints depending on
the monitoring state of other constraints. To concretely show the flexibility and effectiveness of
our approach, we introduce and study three interesting classes of metaconstraints.

(1) The first class is about contextualizing a constraint, by expressing that it has to be enforced
only in those time points where another constraint is in a given rv state. This extends ba-
sic forms of contextualization based on the presence of special events, as those present in
Reference [21].

(2) The second class deals with different forms of compensation constraints, which capture that
a compensating constraint has to be monitored when another constraint becomes perma-
nently violated. This mechanism can be used to express temporal versions of so-called
contrary-to-duty obligations [48] in normative reasoning, that is, obligations that are put
in place only when other obligations are violated. While compensation is considered to be a
fundamental compliance monitoring functionality [32], it is still largely unexplored, and to
the best of our knowledge no existing framework supports it at the level of the constraint
specification language.

(3) The third and last metaconstraint class we consider targets the interesting case of conflicting

constraints, that is, constraints that, depending on the circumstances, may contradict each
other. In particular, we show how to express a preference on which constraint should be satis-
fied when a contradiction arises. This is of particular importance in all those settings where
constraints are elicited from different sources, which may sometimes contradict each other;
a prominent example here is that of clinical guidelines when dealing with comorbidities [45]
and background medical knowledge [7].

In the final part of the article, we report on how our monitoring framework has been concretely
implemented as part of the RuM toolkit,1 the most actively maintained framework for Declare [1, 2].

1https://rulemining.org.
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We also evaluate the time and space required to construct monitors, using a real-life model in the
medical domain as a basis.

This article is a largely extended version of the conference paper in Reference [16]. In relation
with Reference [16], we expand all technical parts, including here full proofs of the obtained results
and a completely novel part on the construction of “colored automata” for monitoring. In addition,
we provide here a novel account on metaconstraints, defining them in general and then including
three relevant metaconstraint classes that have not yet been investigated in prior work. We also
report here on the complete implementation of our monitoring framework and its evaluation on
a real example.

The rest of the article is structured as follows: In Section 2, we introduce syntax and semantics
of ldlf and ltlf and discuss how ltlf is employed by the declarative business process model-
ing language declare. In Section 3, we show how an ldlf /ltlf formula can be translated into
a corresponding nfa that accepts all and only the traces that satisfy the formula. In Section 4,
we prove how ldlf is able to capture the rv states in the logic itself and employ the automata-
theoretic approach developed in Section 3 to construct rv monitors for ldlf /ltlf formulae. In
Section 5, we discuss how the resulting framework can be applied in the context of the declare
constraint-based process modeling approach. In Section 6, we turn to metaconstraints, introducing
the three interesting metaconstraint classes of contextualization, compensation, and preference in
case of conflict. The implementation of our monitoring framework in Java and RuM is reported in
Section 7. We end the article with conclusions and references to future work.

2 LINEAR TEMPORAL LOGICS ON FINITE TRACES AND APPLICATION TO BPM

In this section, we describe the two temporal logics on finite traces we adopt to monitor constraints
and metaconstraints: ltlf (linear temporal logic interpreted on finite traces) and its extension
ldlf . In addition, we recall how ltlf is employed within BPM to capture declarative, constraint-
based processes.

2.1 ltlf : ltl on Finite Traces

ltl on finite traces, called ltlf [19], has exactly the same syntax as ltl on infinite traces [46].
Namely, given a set P of propositional symbols, ltlf formulae are obtained through the following
grammar:

φ ::= ϕ | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | ◦φ | •φ | �φ | �φ | φ1U φ2 | φ1 R φ2,

where ϕ is a propositional formula over P (employing the usual Boolean connectives).
Intuitively,◦φ says that φ holds at the next instant;•φ is the weak next operator, that is, φ holds

in the next instant if such an instant exists2; �φ says that eventually in some future instantφ holds;
�φ says that φ always hold, i.e., holds for all future instants in the trace; φ1U φ2 says that at some
eventually φ2 holds and until that point φ1 holds; and φ1 R φ2 says that φ1 releases φ2, i.e., φ2 holds
until and including once φ1 is true.

All these operators can be reduced to only ◦φ and φ1U φ2, exploiting negation. In fact, •φ is
equivalent to ¬◦¬φ; �φ is equivalent to trueU φ; �φ is equivalent to ¬�¬φ; φ1 R φ2 is equivalent
to ¬(¬φ1U ¬φ2).

However, sometimes it is convenient to drop negation altogether, keeping it only on proposi-
tional formulae.3 This is possible without loss of generality by exploiting the equivalence above.

2Note that in ltl on infinite trace, we have that ¬◦φ is equivalent to◦¬φ . This is not the case in ltlf , since ¬◦φ is true

if either the next instant does not exist in the trace (i.e., ¬◦φ is evaluated at the last of the trace) or the next instant exists

and ¬φ holds in it. In other words: ¬◦φ is equivalent to•¬φ .
3Also recall that, whenever ϕ is a propositional formula, ϕ′ = ¬ϕ is a propositional formula as well.
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The resulting formula is said to be in Negation Normal Form (NNF). An arbitrary ltlf formula can
be put in NNF in linear time.

Example 2.1. Consider the ltlf formula �(a → (•b)).4 The formula expresses that for the
entire duration of the trace, whenever a is true then b is true in the next instant, unless a is at the
last instant of the trace. The formula �(a → (◦b)) is similar, however, it implies that a is not true
at the last instant, since otherwise the formula would require the existence of a further instant
where b is true.

The semantics of ltlf is given in terms of finite traces denoting finite-length, possibly empty,

sequences π = π0, . . . ,πn−1 of elements from the alphabet 2P . Each πi is a propositional inter-
pretation of the propositional symbols in P: A propositional symbol p ∈ P is true in the time
instance associated to πi if p ∈ πi , false otherwise. The length n of the trace π is denoted by
length(π ) = n. Note that if n = 0, then we get the empty trace, denoted by ϵ . Notice that, here,
differently from Reference [19], we allow the empty trace ϵ as in Reference [8]. This is convenient
for composing monitors, as it will become clear later on in the article. We denote by π (i, j ), the
segment of the trace π starting at the ith instant and ending at the jth instant (excluded). In partic-
ular, π (0, length(π )) = π . If j > length(π ), then π (i, j ) = π (i, length(π )). If i ≥ length(π ) or j ≤ i ,
then we have π (i, j ) = ϵ , i.e., the empty trace. For convenience, we may denote by π (i ) = π (i, i+1)
the ith instant in the trace.

Given a finite trace π , we inductively define when an ltlf formula φ is true at instant i written
π , i |= φ, as follows (we assume the formula in NNF for convenience):

• π , i |= ϕ, with ϕ a propositional formula, iff 0 ≤ i < length(π ) and ϕ is true in the proposi-
tional interpretation π (i );
• π , i |= φ1 ∧ φ2 iff π , i |= φ1 and π , i |= φ2;
• π , i |= φ1 ∨ φ2 iff π , i |= φ1 or π , i |= φ2;
• π , i |= ◦φ iff 0 ≤ i < length(π ) − 1 and π , i+1 |= φ;
• π , i |= •φ iff 0 ≤ i < length(π ) − 1 implies π , i+1 |= φ;
• π , i |= �φ iff for some j s.t. 0 ≤ i ≤ j < length(π ), we have π , j |= φ;
• π , i |= �φ iff for all j s.t. 0 ≤ i ≤ j < length(π ), we have π , j |= φ;
• π , i |= φ1U φ2 iff for some j s.t. 1 ≤ i ≤ j < length(π ), we have π , j |= φ2, and for all k ,
i ≤ k < j, we have π ,k |= φ1;
• π , i |= φ1 R φ2 iff for all j s.t. 0 ≤ i ≤ j < length(π ), either we have π , j |= φ2 or for some k ,
i ≤ k < j, we have π ,k |= φ1.

As usual, we write π |= φ as a shortcut for π , 0 |= φ. Whenever π |= φ, we say that φ is true in π
or, equivalently, that π satisfies φ.

Example 2.2. Consider the set P = {a,b, c} of propositional symbols, and the formulae φ1 =

�(a → (•b)) and φ2 = �(a → (◦b)) from Example 2.1. We evaluate φ1 and φ2 over the following
three traces:

0 1 2 3 4

π1 {a, c}, {b}
π2 {a, c}, {b}, ∅, {a,b},
π3 {a, c}, {b}, ∅, {a,b}, {c}

4As usual α → β stands for ¬α ∨ β .
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Trace π1 = {a, c}, {b} has a length of 2, as it contains two time instants, the first where a and c are
true, and the second where b is true. It satisfies both φ1 and φ2. Intuitively, π1 satisfies φ2 because
every time a is in the propositional interpretation of an instant of π1 (which only happens at instant
1), the next instant is so b is true there; this also means that φ1 is satisfied by π1 as well, being φ1 a
weaker form of φ2. Trace π2, of which π1 is a prefix, satisfies φ1 but violates φ2. This is because the
second occurrence of a in π1, which happens at time instant 3, is in the final instant of the trace,
which is not compatible with φ2: To be satisfied, φ2 would require the existence of time instant 4
in π2, with b belonging to the propositional interpretation of such an instant. Finally, both φ1 and
φ2 are false in π3, which extends π2 with a further time instant 4 where b is false.

Let us show how the intuitive discussion carried out so far is formalized by the semantics of
the logic. By definition of �, formula φ1 is satisfied by a trace if, in every time instant of the trace,
the inner formula a→ (•b) = ¬a ∨ •b is true. This holds if every instant falls under one of the
following three cases:

(1) it does not contain a, or
(2) it satisfies •b, which in turn holds if:

(a) it does not have a next instant in the trace, or
(b) it has a next instant, and b is true therein.

With these cases at hand, it is immediate to see how φ1 is evaluated over the three traces:

• π1 satisfies φ1: instant 0 obeys to case (2b), and instant 1 to case (1).
• π2 also satisfies φ1: instant 0 obeys to case (2b), instants 1 and 2 to case (1), and instant 3 to

case (2a).
• π3 does not satisfy φ1: instant 3 does not obey to any of the three cases (1), (2a), and (2b).

The same line of reasoning can be applied to φ2, noticing that every instant of the trace must now
obey to one of the following two cases:

(1) it does not contain a, or
(2) it satisfies ◦b, which in turn requires that it has a next instant in the trace, and b is true

therein.

We now show how the semantics defined above applies to the case where the ltlf formula φ of
interest is evaluated over trace π in a position that exceeds the length of π , which also indicates
what happens when φ is evaluated over the empty trace. We start by noticing that that π , i |= φ iff
π (i, length(π )), i |= φ. Hence, if i ≥ length(π ), that is, π (i, length(π )) = ϵ , then we get:

• π , i � |= ϕ, with ϕ a propositional formula;
• π , i |= φ1 ∧ φ2 iff π , i |= φ1 and π , i |= φ2;
• π , i |= φ1 ∨ φ2 iff π , i |= φ1 or π , i |= φ2;
• π , i � |= ◦φ;
• π , i |= •φ;
• π , i � |= �φ;
• π , i |= �φ;
• π , i � |= φ1U φ2;
• π , i |= φ1 R φ2.

Observe that all formulas that have a sub-formula required to hold in the current instant or in the
future are trivially false for i ≥ length(π ). Indeed, by looking at the semantics of ϕ propositional,

◦φ, �φ, and φ1U φ2, we notice that they all require the existence of an instant j < length(π )
(i < length(π ) for ϕ propositional) where a sub-formula must hold. Such an instant does not exist
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68:8 G. De Giacomo et al.

in the empty trace or when i ≥ length(π ). This includes the case of propositional formulae, which
indeed require the existence of an instance over which the formula is evaluated.

Example 2.3. We have ϵ |= �(a → (◦b)), since the � operator requires that for every instant
in the trace, the inner formula a→ (◦b) must be true; this trivially holds for ϵ , since it does not
contain any instant at all. Instead, we have ϵ � |= a→ (◦b): This would require either that at instant
0 formula ¬a is true, or that at instant 1 formula b is true; none of these two alternatives hold for
ϵ , as it does not contain any instant.

2.2 The declare Constraint-based Process Modeling Language

declare5 is a language and framework for the declarative, constraint-based modeling of processes
and services based on ltlf . A thorough treatment of constraint-based processes can be found in
References [37, 42]. As a modeling language, declare takes a complementary approach to that of
classical, imperative process modeling. In imperative process modeling, all allowed control flows
among tasks must be explicitly represented, and execution traces not falling within this set are
implicitly considered as forbidden. Instead of this procedural and “closed” approach, declare has
a declarative, “open” flavor: The agents responsible for the process execution can freely choose
in which order to perform the process tasks, provided that the resulting execution trace satisfies
the business constraints of interest. This is the reason why, alongside traditional control-flow con-
straints such as sequence (called in declare chain succession), declare supports a variety of more
refined constraints that impose loose temporal orderings, and/or that explicitly account for nega-
tive information, i.e., the explicit prohibition of task execution.

Given a set P of tasks, a declare modelM is a set of ltlf (and hence ldlf ) constraints over
P. A finite trace π over P complies withM if it satisfies every constraint inM, that is, for every
constraint φ ∈ M, we have that π |= φ in ltlf terms. Since propositional symbols in P conceptu-
ally represent tasks, the presence of task a ∈ P in an instant of a trace indicates that a is executed
in that instant. Often, process traces are totally ordered, that is, they indicate one and only one
task execution per instant. This is simply captured by traces where each instant comes with an
interpretation that only contains one and only one symbol from P.

Among all possible ltlf constraints, some specific patterns have been singled out as particu-
larly meaningful for expressing declare processes, taking inspiration from Reference [21]. Such
patterns are grouped into four families:

• existence (unary) constraints, stating that the target task must/cannot be executed (for an
indicated number of repetitions);
• choice (binary) constraints, accounting for alternative tasks;
• relation (binary) constraints, connecting a source task to a target task and expressing that,

whenever the source task is executed, then the target task must also be executed (possibly
with additional temporal conditions);
• negation (binary) constraints, capturing that whenever the source task is executed, then the

target task is prohibited (possibly with additional temporal conditions).

Table 1 summarizes some of these patterns. See Reference [39] for the full list of patterns.

Example 2.4. Consider the fragment of a ticket booking process illustrated in Figure 1 using
declare. The process fragment consists of four tasks and four constraints, but in spite of its sim-
plicity clearly illustrates the main features of declarative, constraint-based process modeling.

5http://www.win.tue.nl/declare/.
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Table 1. Some declare Constraint Templates: Name, Graphical Representation,
Intuitive Explanation, and ltlf Semantics

Fig. 1. Fragment of a booking process in declare, showing also the ltlf formalization of the constraints
used therein.

Specifically, each process instance is focused on the management of a specific customer regis-
tration to a booking event. For simplicity, we assume that the type of registration is selected upon
instantiating the process and is therefore not explicitly captured as a set of tasks within the process
itself. The process fragment then consists of four tasks:

• accept regulation is the task used to accept the regulation of the booking company for the
specific type of registration the customer is interested in;
• pay registration is the task used to pay for the registration;
• get ticket is the task used to physically withdraw the ticket containing the registration

details;
• cancel registration is the task used to abort the instance of the registration process.
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The execution of the aforementioned tasks is subject to the following behavioral constraints:
First, within an instance of the booking process, a customer may pay for the registration at most
once. This is captured in declare by constraining the pay registration task with an absence 2
constraint.

After executing the payment, the customer must eventually get the corresponding ticket. How-
ever, the ticket can be obtained only after having performed the payment. This is captured in
declare by constraining pay registration and get ticket with a response constraint going from
the first task to the second, and with a precedence constraint going from the second task to the
first. This specific combination is called succession.

When a payment is executed, the customer must accept the regulation of the registration. There
is no particular temporal order required for accepting the registration: Upon the payment, if
the regulation has been already accepted, then no further steps are required; otherwise, the cus-
tomer is expected to accept the regulation afterwards. This is captured in declare by connecting
pay registration to accept regulation by means of a responded existence constraint.

Finally, a customer may always decide to cancel the registration, with the only constraint that
the cancellation is incompatible with the possibility of getting the registration ticket. This means
that, when the ticket is withdrawn, cancellation is not available anymore; however, once the regis-
tration is canceled, the ticket cannot be issued. This is captured in declare by relating get ticket
to cancel registration through a not coexistence constraint.

We close the example by considering some compliant and non-compliant traces (using abbrevi-
ations for tasks):

• The empty trace ϵ is compliant. The booking process does not mandatorily prescribe any task
execution, but reactively constrains which executions are possible or forbidden, depending
on which tasks are actually executed.
• Trace {pay} is not compliant, since the response constraint relating pay to get requires that,

in an instant strictly following instant 0, get is executed.
• Traces {pay}, {acc}, {get} and {acc}, {pay}, {get} are both compliant. The presence of an in-

stant where pay is executed interacts with three constraints. The first is the responded
existence that requires the presence of acc in some instant (which follows the payment
in the first trace and precedes the payment in the second). The second is the absence 2
constraint over pay, which forbids a second execution of the same task. The third is the re-

sponse constraint requiring an execution of get in a later instant (which occurs immediately
afterwards in the second trace and after two steps in the first trace).
• Trace {pay}, {acc}, {get}, {cancel} is not compliant, as it violates the not coexistence con-

straint indicating that get and cancel cannot be both present in the same trace.

2.3 ldlf : ldl on Finite Traces

One may wonder whether ltlf is expressive enough to capture relevant properties of finite traces.
A natural choice to go beyond ltlf would be is adopt regular expressions, which are indeed more
expressive than ltlf . This is witnessed by the fact that ltlf is as expressive as First-Order Logic
(FO) over finite traces [19], which in turn corresponds to star-free regular expressions, a strict subset
of regular expressions that in fact correspond to Monadic Second-Order Logic (MSO) over finite
traces.

Hence, one could use regular expressions instead of ltlf to express properties of finite traces
with an expressiveness advantage. However, regular expressions miss explicit constructs for nega-
tion (complementation) and conjunction, and if we add them to the language, then we get a for-
malism for which reasoning becomes non-elementary [50].
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To be as expressive as regular expressions and, at the same time, convenient as a temporal
logic, Linear Dynamic Logic on finite traces (ldlf ) has been proposed in Reference [19]. ldlf

is obtained by merging ltlf with regular expressions through the syntax of the well-known logic
of programs Propositional Dynamic Logic (pdl) [23, 27], but adopting a semantics based on finite
traces.

Formally, ldlf formulae are built as follows:

φ ::= tt | ff | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈ρ〉φ | [ρ]φ
ρ ::= ϕ | φ? | ρ1 + ρ2 | ρ1; ρ2 | ρ∗,

where:

• tt and ff denote, respectively, the true and the false ldlf formula (not to be confused with
the propositional formula true and false);
• ϕ denotes propositional formulae over P;
• ρ denotes path expressions, which are regular expressions over propositional formulae ϕ

over P with the addition of the test construct φ? typical of pdl, and are used to insert into
the execution path checks for satisfaction of additional ldlf formulae;
• +, likewise the Boolean “or” separates different alternatives;
• ; is the concatenation operator;
• ∗ is the Kleene star denoting zero or more occurrences of the preceding element;
• φ stands for an ldlf formula built by applying Boolean connectives and the modal operators
〈ρ〉φ and [ρ]φ, which are dual, since [ρ]φ is equivalent to ¬〈ρ〉¬φ.

Intuitively, 〈ρ〉φ states that, from the current instant in the trace, there exists an execution sat-
isfying the regular expression ρ such that its last instant satisfies φ. Instead, [ρ]φ states that, from
the current instant, all executions satisfying the regular expression ρ are such that their last instant
satisfies φ.

As defined above, ldlf only includes propositional formulae ϕ as path expressions, and not
directly as ldlf formulae. However, the latter can be immediately introduced as abbreviations:
ϕ � 〈ϕ〉tt. For example, to say that eventually proposition a holds, instead of writing 〈true∗〉a, we
can write 〈true∗;a〉tt. This is analogous to what happens in (extensions with regular expressions
of) XPath, a well-known formalism developed for navigating XML documents and graph databases
[10, 15, 36]. We may keep ϕ as ldlf formulae for convenience, however, we have to be careful of
the difference we get if we apply negation to ϕ as a propositional formula or as an ldlf formula
(i.e., to 〈ϕ〉tt). In the first case, we get ¬ϕ, which is equivalent to 〈¬ϕ〉tt. In the latter case, we get
[ϕ]ff . This, in turn, is equivalent to [true?]ff ∨〈¬ϕ〉tt, which states that either the trace is empty6 or
¬ϕ holds in the current instant. This is the reason why if we decide to adopt the abbreviation ϕ as
a direct ldlf formula, then it is convenient to restrict ldlf to NNF; this has the effect of dropping
the negation except in propositional formulas and avoids the aforementioned ambiguity. Like for
the case of ltlf , every ldlf formula can be easily transformed in NNF in linear time.

It is also convenient to introduce the following abbreviations, specific for dealing with the finite-
ness of the traces:

• end = [true]ff , which denotes that the trace has been completed (the current instant is out
of the range of the trace or the remaining fragment of the trace is empty);
• last = 〈true〉end, which denotes the last instant of the trace.

6[true?]ff is indeed satisfied only by the empty trace, since it expresses that every continuation of the trace must culminate

in a state where ff holds, which means that no such state should exist.
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Example 2.5. Let us consider a couple of ldlf examples. To express that before entering restricted

area a, a person must have permission for a, we can write

〈(¬inAreaa )∗〉(getPerma ∧ ¬inAreaa ) ∨ [true∗]¬inAreaa .

To express the more demanding requirement that each time a person enters the restricted area a it

must have a new permission for a, we can write:

φperm = 〈(¬inAreaa
∗; getPerma ∧ ¬inAreaa ;¬inAreaa

∗; inAreaa )∗;¬inAreaa
∗〉end.

Note that while the first property can also be easily expressed in ltlf as ¬inAreaaU (getPerma ∧
¬inAreaa ) ∨�¬inAreaa , this is not the case for the second one.

As for ltlf , the semantics of ldlf is given in terms of finite traces, including empty traces. An
ldlf formula φ is true at instant i , written π , i |= φ, if:

• π , i |= tt;
• π , i � |= ff ;
• π , i |= ¬φ iff π , i � |= φ;
• π , i |= φ1 ∧ φ2 iff π , i |= φ1 and π , i |= φ2;
• π , i |= φ1 ∨ φ2 iff π , i |= φ1 or π , i |= φ2;
• π , i |= 〈ρ〉φ iff for some j s.t. i ≤ j, we have π (i, j ) ∈ L (ρ) and π , j |= φ;
• π , i |= [ρ]φ iff for all j s.t. i ≤ j and π (i, j ) ∈ L (ρ), we have π , j |= φ.

The relation π (i, j ) ∈ L (ρ) is defined inductively as follows:

• π (i, j ) ∈ L (ϕ) iff j = i + 1 and 0 ≤ i < length(π ) and π , i |= ϕ (ϕ propositional);
• π (i, j ) ∈ L (φ?) iff j = i and π , i |= φ;
• π (i, j ) ∈ L (ρ1 + ρ2) iff π (i, j ) ∈ L (ρ1) or π (i, j ) ∈ L (ρ2);
• π (i, j ) ∈ L (ρ1; ρ2) iff exists k s.t. π (i,k ) ∈ L (ρ1) and π (k, j ) ∈ L (ρ2);
• π (i, j ) ∈ L (ρ∗) iff j = i or exists k s.t. π (i,k ) ∈ L (ρ) and π (k, j ) ∈ L (ρ∗).

Note that if i ≥ length(π ), hence, e.g., for π = ϵ , the above definitions still apply; though, 〈ϕ〉φ
(with ϕ propositional) and 〈ψ 〉φ become trivially false. As before, we write π |= φ as a shortcut for
π , 0 |= φ.

Finally, in agreement with the semantics given above, we can introduce the path expression ϵ ,
matching with the empty trace, as abbreviation of (false)∗.

Example 2.6. Consider formula φperm from Example 2.5 and a set P = {inAreaa , getPerma } of
propositional symbols only containing the two symbols mentioned in the formula. We discuss
some examples of satisfying and non-satisfying traces for φperm. In general, satisfying traces are
those and only those characterized by the regular expression contained within the 〈·〉 operator. In
addition, recall that interpretation {getPerma } satisfies both the propositional formulae getPerma

and ¬inAreaa , thus providing different ways of matching the sub-expressions used in φperm; recall
also that interpretation ∅ satisfies ¬inAreaa . With these observations at hand, we get the following:

• ∅, {getPerma }, ∅, {getPerma } satisfies φperm, since, according to the formula, permissions can
be asked multiple times and may not be necessarily used to enter the area.
• {getPerma }, {inAreaa }, ∅, ∅ satisfiesφperm, providing a sample trace where a single permission

is asked and used to access the area later.
• {getPerma }, {inAreaa }, ∅, {inAreaa } does not satisfy φperm, since, after instant 1, it is only

possible to find a later instant containing inAreaa if, in between, there is an instant where
getPerma holds.
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• {getPerma }, {inAreaa , getPerma }, {inAreaa } does not satisfy φperm, since instant 0 correctly
matches the regular expression (¬inAreaa )∗; getPerma ∧ ¬inAreaa , instant 1 correctly
matches the following regular expression (¬inAreaa )∗; inAreaa , but instant 2 matches
none of the two consequent possible regular expressions, which are either (¬inAreaa )∗ or
(¬inAreaa )∗; getPerma ∧ ¬inAreaa ; this correctly indicates that a permission can be used to
access the area only if it occurs when being outside the area.
• {getPerma }, ∅, ∅, {inAreaa }, {getPerma }, {inAreaa } satisfies φperm, providing a sample trace

where there is a proper alternation between permissions and accesses to the area, possibly
done in a later instant (not necessarily occurring immediately after the obtained permission).

It is easy to encode ltlf into ldlf : Following Reference [19], we do so by introducing a trans-
lation function tr defined by induction on the structure of the input ltlf formula as follows (for
convenience, we assume the ltlf formula to be in NNF):

tr (ϕ) = 〈ϕ〉tt (ϕ propositional)
tr (φ1 ∧ φ2) = tr (φ1) ∧ tr (φ2)
tr (φ1 ∨ φ2) = tr (φ1) ∨ tr (φ2)

tr (◦φ) = 〈true〉(tr (φ) ∧ ¬end)
tr (•φ) = [true](tr (φ) ∨ end))
tr (�φ) = 〈true∗〉(tr (φ) ∧ ¬end)
tr (�φ) = [true∗](tr (φ) ∨ end)

tr (φ1U φ2) = 〈(tr (φ1)?; true)∗〉(tr (φ2) ∧ ¬end)
tr (φ1 R φ2) = [((¬tr (φ1))?; true)∗](tr (φ2) ∨ end).

By induction on the structure of the input formula, and by exploiting the semantics of ltlf and
ldlf , we can prove the following correctness result for the translation function tr :

Proposition 2.7. Letψ an ltlf formula (in NNF), π a trace (possibly the empty trace ϵ) and i > 0.

Then π , i |= ψ if and only if π , i |= tr (ψ ).

Example 2.8. Consider the ltlf formula �(a → (•b)) of Example 2.1. The ldlf counterpart
obtained by the translation is [true∗](〈¬a〉tt ∨ ([true](〈b〉tt ∨ end)) ∨ end).

Thanks to Proposition 2.7, we can use ldlf to express all patterns defined for declare (cf.
Section 2.2).

Finally, it is also easy to encode regular expressions, used as a specification formalism for traces,
into ldlf : Regular expression ρ simply translates to 〈ρ〉end.

We say that a trace satisfies an ltlf /ldlf formula φ, written π |= φ, if π , 0 |= φ. Note that if π is
the empty trace, and hence 0 is out of range, then still the notion of π , 0 |= φ is well defined. Also,
sometimes we denote by L (φ) the set of traces that satisfy φ, i.e., L (φ) = {π | π |= φ}.

3 LDLF AUTOMATON

We can associate to each ldlf formula φ a corresponding (exponential) nondeterministic finite-
state automaton. This automaton provides the basis for carrying out reasoning in ldlf , as well as
advanced monitoring tasks, as illustrated in Section 4.1.

A nondeterministic finite-state automaton (nfa) is a tuple A = (Σ,S, s0, ϱ, Sf ), where: (i) Σ
is a finite alphabet of symbols; (ii) S is a finite set of states; (iii) s0 ∈ S is the initial state; (iv) ϱ :
S×Σ×S is a (Σ-labeled) transition relation; (v)Sf ⊆ S is the set of final states. We say that the nfa
A is a deterministic finite-state automaton (dfa) if, for each state s ∈ S and symbol � ∈ Σ, there
exists at most one state s ′ ∈ S such that (s, �, s ′) ∈ ϱ. A finite sequence �1, . . . , �n ∈ Σ∗ is accepted
by A if there exists a sequence of states s0 · · · sn starting from the initial state s0 and ending in a
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Fig. 2. Definition of δ , where E(“φ”) recursively replaces in “φ” all occurrences of atoms of the form Tψ and
Fψ byψ .

final state sn ∈ Sf such that for every i ∈ {1,n}, we have (si−1, �i , si ) ∈ ϱ. The empty sequence ϵ is
accepted by A if s0 ∈ Sf . The language L (A) of A is the set of all and only sequences from Σ∗ that
are accepted byA. It is well known that every nfa can be determinized into a language-preserving
dfa.7

We now provide an algorithm that, given an ldlf formula φ, computes a corresponding nfa
A(φ) that accepts exactly those traces that make φ true. To do so, we first define an auxiliary
function δ that takes an ldlf quoted formula “ψ ” in negation normal form, to be considered as an
atom (i.e., a propositional atomic formula), and a propositional interpretation Π for P and returns
a positive Boolean formula whose atoms are quoted sub-formulae of “ψ ”. The function δ is detailed
in Figure 2.8

The intuition behind δ (“ψ ”, Π) is the following: The function unfolds the temporal operators in
ψ by one (temporal) step only, therefore telling us what is yet to be checked to satisfy ψ (in the
future) when we see the propositional symbols in Π (in the current instant). In other words, let us

7Note that, while the determinization of an nfa can generate an exponentially larger dfa, in practice this is often not

the case, especially after minimization. Indeed, the size of a minimized dfa is often similar, if not smaller, to that of the

original nfa. This phenomenon has been observed over the years (e.g., in Reference [52]) and recently it is at the base of

the best-performing tools for synthesis from ltlf and ldlf specifications (e.g., References [17, 51, 55]).
8The function δ is in fact the transition function of a finite alternating automaton on words (afw), and indeed, we will

exploit this fact when proving correctness below. However, to understand and implement the construction, we do not need

to detour to AFW, as it is sufficient to consider δ as an auxiliary function to be used by the algorithm in Figure 3.
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Fig. 3. nfa construction.

assume to have a formulaψ and a trace π = π0,π1, . . . ,πn−1 and our objective is to check whether
π , 0 |= ψ (recall that each instant i of π is a propositional interpretation πi over P). We start from
the first time instant π0 and we call δ (“ψ ”, π0). Then, we move one step forward and we call δ on
the result of the previous call and on π1, and so on.

In defining δ , apart from quoted sub-formulae ofψ , we also make use of extra atoms F〈ρ∗〉φ and
T[ρ∗]φ . These are used for handling the recursion induced by sub-formulae of the form 〈ρ∗〉φ and
[ρ∗]φ. Such extra symbols act in δ as if they were additional quoted formulas, except that during
the recursive computation of δ they disappear, either because evaluated to true or false or because
they are syntactically replaced by 〈ρ〉φ and [ρ]φ, respectively, when the current instant of the
trace (i.e., the current symbol in the word) is consumed and a new Boolean combination of quoted
formulae is returned. For performing the syntactic substitution, we use an auxiliary function E,
which takes as input a quoted formula “φ” and returns the quoted formula obtained by recursively
substituting all occurrences of these extra atoms Fψ and Tψ with the formulaψ itself.

The function δ is immediately extended to the case where the trace is empty: We add a special
symbol ϵ to the propositional interpretations Π and extend δ in Figure 2 to ϵ by keeping exactly
the same rules except for the following cases:

δ (“〈ϕ〉φ”, ϵ ) = false (ϕ propositional),

δ (“[ϕ]φ”, ϵ ) = true (ϕ propositional).

As a result, δ (“φ”, ϵ ) always returns a Boolean combination of quoted sub-formulae, which trivially
simplifies to either true or false.

Using δ as an auxiliary function, the algorithm ldlf 2nfa in Figure 3 takes as input an ldlf

formula φ and produces, in a forward fashion, its corresponding nfa A(φ) = (2P ,S, s0, ϱ, Sf ),

where: (i) 2P (i.e., the set of all interpretations over P) is the alphabet of the automaton; (ii) S is
a set of states; (iii) s0 ∈ S is the initial state; (iv) ϱ : S × 2P × S is a transition relation; (v) Sf ⊆ S
is the set of final states.

Each nfa state s ∈ S is a set of quoted sub-formulae of φ to be interpreted as a conjunction
of atoms. Examples of states are s1 = {“[ρ1]φ”, “c”} and s2 = {“a ∨ b”}. Note that the empty set ∅
stands for empty conjunction, i.e., for true. Hence, we trivially have (∅,Π, ∅) ∈ ϱ for every Π.
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Fig. 4. Graphical representation of the dfa for the ltlf formula ◦(a → (•b)).

In line 11, s ′ is any set of quoted sub-formulae such that s ′ |= ∧(“ψ ”∈s ) δ (“ψ ”,Π). In fact, it is
enough to consider the minimal ones, that is: If s ′, s ′′ |= ∧(“ψ ”∈s ) δ (“ψ ”,Π) and s ′ ⊆ s ′′, then we
consider only s ′. The reason is that if s ′ ⊆ s ′′, then s ′ |= s ′′ and hence, if s ′′ |= ∧(“ψ ”∈s ) δ (“ψ ”,Π),
also s ′ |= ∧(“ψ ”∈s ) δ (“ψ ”,Π). In addition, note that, since

∧
(“ψ ”∈s ) δ (“ψ ”,Π) is a positive Boolean

formula, to check whether s ′ |= ∧(“ψ ”∈s ) δ (“ψ ”,Π) it is sufficient to consider s ′ as an interpretation
(implicitly setting all atoms not occurring in s ′ as false and evaluate

∧
(“ψ ”∈s ) δ (“ψ ”,Π)). Indeed, in

the evaluation those atoms that are false will not be considered.
We can show the correctness of the algorithm following Reference [19]. The correctness is based

on the fact that (i) we can associate each ldlf formula φ with an alternating automaton on words

(afw) that accepts exactly those traces that makeφ true and (ii) every afw can be transformed into
an equivalent nfa. Indeed, the auxiliary function δ implicitly constructs the afw for φ, and then
ldlf 2nfa transforms such afw into a corresponding nfa. As a result, we can state the following
result:

Proposition 3.1. Let φ be an ldlf formula and A(φ) the nfa obtained by algorithm ldlf 2nfa to

φ. Then for every trace π over P, we have that π |= φ iff π ∈ L (A(φ)).

Moreover, it is easy to see that the algorithm ldlf 2nfa computes in at most an exponential
number of steps in the size of the input formula φ the (exponential) nfa corresponding to ldlf

formula φ. Indeed, the computation of the auxiliary function δ is polynomial in the size of φ, and
the algorithm generates at most as many states as all subsets of (quoted) sub-formulae of φ.

Proposition 3.2. Let φ be an ldlf formula. Then ldlf 2nfa terminates in at most an exponential

number of steps, and the resulting nfa A(φ) has a number of states that is at most exponential in the

size of φ.

Obtaining the nfa from an ldlf formula provides an operational basis for reasoning. In partic-
ular, we can check the satisfiability of an ldlf formula φ by checking whether its corresponding
nfa A(φ) is nonempty. The same applies for validity and logical implication, which are linearly
reducible to satisfiability. Notably, A(φ) can be built on-the-fly, and hence, we can check non-
emptiness in PSPACE in the size of φ. Considering that it is known that satisfiability in ldlf (in
fact already for its fragment ltlf ) is PSPACE-hard, we can conclude that the proposed construc-
tion is optimal with respect to the computational complexity for satisfiability (see Reference [19]
for details). Note that these results hold for ltlf as well, since we can translate it into ldlf as
demonstrated before.

Figure 4 shows the nfa obtained by the application of ldlf 2nfa to the ltlf formula ◦(a →
(•b)). Notice that the automaton is actually a dfa. In the figure (and in the remainder of the article),
s0 always indicates the initial state, and final states are double-circled. In addition, for the sake of
readability, we use logical formulae over P as compact labels of transitions in an nfa, where each
formula implicitly denotes all its satisfying interpretations from 2P . For the same reason, edge-
labels in the automaton are logical formulae; each formula is a shortcut for every interpretation
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satisfying that formula, e.g., by assuming P = {a,b}, the edge labeled with ¬a from state s1 to s2

is a shortcut for the two transitions (s1, {b}, s2), (s1, ∅, s2) ∈ ϱ. Examples of automata constructed
following, step-by-step, the algorithmic construction of ldlf 2nfa can be found in Reference [22,
Section. 2.5].

Finally, we observe that performing efficiently the transformation from ltlf /ldlf into nfa/dfa
is a currently active area of research, and quite advanced tools are available [3, 17, 31, 55].

4 RUNTIME MONITORING

From a high-level perspective, the monitoring problem amounts to observing an evolving system
execution and reporting the violation or satisfaction of properties of interest at the earliest possible
time. As the system execution progresses, the trace of events it generates gets extended. At each
step, the monitor checks whether the current trace conforms to the properties, not only checking
the events collected so far, but also the possible future continuations. This evolving aspect has a
significant impact on the monitoring output: At each step, indeed, the outcome may have a degree
of uncertainty due to the fact that future executions are yet unknown. We informally discuss this
aspect in the next example.

Example 4.1. Consider again formula Φ := ◦(a → (•b)) from Figure 4. The formula requires
that in the next step, if a is performed, then either the trace ends or, if it continues, it does so by
executing b. We use Φ to monitor one execution π of a system of interest. At the beginning, the
execution trace is empty, namely, π0 := ϵ . Upon evaluating if π0 satisfies Φ, the best we can say
is that currently it does not. Indeed, due to the semantics of ◦, Φ requires the trace to contain at
least two steps. At the same time, the execution can still satisfy Φ in the future if the trace π0 is
suitably extended. All in all, we can then indicate that π0 temporarily violates Φ. Assume now that
{a, c} is observed, thus evolving the current trace into π1 := {a, c}. The monitoring verdict does
not change, as the ◦ operator requires at least one further step, and such a further step can indeed
possibly occur if the execution suitably extends π1. Upon collecting a further step {b}, trace π1

evolves into π2 := {a, c}, {b}. The semantics of ◦ is now fulfilled, and considering that {b} �|= a,
the inner implication a → (•b) is (vacuously) true, in turn making the whole formula Φ true. We
can therefore conclude that the execution currently satisfies Φ, and we can even make this claim
stronger. In fact, it is now certain that, no matter how the execution will continue by extending
π2, Φ will continue to stay satisfied. Consequently, we can assert that π2 permanently satisfies Φ.

Several variants of monitoring semantics have been proposed to systematically refine the notion
of satisfaction as intuitively shown in Example 4.1 (see Reference [4] for a survey). In this work, we
adopt the 4-valued semantics in Reference [33], which is essentially the finite-trace variant of the
infinite-trace rv semantics in Reference [4]. As we will show next, in our finite-trace setting the
rv semantics can be elegantly defined, since both trace prefixes and their continuations are finite.

Given an ltlf /ldlf formula φ and a trace π , the monitor returns one among the following four
rv states:

• temp_true, meaning that π temporarily satisfies φ, i.e., it satisfies φ, but there is at least one
possible continuation of π that violates φ;
• temp_false, meaning that π temporarily violates φ, i.e., φ is not satisfied by φ, but there is at

least one possible continuation of π that does so;
• perm_true, meaning that π permanently satisfies φ, i.e., φ is satisfied by π and it will always

be, no matter how π is extended;
• perm_false, meaning that π permanently violates φ, i.e., φ it is not satisfied by π and it will

never be, no matter how π is extended.
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Formally, let φ be an ldlf /ltlf formula, and let π be a trace. Then, we define that φ is in rv
state s ∈ {temp_true, temp_false, true, false} (written �φ = temp_true�) on trace π as follows:

• π |= �φ = temp_true� if π |= φ and there exists a trace π ′ such that ππ ′ �|= φ, where ππ ′

denotes the trace obtained by concatenating π with π ′;
• π |= �φ = temp_false� if π � |= φ and there exists a trace π ′ such that ππ ′ |= φ;
• π |= �φ = perm_true� if π |= φ and for every trace π ′, we have ππ ′ |= φ;
• π |= �φ = perm_false� if π � |= φ and for every trace π ′, we have ππ ′ �|= φ.

By inspecting the definition of rv states, it is straightforward to see that a formula φ is in one and
only one rv state on a trace π .

The rv states temp_true and temp_false are not definitive: They may change into any other rv
state as the system progresses. This reflects the general unpredictability of how a system execution
unfolds. Conversely, the rv states perm_true and perm_false are stable since, once emitted by the
monitor, they will by definition not change anymore. Observe that a stable rv state can be reached
in two different situations: (i) when the system execution terminates; (ii) when the formula that
is being monitored can be fully evaluated by observing a partial trace only. The first case is indeed
trivial, as when the execution ends, there are no possible future evolutions and hence it is enough
to evaluate the finite (and now complete) trace seen so far according to the ldlf semantics. In
the second case, instead, it is irrelevant whether the system continues its execution or not, since
some ldlf properties, such as eventualities or safety properties, can be fully evaluated as soon
as something happens, e.g., when the eventuality is verified or the safety requirement is violated.
Notice also that, when a stable state is returned by the monitor, the monitoring analysis can be
stopped.

From a more theoretical viewpoint, given an ldlf property φ, the monitor looks at the trace
seen so far, assesses if it is a prefix of a full trace not yet completed, and categorizes it according
to its potential for satisfying or violating φ in the future. We call a prefix possibly good for an ldlf

formula φ if there exists an extension of it that satisfies φ. More precisely, given an ldlf formula
φ, we define the set of possibly good prefixes for L (φ) as the set:

Lposs_good (φ) = {π | there exists π ′ such that ππ ′ ∈ L (φ)}. (1)

Prefixes for which every possible extension satisfies φ are instead called necessarily good. More
precisely, given an ldlf formula φ, we define the set of necessarily good prefixes for L (φ) as the
set:

Lnec_good (φ) = {π | for every π ′ it holds that ππ ′ ∈ L (φ)}. (2)

The set of necessarily bad prefixes Lnec_bad (φ) can be defined analogously as:

Lnec_bad (φ) = {π | for every π ′ it holds that ππ ′ � L (φ)}. (3)

Observe that the necessarily bad prefixes for φ are the necessarily good prefixes for ¬φ, i.e.,
Lnec_bad (φ) = Lnec_good (¬φ).

Such language-theoretic notions allow us to capture all the rv states defined before. More pre-
cisely, it is immediate to show the following:

Proposition 4.2. Let φ be an ldlf formula and π a trace. Then:

• π |= �φ = temp_true� iff π ∈ L (φ) \ Lnec_good (φ);
• π |= �φ = temp_false� iff π ∈ L (¬φ) \ Lnec_bad (φ);
• π |= �φ = perm_true� iff π ∈ Lnec_good (φ);
• π |= �φ = perm_false� iff π ∈ Lnec_bad (φ).
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Example 4.3. Consider formula Φ := ◦(a → (•b)) from Example 4.1, together with the three
traces witnessing the progression of the execution described there: (i) π0 = ϵ , (ii) π1 = {a, c}, and
(iii) π2 = {a, c}, {b}. By applying Proposition 4.2, we can now back up formally the intuitive discus-
sion on monitoring Φ done in Example 4.1. In fact, all traces π0, π1, and π2 belong to Lposs_good (Φ),
since either they satisfy Φ, or can be completed into traces that do so. However, only π2 is in
Lnec_good (Φ). Consequently, we have: (i) π0 |= �Φ = temp_false�; (ii) π1 |= �Φ = temp_false�;
(iii) π2 |= �Φ = perm_true�.

We now establish interesting relationships over the different types of prefixes introduced before.
We start by observing that the set of all finite words over the alphabet 2P is the union of the
language of φ and its complement L (φ)∪L (¬φ) = (2P )∗. Also, any language and its complement
are disjointL (φ)∩L (¬φ) = ∅. Since from the definition of possibly good prefixes we haveL (φ) ⊆
Lposs_good (φ) andL (¬φ) ⊆ Lposs_good (¬φ), we also have thatLposs_good (φ)∪Lposs_good (¬φ) = (2P )∗.
Also, Lposs_good (φ) ∩ Lposs_good (¬φ) corresponds to:

{π | there exists π ′ such that ππ ′ ∈ L (φ) and there exists π ′′ such that ππ ′′ ∈ L (¬φ)},

meaning that the set of possibly good prefixes for φ and the set of possibly good prefixes for ¬φ
do intersect, and in such intersection there are paths that can be extended to satisfy φ, but can also
be extended to satisfy ¬φ. In addition: L (φ) = Lposs_good (φ) \ L (¬φ).

Turning to necessarily good prefixes and necessarily bad prefixes, we have that Lnec_good (φ) =
Lposs_good (φ) \ Lposs_good (¬φ), that Lnec_bad (φ) = Lposs_good (¬φ) \ Lposs_good (φ), and also that
Lnec_good (φ) ⊆ L (φ) and Lnec_good (φ) � L (¬φ).

Notably, necessarily good, necessarily bad, and possibly good prefixes partition all finite traces.
In fact, by directly applying the definitions of necessarily good, necessarily bad, possibly good
prefixes of L (φ) and L (¬φ), we obtain the following:

Proposition 4.4. The set of all traces (2P )∗ can be partitioned into

Lnec_good (φ) Lposs_good (φ) ∩ Lposs_good (¬φ) Lnec_bad (φ)

so

Lnec_good (φ) ∪ (Lposs_good (φ) ∩ Lposs_good (¬φ)) ∪ Lnec_bad (φ) = (2P )∗

Lnec_good (φ) ∩ (Lposs_good (φ) ∩ Lposs_good (¬φ)) ∩ Lnec_bad (φ) = ∅.

4.1 Monitoring ldlf Formulae

As pointed out in the previous section, the core issue in monitoring is prefix recognition. ltlf

is not expressive enough to talk about prefixes of its own formulae. Roughly speaking, given an
ltlf formula, the language of its possibly good prefixes, in general, cannot be described as an
ltlf formula. For such reasons, building a monitor usually requires direct manipulation of the
automaton for the formula.

ldlf , instead, can capture any nondeterministic automaton as a formula, and it has the capability
of expressing properties on prefixes. We can exploit such an extra expressivity to capture the
monitoring condition in a direct and elegant way. We start by showing how to construct formulae
representing (the language of) prefixes of other formulae, and then we show how to use them in
the context of monitoring.

Technically, given an ldlf formula φ, it is possible to express the language Lposs_good (φ) with
an ldlf formula φ ′. Such a formula is obtained in two steps.

Lemma 4.5. Given an ldlf formulaφ, there exists a regular expression prefφ such thatL (prefφ ) =
Lposs_good (φ).
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Proof. The proof is constructive. We build the nfa A(φ) for φ. We then build a new nfa
Aposs_good (φ) by taking A(φ) and setting as final states all states from which we can reach a fi-
nal state of A(φ). The so-obtained nfa Aposs_good (φ) is such that L (Aposs_good (φ)) = Lposs_good (φ).
Since nfas are exactly as expressive as regular expressions, we can set prefφ to be the regular

expression that encodes Aposs_good (φ). �

Since ldlf is as expressive as regular expressions (cf. Reference [19]), we can translate prefφ

into an equivalent ldlf formula, obtaining the following key result:

Theorem 4.6. Given an ldlf formula φ,

π ∈ Lposs_good (φ) iff π |= 〈prefφ〉end

π ∈ Lnec_good (φ) iff π |= 〈prefφ〉end ∧ ¬〈pref¬φ 〉end.

Proof. Any regular expression ρ, and hence any regular language, can be captured in ldlf

as 〈ρ〉end. Specifically, the language Lposs_good (φ) is captured by 〈prefφ〉end, and the language

Lnec_good (φ), which is equivalent to Lposs_good (φ) \ Lposs_good (¬φ), is captured by 〈prefφ〉end ∧
¬〈pref¬φ 〉end. �

In other words, given an ldlf formula φ, formula φ ′ = 〈prefφ〉end is an ldlf formula satisfying

L (φ ′) = Lposs_good (φ). Similarly for Lnec_good (φ).
Exploiting this result, and the results in Proposition 4.2, we reduce the evaluation of rv states

to the standard evaluation of ldlf formulae over a (partial) trace. Formally:

Theorem 4.7. Let π be a trace. The following equivalences hold:

• π |= �φ = temp_true� iff π |= φ ∧ 〈pref¬φ〉end;

• π |= �φ = temp_false� iff π |= ¬φ ∧ 〈prefφ〉end;

• π |= �φ = perm_true� iff π |= 〈prefφ〉end ∧ ¬〈pref¬φ 〉end;

• π |= �φ = perm_false� iff π |= 〈pref¬φ〉end ∧ ¬〈prefφ 〉end.

Proof. The theorem follows directly from Proposition 4.2 and Theorem 4.6. �

This result provides an actual procedure to return the rv state of an ldlf formula φ: We build
four automata, one for each of the four formulae above, and then follow the evolution of the trace
π simultaneously on each one of them. Since Proposition 4.4 proves that the languages of the four
automata are a partition for the set of all languages over (2P )∗, we are guaranteed that, at each
step, one and only one automaton is in a final state, and hence one and only one truth value is
unambiguously returned as output of the monitoring procedure.

Example 4.8. Consider the dfa of formula Φ := ◦(a → (•b)), shown in Figure 4.
Figures 5(a)–5(d) represent the four automata for monitoring the different rv truth values of Φ.

More specifically:

• The dfa in Figure 5(a) checks whether π |= �φ = temp_true�. Indeed, its final state is s2,
which corresponds to the subset of the final states in the original automaton from which
some non-final state (in this case s4) can be reached.
• The dfa in Figure 5(b) checks whether π |= �φ = temp_false�. Indeed, its final states are
s0 and s1, which correspond to the subset of the non-final states in the original automaton
from which some final state (in this case s3) can be reached.
• The dfa in Figure 5(c) checks whether π |= �φ = perm_true�. Indeed, its final state is s3,

which corresponds to the subset of the final states in the original automaton from which
none of the non-final states can be reached.
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Fig. 5. Automata used to monitor the four rv truth values of formula ◦(a → (•b)).

• The dfa in Figure 5(d) checks whether π |= �φ = perm_false�. Indeed, its final state is s4,
which corresponds to the subset of the final states in the original automaton from which no
final state can be reached.

By monitoring the execution discussed in Examples 4.1 and 4.3 using these four automata, we get
the following:

(1) At the beginning (trace π0 = ϵ), all automata are in their respective s0 state; this is final for
the dfa in Figure 5(b), hence the monitor returns temp_false.

(2) Upon receiving {a, c} (overall trace π1 = {a, c}), all automata move from s0 to s1, since {a, c} |=
true; this new state continues to be final for the dfa in Figure 5(b), so temp_false is kept as
monitoring outcome.

(3) Upon receiving {b} (overall trace π2 = {a, c}, {b}), given that {b} |= ¬a all automata move
from s1 to s3, which is final for the dfa in Figure 5(c), leading to perm_true as the monitor
output. This produced result is irrevocable, as s3 has a single transition only, pointing to s3

itself.

4.2 Monitoring Using Colored Automata

Figure 5 clearly shows that the four monitoring automata for ◦(a → (•b)) all have the “the same
shape”, in the sense that they all have the same structure of the automaton for ◦(a → (•b))
depicted in Figure 4, only differing in which states are declared as final.

In this section, we prove that this property holds for every ldlf formula. Consequently, we
show that using four automata is indeed redundant, and that monitoring can be performed by
making use of just a single automaton with “colored” states retaining, at once, all the necessary
monitoring information for the different rv truth values. Specifically, we build one automaton

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 68. Pub. date: July 2022.



68:22 G. De Giacomo et al.

only and then mark its states with four different colors, each corresponding to the final states of
a specific formula in Theorem 4.7, hence each representing one among the four rv truth values.
The intention of using a single automaton for runtime verification is not novel [33], but here, for
the first time, we provide a formal justification of its correctness.

As a first step, we formally define the notion of shape equivalence to capture the intuition that
two automata have the same “shape”, i.e., they have corresponding states and transitions, but pos-
sibly differ in their final states.

Formally, let A1 = (2P ,S1, s1
0, ϱ

1, S1
f

) and A2 = (2P ,S2, s2
0 , ϱ

2, S2
f

) be two dfa defined over a set

P of propositional symbols. We say that A1 and A2 are shape equivalent, written A1 ∼ A2, if there
exists a bijection h : S1 → S2 such that:

(1) h(s1
0 ) = s2

0;

(2) for each (s1
1,Π, s

1
2 ) ∈ ϱ1, we have that (h(s1

1 ),Π,h(s2
2 )) ∈ ϱ2; and

(3) for each (s2
1,Π, s

2
2 ) ∈ ϱ2, we have that (h−1 (s2

1 ),Π,h−1 (s2
2 )) ∈ ϱ1.

We write A1
h∼ A2 to explicitly indicate the bijection h from A1 to A2 that induces their shape

equivalence.
It is easy to see that bijection h preserves initial states (condition (1)) and transitions (conditions

(2) and (3)), but does not require a correspondence between final states.

Lemma 4.9. Shape equivalence ∼ is an equivalence relation.

Proof. Reflexivity: The identity function trivially satisfies (1)–(3) above. Symmetry: Let A
h∼ A.

Given that h is a bijection, then A
h−1

∼ A. Transitivity: Let A1
h∼ A2 and A2

д∼ A3. Then A1
h ◦ д∼ A3,

where h ◦ д is the composition of h and д. �

Hence, ∼ induces (equivalence) classes of automata with the same shape. Automata for the basic
formulae in Theorem 4.7 belong to the same class.

Lemma 4.10. For each ldlf formula φ, A(φ), A(¬φ), A(〈prefφ〉end), and A(〈pref¬φ〉end) are in

the same equivalence class by ∼.

Proof. From automata theory, A(¬φ) can be obtained from A(φ) by switching the final states

with the non-final ones. Hence, the identity i : Sφ → Sφ is such that A(φ)
i∼ A(¬φ). More-

over, A(φ) ∼ A(〈prefφ〉end) ∼ A(〈pref¬φ〉end) as A(〈prefφ〉end), respectively, A(〈pref¬φ〉end), can

be obtained from A(φ), respectively, A(¬φ), by setting as final states all states from which there
exists a non-zero length path to a final state of A(φ), respectively, A(¬φ), as explained in the

proof of Lemma 4.5. Hence, again, the identity relation i is such that A(φ)
i∼ A(〈prefφ〉end)

i∼
A(〈pref¬φ〉end). �

As the last step for proving that automata for the four formulae in Theorem 4.7 are in the same
class, we show that conjunction of formulae preserves shape equivalence, in the following precise
sense:

Theorem 4.11. Let φ1, φ2,ψ1 andψ2 be ldlf formulae soA(φ1) ∼ A(ψ1) andA(φ2) ∼ A(ψ2). Then

A(φ1 ∧ φ2) ∼ A(ψ1 ∧ψ2).

Proof. From the semantics of ldlf and Theorem 3.1, it follows that A(φ1∧φ2) ≡ A(φ1)∩A(φ2).
Recall that states of A(φ1) ∩ A(φ2) are ordered pairs (sφ1 , sφ2 ) ∈ Sφ1 × Sφ2 . Let h1 and h2 be

bijections such that A(φ1)
h1∼ A(ψ1) and A(φ2)

h2∼ A(ψ2). We use h1 and h2 to construct a new
bijection h : Sφ1 × Sφ2 → Sψ1 × Sψ2 such that h(sφ1 , sφ2 ) = (h1 (sφ1 ),h2 (sφ2 )). We show
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Fig. 6. Graphical representation of the colored automaton for◦(a → (•b)), with the following color coding:
Automaton states corresponding to the rv state temp_false are represented in orange, dashed line; those
corresponding to perm_true in green, thick solid line; those corresponding to temp_true in blue, thin solid
line; those corresponding to perm_false in red, dotted line.

that h satisfies criteria (1)–(3) of shape equivalence, hence inducing A(φ1 ∧ φ2)
h∼ A(ψ1 ∧ ψ2).

The starting state s
φ1∧φ2

0 of A(φ1 ∧ φ2) corresponds to (s
φ1

0 , s
φ2

0 ) by definition of A(φ1) ∩ A(φ2).

At the same time, s
ψ1∧ψ2

0 = (h1 (s
φ1

0 ),h2 (s
φ2

0 )) = (s
φ1

0 , s
φ2

0 ) by definition of h, which proves (1).

Now, consider a transition ((s
φ1

1 , s
φ2

1 ),Π, (s
φ1

2 , s
φ2

2 )) in ϱφ1∧φ2 . By construction, this means that

there exist transitions (s
φ1

1 ,Π, s
φ1

2 ) ∈ ϱφ1 and (s
φ2

1 ,Π, s
φ2

2 ) ∈ ϱφ2 . Since A(φ1)
h1∼ A(ψ1) and

A(φ2)
h2∼ A(ψ2), we have that (h1 (s

φ1

1 ),Π,h1 (s
φ1

2 )) ∈ ϱψ1 and (h2 (s
φ2

1 ),Π,h2 (s
φ2

2 )) ∈ ϱψ2 . It follows

that ((h1 (s
φ1

1 ),h2 (s
φ2

1 )),Π, (h1 (s
φ1

2 ),h2 (s
φ2

2 ))) ∈ ϱψ1∧ψ2 , which proves (2). Condition (3) is proved

analogously with h−1. �

Corollary 4.12. Given an ldlf formula φ, automata A(φ ∧ 〈pref¬φ〉end), A(¬φ ∧ 〈prefφ〉end),
A(〈prefφ〉end∧¬〈pref¬φ 〉end), andA(〈pref¬φ〉end∧¬〈prefφ〉end) are in the same equivalence class

by ∼.

This result tells that the automata of the formulae used to capture the rv states of an ldlf

formula of interest, as captured by Theorem 4.7, are identical modulo final states. In addition, by
definition of the four ldlf formulae, we directly get that each state is marked as final by one
and only one of such automata. This, in turn, allows us to merge all the four automata together
into a single automaton, provided that we recall, for each state in the automaton, which of the
four formulae marks it as final (which corresponds to declare to which of the four rv states it
corresponds). In practice, we can simply build the automaton A(φ) for φ, and “color” each state
in the automaton according to its corresponding rv state. This can be realized with the following,
direct procedure: We first build A(φ) = (2P ,S, s0, ϱ, Sf ), with Sf the set of its final states, and, for
each s ∈ S, we compute the set Reach(s ) of states reachable from s . Then:

• if (i) s ∈ Sf , (ii) Reach(s ) � Sf , and (iii) Reach(s ) ∩ {sf } � ∅, then we mark s as temp_true;
• if (i) s � Sf , (ii) Reach(s ) � (S\Sf ), and (iii) Reach(s )∩Sf � ∅, then we mark s as temp_false;
• if (i) s ∈ Sf and (ii) Reach(s ) ⊆ Sf , then we mark s as perm_true;
• if (i) s � Sf and (ii) Reach(s ) ⊆ (S \ Sf ), then we mark s as perm_false.

It is easy to see that the four bullets above match the four ones of Theorem 4.7. The soundness of
the marking immediately follows from the definitions and results in the previous section.

This solution is very flexible, as the reachability analysis can be performed on-the-fly: Indeed,
this is the procedure we actually implemented in our runtime verification tool, as explained in
Section 7.

Example 4.13. Figure 6 depicts the colored automaton for the formula in Example 4.1. The col-
ored automaton is the merging of the four automata in Figures 5(a)–5(d), suitably coloring each
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state, depending on which one of the four automata marks that state as final. In particular, states s0

and s1, which are final in the automaton for π |= �φ = temp_false� (Figure 5(b)), are now marked as
temp_false (orange, dashed line); state s2, which is final in the automaton for π |= �φ = temp_true�
(Figure 5(a)), is marked as temp_true (blue, solid thin line); state s3, which is final in the automaton
for π |= �φ = perm_true� (Figure 5(c)), is marked with perm_true (green, solid thick line); and, last,
state s4, which was final in the automaton for π |= �φ = perm_false� (Figure 5(d)), is marked with
perm_false (red, dotted line).

5 MONITORING DECLARE CONSTRAINTS

We now ground our monitoring approach to the case of declare (cf. Section 2.2).
Several logic-based techniques have been proposed to support end-users in defining, checking,

and enacting declare models [37, 39, 42, 43]. More recently, the ltlf characterization of declare,
together with its operational automata-theoretic counterpart, have been exploited to provide ad-
vanced monitoring and runtime verification facilities [33, 34]. In particular, monitoring declare
models amounts to:

• Tracking the evolution of a single declare constraint against an evolving trace, providing
a fine-grained feedback on how the truth value of the constraint evolves when tasks are
performed. This is done by adopting the rv semantics for ltlf . Specifically, in Reference
[33], the evolution of declare constraints through the different rv states is tackled using
the ad hoc “colored automaton” construction technique that we have formally justified in
Section 4.2.
• Tracking the compliance of an evolving trace to the entire declare model, by considering

all its constraints together. This is done by constructing the colored automaton for the con-
junction of all constraints in the model. Monitoring the evolving trace against such a “global”
automaton is crucial for inferring complex violations that cannot be ascribed to the interac-
tion of the current trace with a single constraint in the model, but arise due to the interplay
between the current trace and multiple constraints at once. Such violations emerge when
the current trace induces a conflict over two or more constraints. Technically, this means
that, in the current circumstances, such constraints contradict each other and consequently
cannot be all satisfied anymore [34]. By considering all constraints together, the presence
of this kind of conflict can be detected immediately, without waiting for the later moment
when an explicit violation of one of the single constraints involved in the conflict eventually
arises. This important feature has been classified as early detection of violations in a reference
monitoring survey [32].

Monitoring Declare Constraints with ldlf . Since ldlf includes ltlf , declare patterns can
be directly encoded in ldlf using their standard formalization [39, 44]. Good prefixes of such for-
mulae can be also defined, providing the basis for the definition of the monitoring formulae as in
Theorem 4.7. Table 2 reports the good prefix characterization of some of the declare patterns. At
the same time, we can operationally obtain a monitor for each declare pattern by simply: (i) en-
coding its formula into a corresponding nfa following the approach of Section 3; (ii) (if needed),
determinizing it using standard techniques to obtain a dfa; (iii) coloring the dfa via reachability
queries as described in Section 4.2.

This approach only works for single constraints, but not for a whole declare model, which
combines multiple constraints at once. To account for single constraints and their interplay, given
a declare modelM, we proceed as follows:
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Table 2. declare Constraint Templates from Table 1, Showing, Together with Their ltlf Semantics,
Their Good Prefix Characterization and Colored dfa

(1) For every constraint c ∈ M, we derive its ltlf formula φc and construct its corresponding
deterministic colored automaton A(c). This colored automaton acts as local monitor for its
constraint c. This can be used to track the rv state of c as tasks are executed.

(2) We build the ltlf formula ΦM standing for the conjunction of the ltlf formulae encoding
all constraints inM and construct its corresponding deterministic colored automatonA(M).
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Fig. 7. Result computed by monitoring the declare model of Figure 1 against the non-compliant trace
{begin}, {pay}, {acc}, {cancel}, {complete} using local monitors for each constraint and the global monitor
accounting for all of them at once. Graphically, the trace evolves from left to right, and in a given step, the
evolution of the rv states for the local and global monitors is the one shown from {begin} up to that point.

This colored automaton acts as global monitor for the entire declare modelM. This can be
used to track the overall rv state of M as tasks are executed and early detect violations
arising from conflicting constraints.

(3) When the monitoring of a process execution starts, which can be signaled to the monitor
through a special, initial event (begin in Figure 7), the rv truth value attached to the initial
state of each local monitor, as well as that of the global monitor, are returned.

(4) Whenever an event witnessing the execution of a task is tracked, it is delivered to each local
monitor and to the global monitor. The new, current state of each monitor is then computed,
based on the current state and on the received task name, in turn returning the truth value
associated to the new state.

(5) When the process execution is completed (i.e., no further events are expected to occur),
which can be signaled to the monitor through a special, final event (end in Figure 7), each
monitor produces a final verdict, according to the following procedure: If, upon completion,
the current state of the monitor is colored by perm_true or temp_true, then the trace is judged
as compliant (i.e., perm_true, considering that no change will occur anymore); if, instead, the
color is perm_false or temp_false, then the trace is judged as non-compliant (i.e., perm_false).

(6) The global monitor can be inquired to obtain additional information about how the moni-
tored trace interacts with all the model constraints considered together. For example, when
the current state of the global monitor is temp_false or temp_true, retrieving the names of
tasks whose execution leads to a perm_false state is useful to return which tasks are currently
forbidden by the model. This information is irrelevant when the monitor is in a perm_true

or perm_false state, as no task can lead to change the current verdict.
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Example 5.1. Figure 7 depicts the result computed by monitoring the declare model introduced
in Example 2.4 and shown in Figure 1, against a trace where a registration is paid, the correspond-
ing regulation is accepted, and then the registration is canceled.

When monitoring starts, all local monitors are in state temp_true, and so is the global monitor.
Task get ticket is forbidden, since according to the precedence constraint connecting get ticket
to pay registration (i.e., formula (¬getU pay) ∨¬�pay), a previous execution of pay registration
is needed. When the payment is executed:

• the local monitor for the responded existence constraint linking pay registration to accept
regulation (i.e., formula �pay→�acc) moves to temp_false, because it requires acceptance
of the regulation (which has not been done yet);
• the local monitor for the precedence constraint linking get ticket to pay registration (i.e.,

formula (¬getU pay)∨¬�pay) moves to perm_true, enabling once and for all the possibility
of executing get ticket;
• the local monitor for the response constraint linking pay registration to get ticket (i.e.,

formula �(pay → ◦�get)) moves to temp_false, because its satisfaction now demands a
consequent execution of the get ticket task.

The global monitor also moves to temp_false, since there are two tasks that must be executed to
satisfy the responded existence and response constraints, and it is indeed possible to execute
them without violating other constraints. At the same time, further payments are now forbidden,
due to the absence 2 constraint attached to the pay registration task (i.e., formula ¬�(pay ∧
◦�pay)).

The consequent execution of accept regulation turns the state of the responded existence
constraint linking pay registration to accept regulation (i.e., formula �pay→�acc) to perm_true:
Since the regulation has now been accepted, the constraint is satisfied and will stay so no matter
how the execution is continued.

The most interesting transition is the one triggered by the consequent execution of the can-
cel registration task. While this event does not trigger any state change in the local monitors,
it actually induces a transition of the global monitor to the permanent, perm_false rv state. In
fact, no continuation of the trace will be able to satisfy all constraints of the considered model.
More specifically, the sequence of events received so far induces a so-called conflict [34] for
the response constraint linking pay registration to get ticket (i.e., formula �(pay → ◦�get)),
and the not coexistence constraint relating get ticket and cancel registration (i.e., formula
¬(�get ∧�cancel)). In fact, the response constraint requires a future execution of the get ticket
task, which is, however, forbidden by the not coexistence constraint. Consequently, no contin-
uation of the current trace will ever be able to satisfy both constraints at once.

Since no further task execution actually happens, the trace is finally declared to be complete,
with no execution of the get ticket task. This has the effect of, respectively, moving the response
and not coexistence constraints to perm_false and perm_true. Also, the absence 2 constraint
on payment becomes perm_true, witnessing that no double payment occurred in the trace.

6 MODELING AND MONITORING METACONSTRAINTS

In Section 4, we have demonstrated that ldlf has the ability of expressing formulae that capture
the rv state of other formulae. This can be interpreted as the ability of ldlf to express meta-
level properties of ldlf constraints within the logic itself. Such properties, which we call metacon-

straints, can, in turn, be themselves monitored using the automata-theoretic approach described in
Section 4.
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In this section, we elaborate on this observation: We discuss how metaconstraints can be built,
illustrate interesting metaconstraint patterns, and substantiate our proposal in the context of
declare, extending the approach introduced in Section 5. To do so, we extensively rely on the
ability of ldlf to capture bad/good prefixes of other formulae and to describe properties over
those prefixes. In addition, we also directly exploit the power of ldlf (in particular, that of regular
expressions) within metaconstraints (see, e.g., formula (4) below). This goes beyond the expres-
siveness of ltlf and is essential to capture real-life properties, as witnessed by industrial standard
languages for temporal properties such as the Property Specification Language [29].

6.1 Modeling Metaconstraints

Theorem 4.7 shows that, for an arbitrary ldlf formula φ, four ldlf formulae can be automat-
ically constructed to express whether φ is in one of the four rv states. Consequently, given
s ∈ {temp_true, temp_false, true, false} and an ltlf /ldlf formula φ, we can consider formulae of
the form �φ = s� as special atoms of the logic itself.

Such special atoms are used to check whether a trace brings φ in state s . However, they cannot
be used to explicitly characterize, which are the paths that lead φ to rv state s , i.e., that make
formula �φ = s� true. Such paths can be readily obtained by constructing the regular expression for
language L (�φ = s�), which we denote as re�φ=s�. For example, re�φ=perm_false� = L (〈pref¬φ〉end ∧
¬〈prefφ 〉end) describes all paths culminating in a permanent violation of φ.

With these notions at hand, we can build ltlf /ldlf metaconstraints as standard ltlf /ldlf for-
mulae that include:

• formulae of the form �φ = s� as atoms;
• formulae of the form re�φ=s� as path expressions.

A metaconstraint is then translated back into a standard ldlf formula by replacing each sub-
formula of the form �φ = s� with its corresponding ldlf formula, and re�φ=s� with its correspond-
ing path expression. To do so, given s ∈ {temp_true, temp_false, true, false} and φ, one can proceed
as follows: The ldlf formula for �φ = s� is directly obtained from the correspondence established
in Theorem 4.7. A direct (non-optimized) way to calculate the regular expression for re�φ=s� is
though the following two steps: First, the ldlf formula �φ = s� (obtained as before) is transformed
into its corresponding automaton. Then, the automaton can be folded back into a path expression
using standard techniques for translating automata into regular expressions [28] (see Reference
[26] for a fine-grained account of the computational complexity of this step).

Example 6.1. Consider the ltlf formula φ = ◦(a → (•b)) from Figure 6. By inspecting
the dfa from that figure, we can easily obtain the path expressions for re�φ=s�, with s ∈
{temp_true, temp_false, true, false}:

• re�φ=temp_false� = ϵ + true, since the temp_false states of the automation are s0 and s1, respec-
tively, reachable with the empty trace and the trace containing just one step (regardless of
the propositional interpretation of that step).
• re�φ=temp_true� = true;a as the only temp_true state of the automaton is s2, reachable with

traces of length 2 whose second step contains a.
• re�φ=false� = true;a;¬b; true∗ as the only false state of the automation is s4, reachable from s2

by executing a further step whose propositional interpretation does not contain b, followed
by an arbitrary prefix (cf. the looping edge of s4).
• Considering the two possible ways of reaching s3, and the loop on s3 itself, we have
re�φ=true� = true; ((a;b; true∗) + (¬a; true∗)).
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Now consider the responded existence declare constraint and its corresponding dfa, both
shown in Table 2. Given two tasks a and b, its corresponding ltlf formula is ψ = �a→ �b. By
inspecting the dfa of the formula, we get the following:

• Considering that no state in the automaton is false, we have re�ψ=false� = false (i.e., no trace
will satisfy this expression).
• Considering s0 and recalling that o is a shortcut for ¬a ∧¬b, we have re�ψ=temp_true� = (¬a ∧
¬b)∗.
• Considering s1 and the ways to reach it, we have re�ψ=temp_false� = (¬a ∧ ¬b)∗;a; (¬b)∗.
• Considering s2 and the ways to reach it, we have re�ψ=true� = ((¬a ∧ ¬b)∗;b; true∗) + ((¬a ∧
¬b)∗;a; (¬b)∗;b; true∗).

6.2 Some Relevant Metaconstraint Patterns

We present three types of metaconstraints, demonstrating the sophistication and versatility of the
resulting framework.

Contextualizing constraints. This type of metaconstraint is used to express that a constraint must
hold while another constraint is in some rv state. The latter constraint, together with the specified
state, consequently provides a monitoring context for the former, contextualized constraint. This
form of scoping can be seen as a generalization of the mechanism used in Reference [21], where
the scope of application of ltl patterns is defined using special atomic events.

Let us specifically consider the case of a contextualized absence, where, given a task a, the con-
textualized constraint has the form �¬a, and the context is provided by an arbitrary regular ex-
pression ρ. This is formalized as:

[ρ](¬a ∨ end), (4)

where end denotes the end of the trace, as defined in Section 2; this is needed, since, in ldlf , ¬a
expresses that some task different than a is executed, while we also want to accept the case where
no task is performed at all (and the trace completes).

The idea of formula (4) is to relativize the unrestricted � operator to all and only those paths
that satisfy ρ. This can be further refined, for example by choosing as context the fact that another
constraint φ is in a given rv state s . This is done by setting ρ to the regular expression re�φ=s�,
describing those paths that lead to rv state s for φ. We then obtain:

[re�φ=s�](¬a ∨ end). (5)

A monitor for formula (5) returns temp_true either when φ is not in state s , but may evolve into
such a state, or when φ is in state s . In the latter situation, by inspecting the monitor, one can see
that task a is forbidden; this also means that upon the execution of a, the monitor evolves into
perm_false. Finally, the monitor returns perm_true if φ is not in state s and will never be able to
enter into state s , no matter how the trace evolves.

Example 6.2. Consider the constraint model in Figure 1. We want to express that it is not possible
to get the ticket after the payment is done until the regulation is accepted (if it was accepted before,
then no restriction applies). This can be seen as a contextualized absence constraint forbidding
get ticket when the responded existence that links pay registration to accept regulation (i.e.,
formula �pay→�acc) is temporarily violated, which in turn describes the execution state in which
pay registration has been done, but accept regulation not. Formally, this is encoded by instantiating
formula (5) into:

[re�{�pay→�acc}=temp_false�](¬get ∨ end),
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which, in turn, expands into:

[(get + o)∗; pay; (¬acc)∗](¬get ∨ end),

where o denotes any task different from pay, get, and acc (so (get + o)∗ is the regular expression
capturing that tasks different from pay and acc are arbitrarily repeated).

Compensation constraints. In general terms, compensation refers to a behavior that has to be en-
forced when the current execution reaches an unexpected/undesired state. In our setting, the un-
desired state triggering a compensation is the permanent violation of a property that captures a
desired behavior, which, in turn, triggers the fact that another formula, capturing the compensat-
ing behavior, has to be satisfied. We call the first formula the default constraint and the second
formula its compensating constraint.

Previous works have tackled this issue through ad hoc techniques that work directly with moni-
tors, not declaratively with the formulae to be monitored declarative counterpart [33, 34]. Dealing
with this at the formula level has the advantage that the compensating behavior is semantically
well-characterized. Interestingly, compensating based on the permanent violation of a constraint
allows us to express, in our setting, a temporal variant of what in legal reasoning would be called
contrary-to-duty obligations [48], that is, obligations that are enforced when other obligations are
violated. In addition, incorporating compensation within monitoring frameworks is considered as
a necessary feature, which surprisingly has not been extensively investigated in the past [32].

To explain how compensation works in our setting, let us consider the general case of a default
ldlf constraintφ and a compensating ldlf constraintψ . By noticing that once a trace permanently
violates a constraint, then every possible continuation still permanently violates that constraint,
we capture the compensation of φ byψ as:

�φ = perm_false�→ψ . (6)

The intuitive interpretation of formula (6) is that either φ never enters into the perm_false rv
state or ψ holds. No requirement is placed regarding when ψ should be monitored in case φ gets
permanently violated. In fact, the overall compensation formula (6) gets temporarily/permanently
satisfied even when the compensating constraintψ is temporarily/permanently satisfied before the
moment when the default constraint φ gets permanently violated. This may sound counterintu-
itive, as it is usually intended that the compensating behavior has to be exhibited as a reaction

to the violation. We can capture this intuition by turning formula (6) into the following reactive

compensation formula:

�φ = perm_false�→ 〈re�φ=perm_false�〉ψ . (7)

This formula imposes that, in case of a permanent violation of φ, the compensating constraint ψ
must hold after φ has become permanently violated.

Assuming that φ can be potentially violated (which is the reason why we want to express a
compensation), a monitor for formula (7) starts by emitting temp_true. As soon as the monitored
execution is so φ cannot be permanently violated anymore, the monitor switches to perm_true.
If instead the monitored execution leads to permanently violate φ, then from the moment of the
violation onwards, the evolution of the monitor follows that ofψ .

Example 6.3. Consider the not coexistence constraint in Figure 1. We want to model that,
whenever this constraint is permanently violated, that is, whenever a ticket is retrieved and the
registration is canceled, then a return ticket (return for short) task must be executed. This has to
occur in reaction to the permanent violation. Hence, we rely on template (7) and instantiate it into:

�{¬(�get ∧�cancel)} = perm_false�→ 〈re�{¬(�get∧�cancel) }=perm_false�〉�return.
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This formula is equivalent to

(�get ∧�cancel)→ 〈re {�get∧�cancel}〉�return,

which, in turn, becomes

(�get ∧�cancel)→
〈

(o∗; get; (¬cancel)∗; cancel; true∗)
+(o∗; cancel;¬get∗; get; true∗)

〉
�return,

where o is a shortcut notation for any task different than get and cancel.

Constraint priority for conflict resolution. Thanks to the fact that rv states take into considerations
all possible future evolutions of a monitored execution, our framework handles the subtle situation
where the execution reaches a state of affairs in which the conjunction of two constraints is perma-
nently violated, while none of the two is so if considered in isolation. This situation of conflict has
been already recalled in Section 4.1 in the case of declare. A situation of conflict involving two
constraintsφ andψ in a given situation witnesses that even though none ofφ andψ is permanently
violated in that situation, they contradict each other, and hence in every possible future course of
execution from that situation, at least one of them will eventually become permanently violated.
In such a state of affairs, it may become relevant to specify which one of the two constraints has
priority over the other, that is, which one should be preferably satisfied.

Expressing preferences of this form is particularly important in those situations where conflicts
emerge from the interplay of different sets of constraints, possibly elicited by different parties,
and that may indeed contradict each other. This is, for example, the case in the medical domain, in
particular when dealing with clinical guidelines. In fact, each clinical guideline is typically modeled
in isolation, that is, by assuming ideal patients who only present those characteristics that are
relevant for the guideline at hand. When executing such a guideline on an actual patient, the
circumstance are obviously much more complex. On the one hand, the patient may present so-
called comorbidities, which in turn would call for the concurrent execution of multiple guidelines
at once [45]. On the other hand, during the execution, medical experts combine the specific process
knowledge conveyed by the guideline with their own background medical knowledge [7]. Such
different sources of knowledge induce constraints that may contradict each other, in turn calling
for conflict resolution strategies that depend on the specific conflicting rules [7, 45]. In this respect,
the metaconstraint pattern described next can be used to make such conflict-resolution strategies
explicit and inform monitors correspondingly.

Formally, a trace culminates in a conflict for two ldlf constraints φ and ψ if it satisfies the
following metaconstraint:

�{φ ∧ψ } = perm_false� ∧ ¬�φ = perm_false� ∧ ¬�ψ = perm_false�. (8)

Specifically, assuming that φ and ψ can potentially enter into a conflict, a monitor for formula (8)
proceeds as follows:

• Initially, the monitor outputs temp_false, witnessing that no conflict has been seen so far,
but it may actually occur in the future.
• From this initial situation, the monitor can evolve in one of the following two ways:
− the monitor turns to perm_false, witnessing that from this moment on neither of the two

constraints will ever be violated anymore, irrespectively of how the trace continues;
− the monitor turns to temp_true, whenever the monitored execution indeed culminates in

a conflict—this witnesses that a conflict is currently in place.
• From the latter situation witnessing the presence of a conflict, the monitor evolves then

to perm_false when one of the two constraints indeed becomes permanently violated; this
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witnesses that the conflict is not anymore in place, due to the fact that now the permanent
violation can actually be ascribed to one of the two constraints taken in isolation from the
other.

Using this monitor, we can identify all points in the trace where a conflict is in place by simply
checking when the monitor returns temp_true.

Notice that the monitor never outputs perm_true, since a conflicting situation will always even-
tually permanently violate φ or ψ , in turn permanently violating (8). In addition, the notion of
conflict defined in formula (8) is inherently “non-monotonic,” as it ceases to exist as soon as one
of the two involved constraints becomes permanently violated alone. This is the reason why we
cannot directly employ formula (8) as a basis to define which constraint we prefer over the other
when a conflict arises. To declare that φ is preferred over ψ , we then relax formula (8) by simply
considering the violation of the composite constraint φ ∧ψ , which may occur due to a conflict or
due to the permanent violation of one of the two constraints φ andψ . We then create a formula ex-
pressing that whenever the composite constraint is violated, then we want to satisfy the preferred
constraint φ:

〈re�{φ∧ψ }=perm_false�〉tt→ φ. (9)

In the typical situation where a permanent violation of φ ∧ ψ does not manifest itself at the
beginning of the trace, but may indeed occur in the future, a monitor for formula (9) starts by
emitting temp_true. When the composite constraint φ ∧ψ becomes permanently violated (either
because of a conflict or because of a permanent violation of one of its components), formula
�{φ ∧ ψ } = perm_false� turns to perm_true, and the monitor consequently switches to observe
the evolution of φ (that is, of the head of the implication in formula (9)).

Finally, notice that both patterns (8) and (9) can be generalized to conflicts and preferences
expressed over a set of n formulae. In particular, formula (8) would in this case need to conjoin
the fact that the conjunction of all n constraints is permanently violated with the fact that this is
not the case for any of the conjunctions over the maximal subsets of n − 1 such constraints. For
example, for a set {φ1,φ2,φ3} of three constraints, we would obtain:

�φ1 ∧ φ2 ∧ φ3 = perm_false�
∧ ¬�φ1 ∧ φ2 = perm_false� ∧ ¬�φ1 ∧ φ3 = perm_false� ∧ ¬�φ2 ∧ φ3 = perm_false�.

Formula (9), instead, would require to identify, among the maximal subsets containing n − 1
constraints over the n ones, which is the preferred one. Assuming that the set of constraints is
{φ1, . . . ,φn } and that the preferred maximal subset is the one containing all such constraints but
the one indexed by j, we then get:

〈re�{∧i∈{1, . . .,n} φi }=perm_false�〉tt→
∧

i ∈{1, ...,n },i�j

φi .

Example 6.4. Consider again Figure 1, and in particular the response and not coexistence
constraints, respectively, linking pay registration to get ticket and get ticket to cancel registration,
which we compactly refer to asψr and φnc . These two constraints enter in a conflict when a regis-
tration is paid and canceled, but the ticket is not retrieved (this would indeed lead to a permanent
violation of φnc alone). Let o denote any task that is different from pay, get, and cancel. The traces
that culminate in a conflict forψr and φnc are those that satisfy the regular expression:

(o∗; pay; (o + pay)∗; cancel; (¬get)∗) + (o∗; cancel; (o + cancel)∗; pay; (¬get)∗) (10)

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 68. Pub. date: July 2022.



Monitoring Constraints and Metaconstraints with Temporal Logics on Finite Traces 68:33

Recall that, as specified in Section 2, testing whether a trace satisfies this regular expression can
be done by encoding it in ldlf as:

〈(o∗; pay; (o + pay)∗; cancel; (¬get)∗) + (o∗; cancel; (o + cancel)∗; pay; (¬get)∗)〉end. (11)

We want to express that we prefer the not coexistence constraint over the response one, i.e.,
that, upon cancellation, the ticket should not be retrieved even if the payment has been done. To
this end, we first notice that, for an evolving trace, the composite constraintψr∧φnc is permanently
violated either when φnc is so or when a conflict arises. The first situation arises when the trace
contains both cancel and get (in whatever order), whereas the second arises when the trace con-
tains both cancel and pay (in whatever order). Consequently, we have that re�{φnc∧ψr }=perm_false�

corresponds to the regular expression:

(o∗; pay; (¬cancel)∗; cancel; (true)∗)
+(o∗; get; (¬cancel)∗; cancel; (true)∗)
+(o∗; cancel; (cancel + o)∗; (get + pay); (true)∗).

We then use this regular expression together with φnc to instantiate formula (9) as follows:* (o∗; pay; (¬cancel)∗; cancel; (true)∗)
+(o∗; get; (¬cancel)∗; cancel; (true)∗)
+(o∗; cancel; (cancel + o)∗; (get + pay); (true)∗).

+
tt→¬(�get ∧�cancel)

We now consider a final example showing the evolution of the monitors for the metaconstraints
discussed in the various examples of this section.

Example 6.5. Figure 8 reports the result computed by the monitors for the metaconstraints dis-
cussed in Examples 6.2, 6.3, and 6.4 on a sample trace. When the payment occurs, the contextual
absence constraint forbids to get tickets. The prohibition is then permanently removed upon the
consequent acceptance of the regulation, which ensures that the selected context will never appear
again.

The execution of the third step, consisting in the cancellation of the order, induces a conflict
for ¬(�get ∧�cancel) and �(pay→◦�get), since they, respectively, forbid and require to even-
tually get the ticket. The monitor for the conflict metaconstraint witnesses this by switching
to temp_true. The preference stays instead temp_true, but while up to this point it was emitting
temp_true because no conflict had occurred yet, it now emits temp_true, because this is the current
rv state of the preferred, not coexistence constraint.

The execution of the get ticket task induces a permanent violation for constraint ¬(�get ∧
�cancel), which, in turn, triggers a number of effects:

• Since the preference metaconstraint is now following the evolution of the preferred con-
straint ¬(�get ∧�cancel), it also moves to perm_false.
• The conflict is not present anymore and will never be encountered again, given that one of

its two constraints is permanently violated on its own. Thus, the monitor for the conflict
metaconstraint turns to perm_false.
• The reactive compensation is triggered by the permanent violation of ¬(�get∧�cancel)

and asserts that, from now on, the compensating constraint �return must be satisfied; since
the ticket is yet to be returned, the metaconstraint turns to temp_false.

The execution of the last step, consisting in returning the ticket, has the effect of permanently
satisfying the compensation metaconstraint, which was indeed waiting for this task to occur.

All in all, consider the declare model in Figure 1 with two modifications: The responded
existence constraint shown therein is substituted with the contextualized version of Example 6.2;
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Fig. 8. Result computed by monitoring the metaconstraints in Examples 6.2, 6.3, and 6.4 against the trace
{begin}, {pay}, {acc}, {cancel}, {get}, {return}; for readability, we also report the evolution of the monitors for
the constraints mentioned by the metaconstraints.

the compensation and preference constraints of Examples 6.3 and 6.4 are added. The overall trace
does not comply with the original declare model in Figure 1, since it violates not coexistence
constraint between get and cancel. However, it complies with the revised model, since it properly
compensates to the violation of not coexistence by suitably returning the ticket. Notice that, in
doing so, the trace does not respect the preference formulated in Example 6.4, as the preferred not
coexistence constraint is indeed violated.

7 IMPLEMENTATION

The entire monitoring approach illustrated in this article has been implemented in the
MobuconLDL component of the RuM rule mining framework [1, 2]. RuM is the most complete
and updated framework for process mining with declare.9 In particular, MobuconLDL appears
in the monitoring section of the tool.

The reasoning component of MoBuConLDL is called FLLOAT (“From ltlf /ldlf To Au-
Tomata”). The source code of FLLOAT is available at https://github.com/RiccardoDeMasellis/
FLLOAT, while an introductory webpage containing information on the architecture of the code,
its main APIs, and the examples/experiments contained in this article, can be found at https:
//mobucon.inf.unibz.it.

MobuconLDL requires as inputs an event log and a reference model defined using declare.
Each constraint and activity in the reference model can be used in RuM to build metaconstraints
based on parameterized templates expressing the behaviors introduced in Section 6, i.e., contextual

9See https://rulemining.org.
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Fig. 9. Fluent model used to store the evolution of constraints.

absence, reactive compensation, conflict, and preference. The monitor is implemented in a way that
it reads events incrementally from the input log so the log is actually replayed and monitored in
a simulation environment. During the replay, the current processed event is sent to a reasoning
component that computes the current status of the constraints in the reference model and returns
the actual result’s computation to the graphical interface. The reasoning component is specifically
dedicated to the construction and manipulation of nfas from ldlf /ltlf formulae (detailed in Sec-
tion 7.1), concretely implementing the technique presented in Section 3.

The events processed by the monitor are expressed using the XES format (www.xes-standard.
org/) for event data. XES is an extensible XML-based standard recently adopted by the IEEE task
force on process mining. The response produced by MoBuconLDL contains the temporal infor-
mation related to the evolution of each monitored constraint from the beginning of the trace up to
now. At each time point, a constraint can be in one state, which models whether it is currently: (per-

manently) satisfied, i.e., the current execution trace complies with the constraint; possibly satisfied,
i.e., the current execution trace is compliant with the constraint, but it is possible to violate it in the
future; (permanently) violated, i.e., the process instance is not compliant with the constraint; possi-

bly violated, i.e., the current execution trace is not compliant with the constraint, but it is possible
to satisfy it by generating some sequence of events. This state-based evolution is encapsulated in a
fluent model that obeys to the schema sketched in Figure 9; this model, initially introduced in Ref-
erences [9, 14], is exploited in the monitoring interface, following Reference [33]. A fluent model
aggregates groups of fluents, containing sets of correlated fluents. Each fluent models a multi-state
property that changes over time. In our setting, fluent names refer to the constraints of the refer-
ence model. The fact that the constraint was in a certain state along a (maximal) time interval is
modeled by associating a closed MVI (Maximal Validity Interval) to that state. MVIs are character-
ized by their starting and ending timestamps. Current states are associated to open MVIs, which
have an initial fixed timestamp but an end that will be bounded to a currently unknown future
value. Figure 10 shows the interface running with the example in Figure 8.

7.1 Reasoning Component

FLLOAT implements the logics of the runtime verification by building the automaton of the ref-
erence model ldlf constraints with the algorithms presented in Section 3. The FFLOAT code has
been implemented Java by using an object-oriented paradigm, and it has been tested with JUnit
test cases. It is made up by several conceptual modules and makes use of external libraries as
shown by the UML diagram in Figure 11, where the main classes are depicted by the usual rectan-
gles, their surrounding boxes represent the conceptual modules they belong to, and dashed arrows
show relevant dependencies. We briefly comment on each module.

Formulae. It contains classes and methods to represent and manipulate logical formulae, including
the δ function in Figure 2, a method for translating in negation normal form, and the translation
ltlf to ldlf presented in Section 2.

Automaton construction. The main functionality provided by FLLOAT is the construction of the
nfa and dfa for an ltlf /ldlf formula φ given as input. The whole procedure works as follows:
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Fig. 10. Screenshot of the MobuconLDL graphical interface in RuM.

Fig. 11. UML-like diagram of the backend main components.

First, the formula is parsed and an LTLf or LDLf object is created. This is achieved by classes
that are previously and automatically generated by ANTLR10 starting from grammar files. If the
input formula is ldlf , then it is translated in negation normal form and the algorithm for the

10http://www.antlr.org.
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automata generation is called. Conversely, if it is ltlf , then it is first converted to ldlf . Once
an ldlf formula φ in negation normal form has been obtained, the automaton is generated with
Algorithm ldlf 2nfa in Figure 3. The method ldlf2Automaton consists of two nested cycles: the
outer on states in S yet to be analyzed and the inner on interpretation for P or the empty trace
(line 8 of Algorithm ldlf 2nfa). At each iteration δ (s,Θ) is computed, where s ∈ S and Θ ∈ 2P ∪ϵ ,
possibly generating new states q′ to be added to the set of states to be analyzed along with the
respective transitions (lines 8–9 of Algorithm ldlf 2nfa). The implementation employs explicit

automata, where each transition is decorated with a specific symbol from P (thus, in general,
two states may be linked via multiple transitions, each with a distinguished symbol). The Tweety
library11 is used to compute the models, i.e., q′ states, of the formula

∧
(ψ ∈q ) δ (ψ ,Θ) in line 8 of

Algorithm ldlf 2nfa. The procedure starts by analyzing φ, the only state in S, and ends when
all states have been analyzed and no further states have been generated in the meanwhile. The
data structures for automata are defined in the jautomata library,12 which provides methods for
automata manipulation.

Runtime Verification. The runtime verification functionalities are provided by the
ExecutableAutomaton class. An executable automaton is essentially a dfa with a refer-
ence to the current state. When an executable automaton is created, the current state is set to the
initial state (by construction, there is always a unique initial state). The idea is to navigate the
automaton and return rv truth values while events are executed. Recalling the results presented
in Section 4.2, each automaton state represents an rv truth value. Hence, an operative way to
implement an rv monitor is to analyze one-by-one the occurring events and to perform the
corresponding transitions on the automaton of the constraints. Each time a state change is
triggered by a transition leading to state s , we calculate Reach(s ) and return the corresponding
truth value.

7.2 Building Monitors for declare

We now focus on the construction of monitors for declare to realize the approach described in
Section 5. Consider a declare modelM, n constraints φ1, . . . ,φn . To monitorM, one needs n + 1
colored dfas:

• n local monitors, where monitor i tracks the evolution of the rv state of the single constraint
φi ;
• one global monitor, accounting for the interplay of all n constraints at once.

The global monitor has, in the worst case, a size that is doubly exponential in the size of the formula
expressing the conjunction of all n constraints in the model. The local monitors can instead be
precomputed for the different declare templates (as shown in Table 2), then simply replacing the
task placeholders used in the template with the corresponding, actual tasks. It is also interesting to
observe that, by employing the technique described in Reference [33], one could solely rely on the
global monitor, which can be constructed in such a way that each state therein retains the local
color that each single constraint has in that state.

We thus focus, in the remainder of the section, on the construction of the global monitor. A naive
way of constructing the monitor would be to simply build the overall formula of the declare model
by conjoining all its constraint ltlf formulae, then invoking the ldlf 2nfa algorithm of Section 3,
followed by a determinization step. However, as just recalled, the size of the global monitor is, in
the worst case, double exponential, which would make this way of operating highly impractical.

11http://tweetyproject.org.
12https://github.com/abailly/jautomata.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 68. Pub. date: July 2022.

http://tweetyproject.org.
https://github.com/abailly/jautomata.


68:38 G. De Giacomo et al.

Fig. 12. declare model for a cryptorchidism treatment clinical guideline (from [49]).

Fortunately, there are two important facts hinting at a better complexity in the average case, and
at a more clever way to construct the monitor. First, the determinization step often produces a
dfa that is of similar size, if not smaller, than the nfa from which it is generated [52]. Second, in
the specific case of declare, each declare template comes with a pre-computed automaton of
polynomial size, which is actually the minimal dfa of its corresponding ltlf formula (as shown in
Table 2 for some templates). Combining such dfas with Boolean operators (conjunction, disjunc-
tion, negation) preserves determinism, but not minimality.

We exploit this latter observation to construct the global monitorA through the following lazy

construction procedure: Set A = A(φ1), that is, A is the local dfa for the first constraint of the
declare modelM. Then loop over the remaining constraints, where the ith iteration step is as
follows:

(1) get the dfa Ai = A(φi+1) for constraint φi+1 fromM;
(2) intersect the current global dfa A with Ai , recalling that the intersection is still a dfa;
(3) minimize the so-obtained intersection, assigning the resulting dfa to A.

At the end of the loop, A corresponds to the minimal dfa for M (that is, for the formula∧
i ∈{1, ...,n } φi ). Minimizing at each step guarantees that the size of A is kept as controlled as pos-

sible during the whole computation. Finally, A can be colored with rv values either during the
construction procedure or through a simple post-processing step.

7.3 Performance Indications

Even though this article is not primarily concerned with performance and optimization issues,
we close this section by commenting on the feasibility of our monitoring technique, considering
the case of declare. We focus on the monitoring construction step, which is computationally the
most demanding: Once the dfa monitor for the input declare model is built, monitoring a trace at
runtime becomes a trivial operation, which amounts to following transitions matched by activity
occurrences received by the monitor. For our experiments, we use the simple procedure described
in Section 7.2. The experiments can be replicated by downloading the FLLOAT package and by
following the procedure described at https://mobucon.inf.unibz.it.

We start by considering the construction of a monitor for a real declare process in the medical
domain [49].

Example 7.1. Consider the declare model in Figure 12, capturing a real clinical guideline for
cryptorchidism. The global monitor for this model is the colored dfa corresponding to the con-
junction of the 13 ltlf formulae that encode the 13 constraints shown in the figure. By relying
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on the equivalence of logical conjunction and automata intersection exploited in Section 7.2, we
fix an order over the 13 constraints and incrementally build the global monitor A using the lazy
construction procedure described there. On a Macbook Pro M1 with 16 MB of RAM, this procedure
takes 0, 58 s to produce the global, minimal dfa of the global monitor, consisting of 49 states and
1,029 transitions.

We now scale up the model from Example 7.1 to obtain some indications on the performance of
the approach. This is done by replicating the model sequentially, as previously done in Reference
[40] to guarantee that the resulting model is still meaningful in terms of how constraints are in-
terrelated. The approach differs from the one of random model generation adopted in Reference
[54], which does not provide any guarantee on the meaningfulness of the obtained models, nor on
their satisfiability.

Example 7.2. To give an indication about how the lazy construction procedure of Example 7.1
scales, we perform the following experiment: We measure the time and automaton size13 by start-
ing from the model that contains only the 10 activities of the declare model of Figure 12 and no
constraints, and then incorporate the constraints one-by-one. Once all 13 constraints are incorpo-
rated, we produce a replica of the 10 activities and add a precedence constraint connecting the
first follow up activity to the second hospital admission one. We then proceed as before, adding
one-by-one the 13 constraints shown in Figure 12, this time on the replicated activities. We then
repeat this process.

Figure 13 reports how the size of the automaton and the lazy construction time change as the
number of constraints increases. Entries with values 0, 14, and 28 for the x-axis are those where
the model is expanded with new activities. One of these activities comes with the precedence
constraint relating it to the previous follow up, and consequently participates to the complexity
through that constraint. The other activities instead come completely unconstrained, and therefore
they only participate to increase the number of transitions in the monitor; this happens because,
as pointed out before, FLLOAT employs an explicit representation of transitions.

The case of Example 7.1 corresponds to the size and time for value 13 on the x-axis. The last
experiment is for a declare model consisting of 30 activities and 30 constraints, in turn corre-
sponding to a conjunctive ltlf formula of size 244 (measured as the number of activities, logical

and temporal operators employed); for such a model, the monitor has a size of ∼ 2.5 ·105, and build-
ing it takes approximately 18 minutes. One can notice that while moving from 0 to 13 constraints,
the automaton size goes approximately from 0 to 10K, while that of the timing from 0 to 1 s; while
moving from 13 to 26 constraints, the two trends, respectively, move from 10K to 30K and from
1 s to 30 s; they finally reach 250K and 1K s for 30 constraints. In addition, it is immediate to see
that the two curves are uneven. This is because the addition of a constraint, in turn calling for an
automata intersection step, impacts differently, depending on semantics of the added constraint
and how it interplays with the other constraints.

We close with three observations. First, the lazy procedure adopted here does not incorporate
further algorithmic improvements and optimizations, nor semi-symbolic and symbolic techniques
for representing transitions compactly. These aspects have been studied for declare [54] and for
the whole ltlf in References [3, 17, 31, 55]. Importantly, they can be seamlessly integrated in
our approach. Second, recall that the global monitor is “only” required for detecting permanent
violations at the earliest moment possible. If this is not needed, then local monitors suffice for the
purpose, as whenever the global monitor detects a permanent violation, then eventually at least

13Computed by simply summing up the number of states and the number of transitions of the automaton.
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Fig. 13. Trends of time and size of the global monitor as the number of constraints increases, in the experi-
ment of Example 7.2.

one of the local monitors will detect a permanent violation. Third, experimentally, the setting does
not change when metaconstraints are considered, since they are always represented as standard
ldlf formulae.

8 CONCLUSION

In this article, we have brought forward a foundational and practical approach to formalize and
monitor linear temporal constraints and metaconstraints, under the assumption that the traces
generated by the system under study are finite. This is the typical case in the context of business
process management and service-oriented architectures, where each execution of a business pro-
cess or service invocation leads from a starting state to a completion state in a possibly unbounded,
yet finite, number of steps.

The main novelty of our approach is to adopt a more powerful specification logic, that is, ldlf

(which corresponds to Monadic Second-order Logic over finite traces), instead of the typical
choice of ltlf (which corresponds to First-order Logic over finite traces). Like in the case of ltlf ,
also ldlf comes with an automata-theoretic characterization that employs standard finite-state
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automata. Differently from ltlf , though, ldlf can declaratively express, within the logic, not only
constraints that predicate on the dynamics of task executions, but also constraints that predicate
on the monitoring state of other constraints.

The approach has been fully implemented as an independent library to specify ldlf /ltlf for-
mulae as well as obtain and manipulate their corresponding automata, which is then invoked
by a process-monitoring infrastructure that has been developed within the state-of-the-art RuM
rule mining framework. A natural next step is to incorporate, and study, the different automata-
construction optimizations studied in the literature and study their (combined) impact on time and
space complexity incurred when constructing monitors for formulae of increasing length.

As main continuation for this work, we intend to incorporate other monitoring perspectives,
such as in particular data objects carried by the monitored events. This setting is reminiscent of
stream query languages and event calculi. For example, a reactive form [14] of the logic-based
Event Calculus [30] has been applied to process monitoring against data-aware extensions of the
declare language in Reference [38], also considering some specific forms of compensation [13].
However, these approaches are only meant to query and reason over the events collected so far in
the monitored trace, without conducting any form of speculative reasoning on its possible future
continuations, as we do in our approach. Genuine investigation is then required to understand
under which conditions it is possible to lift the automata-based techniques presented here to the
case where events are equipped with a data payload and constraints are expressed in (fragments of)
first-order temporal logics over finite traces. So far, this has been attempted only by interpreting
data over a fixed, finite quantification domain [20], which makes the approach directly reducible
to the propositional setting studied here.

Another interesting line we want to pursue is to consider monitoring in an adversarial environ-
ment where multiple external actors interact, possibly adversarially, to progress the process. This
requires to link the rv conditions to key notions like “forcing” (in spite of the environment). This
relates to synthesis in formal methods [47] and planning in nondeterministic domains in Artificial
intelligence [24]. Among the various works, in the infinite-trace setting, Reference [35] studies
GR(1) specifications (a computational web behaved fragment of ltl, [6]) obeying to the patterns
introduced in Reference [21], which are indeed at the basis of the declare process modeling lan-
guage [37, 43]. However, recently in planning there has been a lot of interest on specifications
expressed in ltlf on finite traces [11, 18]. Interestingly, ltlf can be seen as a fragment of ltl that
is orthogonal to GR(1), and for which synthesis can be effectively scaled up as in the case of GR(1)
(see Reference [25] for a discussion).
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