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a b s t r a c t

The assessment of behavioral rules with respect to a given dataset is key in several research
areas, including declarative process mining, association rule mining, and specification mining. An
assessment is required to check how well a set of discovered rules describes the input data, and
to determine to what extent data complies with predefined rules. Particularly in declarative process
mining, Support and Confidence are used most often, yet they are reportedly unable to provide a
sufficiently rich feedback to users and cause rules representing coincidental behavior to be deemed as
representative for the event logs. In addition, these measures are designed to work on a predefined
set of rules, thus lacking generality and extensibility. In this paper, we address this research gap
by developing a measurement framework for temporal rules based on (LTLpf ). The framework is
suitable for any temporal rules expressed in a reactive form and for custom measures based on the
probabilistic interpretation of such rules. We show that our framework can seamlessly adapt well-
known measures of the association rule mining field to declarative process mining. Also, we test our
software prototype implementing the framework on synthetic and real-world data, and investigate the
properties characterizing those measures in the context of process analysis.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Measuring the degree to which process traces comply with
ehavioral rules is key in process analysis branches such as con-
ormance checking [1], compliance assessment [2], and discovery
f process constraints [3]. To date, several measures have been
efined to this end, yet there are two major problems with their
pplication.
First, measures adopted for process mining are defined in-

onsistently for specific applications. For example, among the
ost frequently used measures there are Support and Confi-
ence. However, their definition has been customized to the
pecification languages in use and even for the specific mining
lgorithms under analysis. For instance, there is a significant
ifference in the definition of Support used in [3] (percentage of

∗ Corresponding author.
E-mail addresses: alessio.cecconi@wu.ac.at (A. Cecconi),

iuseppe.degiacomo@uniroma1.it (G. De Giacomo), claudio.diciccio@uniroma1.it
C. Di Ciccio), maggi@inf.unibz.it (F. M. Maggi), jan.mendling@hu-berlin.de,
an.mendling@wu.ac.at (J. Mendling).
1 Authors in alphabetical order.
 i

ttps://doi.org/10.1016/j.is.2021.101920
306-4379/© 2021 The Authors. Published by Elsevier Ltd. This is an open access art
traces fully compliant to a rule) and [4] (percentage of activations
that lead to a fulfillment), in a way that the Support of rule ‘‘If
a is executed, then b will be executed later’’ on a set of traces
like {⟨a, b, c, d⟩, ⟨a, b, c, a⟩, ⟨a, c⟩} is equal to 0.33 for [3] and 0.5
according to [4]. Furthermore, the definition of those measures
are defined ad hoc for specific sets of rules, like Declare [5]
emplates. Such issues hinder the fair comparison and eventually
he advancement of rule-based process mining.

Second, the opportunity to adopt available measures from as-
ociation rule mining has been largely missed so far. A plethora of
easures that are reportedly superior in comparison to Support
nd Confidence [6] have been proposed in this field. Support mea-
ures only the satisfaction frequency of a rule and Confidence its
alidity. Although those are crucial aspects in the assessment of
rule, they do not suffice to avoid spurious result [7]. Markedly,
arious directions have been explored in prior research, among
thers by revising Support and Confidence [8–10], and by defining
omplementary measures [11–13]. However, all such measures
o not account for the temporal perspective, which is a first-class
itizen dimension in process mining.
In this paper, we address the research challenge of defin-

ng a general and comprehensive measurement system. More
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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pecifically, we propose a framework based on formal seman-
ics grounded in Linear-time Temporal Logic with Past on Finite
races (LTLpf ) to express Reactive Constraints (RCons) [14] in

a way that abstracts from specific rule-specification languages.
Such constraints are rules in the form of ‘‘if A then B’’, thus
inding the satisfaction of an antecedent A to the occurrence of
consequent B, wherein both A and B are temporal formulas.
e show that a probabilistic interpretation of the fine-grained

emporal logic evaluation of any such formulas allows us to
mploy all available association rule mining measures as-is for
emporal rules. Markedly, the framework has linear time and
pace complexity with respect to the input size.
Our contribution extends concepts from association rule min-

ng to temporal logic specifications. In this way, we define a
oundation upon which the fitness between measures and data
nalysis scenarios can be discussed in future research. We con-
uct an extensive set of simulation experiments, the results of
hich demonstrate that, driven by known properties, the mea-
ures respond differently to changes in the behavior evidenced
y event logs. This is an important finding that highlights the
eed to select measures according to the application context,
onfirming previous findings for association rules [15] in the
ealm of temporal logic specifications.

This paper is an extension of our previous conference pa-
er [16] presented at the 2nd International Conference on Process
ining (ICPM 2020). We extend the contribution in the following
spects:

• We extend the framework to provide measures at the level
of the event log, and not only descriptive statistics at the
trace level (Section 4);
• We revise the experiments based on the new theoretical

extension. In particular, we score the proposed measures
and rank them in order to identify the best candidates to
be used for rule discovery (Section 6);
• We analyze the memory consumption of the framework

along with the time performance (Section 5);
• We extend the discussion about the interestingness mea-

sures used and exploit their known properties for a better
understanding of log behavior (Sections 3 and 6).

Additionally, we prove the linear-time performance of the
Cons verification in Appendix.
The remainder of this paper is structured as follows. Section 2

iscusses prior research on measures for declarative process min-
ng and specification mining. Section 3 defines preliminaries upon
hich we define our framework. Section 4 defines the measure-
ent framework. Section 5 presents a computational study of the

ramework and Section 6 shows the results of an array of simula-
ion experiments and discusses them. Finally, Section 7 summa-
izes the contribution of the paper and points to opportunities for
uture research.

. Related work

Behavioral rules have been widely used to support application
cenarios such as association rule mining in machine learning,
rocess discovery and conformance checking in process mining,
nd specification mining in software engineering. The assessment
f rules with respect to the available data is a key component of
ll these techniques.
In association rule mining, interestingness measures are used

o discriminate candidate pairs of relevant co-occurring events. A
ommon technique is to discover frequent rules above a certain
upport threshold (frequency) and to prune the results below
certain Confidence threshold (validity). For example, [17] dis-
overs associations between items through an Apriori algorithm
2

based on the downward-closure property of the Support measure.
Nevertheless, the use of Support and Confidence alone is report-
edly not sufficient to avoid a large number of spurious results [7],
i.e., the discovery of rules which are frequently satisfied by the
data although merely by chance, thus threatening their statistical
validity. A plethora of new measures have been proposed in
the literature to overcome the limits of using only Support and
Confidence [11], yet the employment of Support and Confidence
as the main interestingness measures remains widespread. The
main goal driving the development of better measures is indeed
the exclusion of spurious rules, so as to let the more crucial
ones stand out. Several measures are directly improving on or
refining the results of Support and Confidence (e.g., Lift [8] scales
Confidence with the Support of the consequent of a rule), others
combine different measures (e.g., Added Value [12] subtracts the
Prevalence to the Confidence of a rule), and further ones show
complementary information (e.g., Specificity [11] measures to
what extent the absence of the consequent is related to the
absence of the antecedent of a rule).

In declarative process discovery, interestingness measures are
used to prune candidate rules based on user-defined thresholds.
This pruning approach is used for Declare discovery in [3,4] and
for DCR graphs discovery in [18]. These techniques are mainly
based on Support and Confidence, which lead to the aforemen-
tioned limits [7]. In addition, the definitions of these metrics also
differ depending on the techniques that use them. For instance,
the Support measure presented in [3] does not correspond to the
Support measure of [4], although both are expressly defined for
the sole Declare constraints.

In the area of conformance checking, interestingness measures
are used to check the degree of conformance of a rule with
respect to an execution trace. In [19], Linear Temporal Logic (LTL)
rules are checked against each trace in a given event log. This
is highly generic as it supports any custom LTL formula, but it
reports only binary results, i.e., whether a rule holds in a trace or
not. In [20], Burattin et al. use measures like fulfillment ratio and
violation ratio, based on the evaluation of the number of activa-
tions of a rule (intuitively, the occurrences of its antecedent) that
lead to a fulfillment and the number of activations that lead to a
violation in an event log. However, these metrics are specifically
bound to the set of Declare rules, thus not providing a general
measurement framework that can be applied to general type of
rule.

In specification mining, interestingness measures are also used
to prune candidate temporal specifications based on user-defined
thresholds. Interestingly, specification mining and declarative
process discovery are two largely overlapping concepts from
distinct fields. Yang et al. [21] discover 2-value temporal pat-
terns using a trace measure that quantifies partial satisfactions
of a rule. Yet, the technique lacks generality as it is limited
only to alternation patterns (similar to AlternateResponse and
AlternatePrecedence in Table 1) and the adopted computation
heuristics are tailored to the software domain. Le et al. [6] em-
phasize the limits of using only Support and Confidence measures
and investigate properties of other measures reviewed in [11].
Their results demonstrate that there are several measures out-
performing Support and Confidence, and that the combination
of different measures yields better results. However, they limit
their study to 2-value temporal patterns (specifically, Response
and Precedence in Table 1). Furthermore, their computation of
the probability for a temporal specification is based on a sliding
window technique [22]: traces are read in chunks of the size of a
given window, then the probability of a rule is the percentage of
windows in which it is satisfied. They test the effect of different
window sizes, showing that their results depend not only on the

input rules and the data, but also on this parameter selection.
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emieux et al. [23] extend specification mining to arbitrary LTL
pecifications (implicitly on finite traces) beyond 2-value tem-
lates. However, they resort to the sole Support and Confidence
easures to prune uninteresting results, thus incurring in the
lready mentioned statistical limits [7].
The aforementioned shortcomings of quality measures are also

iscussed in the field of sequence mining [24] when dealing
ith discovering patterns (specifically subsequences) to classify
equential data. Egho et al. [25] highlight how measures like
onfidence and Lift alone lead to unstable classification results of
ubsequences, proposing a probabilistic Bayesian-based measure
o overcome such an instability and avoiding the requirement
f setting thresholds for measures. It falls under the family of
echniques based on the minimum description length principle,
ike [26], where an encoding scheme is used to discover a min-
mal set of subsequences which can reproduce the original data.
otably, subsequence interleaving patterns are only a subset of
atterns expressible with LTL formulae. Works adopting behav-
oral rules for classification like [27], on the other hand, fall back
o the sole employment of Support.

In summary, despite the discussion in different fields on mea-
ures and the problem of spurious relations, there is no technique
hat supports at the same time a comprehensive and extensible
ulti-measurements assessment of rules and its applicability on
eneral temporal logic specifications.

. Preliminaries

To develop our framework, we build on the sound founda-
ions of LTLpf . In this section, we introduce the fundamentals
f LTLpf formulae (Section 3.1) and interestingness measures for
ssociation rules (Section 3.2).

.1. Linear-time Temporal Logic with Past on Finite Traces (LTLpf )

As the formal foundations of our framework, we consider
he rules specified in Linear Temporal Logic on Finite Traces
LTLf ) [28] as used in Declare [5,29]. LTLf has the same syntax
as LTL [30]. Its semantics is interpreted on finite traces (here
abstracted as finite sequences of symbols), and thus take into
account that business processes are assumed to eventually ter-
minate [31]. Declare focuses on a set of specific LTLf formulas.
Table 1 illustrates some of the most important rules for business
process specifications in Declare.

LTLpf is an extension of LTLf supporting the expression of
properties of the past (hence the ‘‘p’’ suffix) [14]. Well-formed
Linear-time Temporal Logic with Past on Finite Traces (LTLpf )
formulae are built from an alphabet Σ ⊇ {a} of propositional
ymbols and are closed under the boolean connectives, the unary
emporal operators (next) and ⊖ (previous), and the binary
emporal operators U (Until) and S (Since):

:= a|(¬ϕ)|(ϕ1 ∧ ϕ2)|( ϕ)|(ϕ1 U ϕ2)|(⊖ϕ)|(ϕ1 S ϕ2).

From these basic operators, the following can be derived: Clas-
sical boolean abbreviations True, False,∨,→; Constant tEnd ≡

True, denoting the last instant of a trace; Constant tStart ≡
⊖ True, denoting the first instant of a trace; 3ϕ ≡ True U ϕ

ndicating that ϕ holds true eventually before tEnd; ϕ1 W ϕ2 ≡

ϕ1 U ϕ2) ∨ 2ϕ1, which relaxes U as ϕ2 may never hold true;
3ϕ ≡ True S ϕ indicating that ϕ holds true eventually in the
ast, after tStart; 2ϕ ≡ ¬3¬ϕ indicating that ϕ holds true from
he current instant till tEnd; ⊟ϕ ≡ ¬3¬ϕ indicating that ϕ holds
true from tStart to the current instant.

Given a finite trace t of length n ∈ N, an LTLpf formula ϕ
s satisfied in a given instant i (1 ≤ i ≤ n) by induction of the
following:
3

t, i |H True; t, i ⊭ False;
t, i |H a iff t(i) is assigned with a;
t, i |H ¬ϕ iff t, i ⊭ ϕ;
, i |H ϕ1 ∧ ϕ2 iff t, i |H ϕ1 and t, i |H ϕ2;
, i |H ϕ iff i < n and t, i+ 1 |H ϕ;
t, i |H ⊖ϕ iff i > 1 and t, i− 1 |H ϕ;
t, i |H ϕ1 U ϕ2 iff t, j |H ϕ2 with i ≤ j ≤ n, and t, k |H ϕ1 for all k
s.t. i ≤ k < j;
t, i |H ϕ1 S ϕ2 iff t, j |H ϕ2 with 1 ≤ j ≤ i, and t, k |H ϕ1 for all k
s.t. j < k ≤ i.
A formula ϕ is satisfied by a trace t , written t |H ϕ iff t, 1 |H
ϕ. One of the central properties of LTLpf and LTLf is that a
deterministic finite state automaton (DFS) Aϕ can be computed
such that for every trace t we have t |H ϕ iff t is in the language
recognized by Aϕ , as illustrated in [14,32,33].

Without loss of generality, in this paper we abstract traces
as finite strings of symbols representing events. We assume that
every event reports on the execution of exactly one task and
LTLpf formulae use those tasks as their propositional symbols —
the so-called Declare assumption [32]. A trace extracted from the
real-world Sepsis event log [34] is, e.g., tSepsis = ⟨ER Registration,
ER Triage, ER Sepsis Triage, CRP, Lactic Acid, IV Liquid, IV Antibiotics⟩. No-
tice that this trace complies with the constraints that
Mannhardt et al. identified as normative for the Sepsis treatment
process [35], including the following ones: (i) Init(ER Registration),
i.e., every trace begins with the registration at the emergency de-
partment,; (ii) AtMostOne(ER Triage), i.e., the triage in the emer-
gency room occurs at most once in a process run; (iii)
Response(ER Triage, ER Sepsis Triage), i.e., the ER Triage procedure
should be eventually followed by the Sepsis-specific triage, (iv)
Precedence(ER Sepsis Triage, IV Antibiotics), i.e., the intravenous in-
jection of antibiotics must be preceded by the ER Sepsis Triage
procedure.

Table 17 contains an extended set of Declare constraints that
correct execution of the Sepsis treatment process should fulfill.
or the sake of succinctness, we may use single-letter identi-
iers in place of full-length task names whenever suitable in the
ollowing examples.

An event log is a multi-set of traces, i.e., traces can recur
ultiple times in an event log. The cardinality of the event log is

he sum of the multiplicities of its traces. Considering the Sepsis
vent log, the multiplicity of tSepsis is 13 (i.e., tSepsis occurs 13 times
n the event log). Other exemplary traces of that log are t ′Sepsis =
ER Registration, ER Triage, ER Sepsis Triage⟩ (occurring 35 times) and
t ′′Sepsis = ⟨ER Registration, ER Triage, ER Sepsis Triage, Leucocytes, CRP⟩
(with a multiplicity of 24). The cardinality of the event sub-log
consisting of the traces above is thus 72. The cardinality of the
whole Sepsis event log is 1050.

3.2. Interestingness measures for association rules

In this section, we revisit key findings of research on quality
measures in association rule mining. More specifically, we build
on prior research that surveys measures in the area of software
engineering and association rule mining, namely [11,15,36,37].
These works are specifically suited as a foundation due to the
wide coverage of measures and their comparative study of both
formal and user-perceived measure properties. The rules under
study are in the form ‘‘if A then B’’, where A is called the
antecedent of the rule, and B its consequent. We refer to A and
B as variables of the rule.

Specifically, we consider only probability-based objective mea-
sures, i.e., measures depending only on the data as opposed to
those requiring user-provided parameters. Objective measures
are based on the probabilities derived from the contingency table
of the occurrences of the variables, as depicted in Table 2. Ta-
ble 3 presents the list of measures covered in this study. In the
following, we provide a brief description of each measure.
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Table 1
Some Declare constraints expressed as RCons.
Constraint LTLf expression [28] RCon
Participation(a) 3a tStart 3a

Init(a) a tStart a

End(a) 23a tEnd a

AtMostOne(a) 2(a→ (¬3a)) a (¬3a)
RespondedExistence(a, b) 3a→ 3b a (3b ∨ 3b)
Response(a, b) 2(a→ 3b) a 3b

AlternateResponse(a, b) 2(a→ 3b) ∧ 2(a→ (¬a W b)) a (¬a U b)
ChainResponse(a, b) 2(a→ 3b) ∧ 2(a→ b) a b

Precedence(a, b) ¬b W a b 3a

AlternatePrecedence(a, b) (¬b W a) ∧ 2(b→ (¬b W a)) b ⊖ (¬b S a)
ChainPrecedence(a, b) (¬b W a) ∧ 2( b→ a) b ⊖ a

Succession(a, b) 2(a→ 3b) ∧ (¬b W a) (a ∨ b) (a ∧ 3b) ∨ (b ∧ 3a)
AlternateSuccession(a, b) 2(a→ 3b) ∧ 2(a→ (¬a W b))

∧(¬b W a) ∧ 2(b→ (¬b W a))
(a ∨ b) (a ∧ (¬a U b))∨

(b ∧⊖(¬b S a))
ChainSuccession(a, b) 2(a→ 3b) ∧ 2(a→ b)

∧(¬b W a) ∧ 2( b→ a)
(a ∨ b) (a ∧ b) ∨ (b ∧⊖a)

CoExistence(a, b) (3a ∧ 3b) ∨ (¬3a ∧ ¬3b) (a ∨ b) (a ∧ 3b) ∨ (a ∧ 3b)∨
(b ∧ 3a) ∨ (b ∧ 3a)

NotCoExistence(a, b) 2(a→ ¬3b) ∧ 2(b→ ¬3a) (a ∨ b) (a ∧ ¬3b ∧ ¬3b)∨
(b ∧ ¬3a ∧ ¬3a)
Table 2
Contingency tables to which the ‘‘if A then B’’ rules and their variables (x ∈ {A, B}) comply with. On the left-hand side, the
contingency table is based on probabilities (P(x)); on the right-hand side, the contingency table is based on frequencies (where |x|
is the number of occurrences of x and N is the total number of occurrences).

A ¬A
B P(AB) P(¬AB) P(B)
¬B P(A¬B) P(¬A¬B) P(¬B)

P(A) P(¬A) 1

A ¬A
B |AB| |¬AB| |B|
¬B |A¬B| |¬A¬B| |¬B|

|A| |¬A| N
Support [17] measures the frequency of the co-occurrence of the
antecedent and the consequent. The Support of the sole
antecedent of the rule is also called Coverage, while the
Support of the consequent is called Prevalence.

Confidence [17] measures the co-occurrences of the antecedent
and the consequent in the fraction of data containing the
antecedent.

Recall [11] measures the co-occurrences of the antecedent and
the consequent in the fraction of data containing the con-
sequent.

Specificity [11] measures the co-absences of the antecedent and
the consequent in the fraction of data not containing the
antecedent.

Accuracy [11] measures the fraction of the data either containing
both the consequent and the antecedent or neither of the
two.

Lift [8] scales the Confidence by the probability of the conse-
quent, to check if the co-occurrence of the antecedent and
consequent is more likely than their independence.

Leverage [9] measures the difference between the Confidence of
the rule and the independent occurrence of its variables.

Added Value [12] measures the difference between the Confi-
dence of the rule and the probability of the consequent
alone, to check if the conditioned occurrence of the con-
sequent differ from its unconditioned occurrence.

Relative Risk [38] measures the ratio of the conditional proba-
bility of the consequent given the antecedent to the condi-
tional probability of the consequent given the negation of
the antecedent.
4

Jaccard’s Coefficient [39] measures the similarity between the
variables using the ratio of their co-occurrence to the union
of all their independent occurrences.

Certainty Factor [10] measures the ratio of the Added Value
of the rule to the Added Value of the consequent alone,
in order to see the variation of probability in the data
containing the antecedent.

Odds Ratio [40] measures the ratio of the probability of having
the consequent when the antecedent is present to the
probability of having the consequent when the antecedent
is not present.

Odds Multiplier [40] measures the ratio of the probability of
having the antecedent when the consequent is present to
the probability of having the antecedent when the conse-
quent is not present.

Yules’s Q and Yules’s Y [41,42] are normalization of the Odds
Ratio to have it centered around 0 and ranging between
−1 and 1.

Klosgen’s Measure [43] weights the Support of the rule using its
Added Value.

Conviction [13] measures the occurrences of the antecedent
without the consequent in comparison to their indepen-
dence.

Interestingness Weighting Dependency [44] combines Support
and Lift of a rule and explicitly gives weights to each of
them to let the user decide their relative importance.

Collective Strength [12] measures the ratio of the agreement
ratio (number of non-violations per expected number of
non-violations) to the violation ratio (number of violations
per expected number of violations).
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able 3
robabilistic measures for association rules with respective range and properties.

Measure Formula Range P1 P2 P3 P4 P5 P6

Support P(AB) [0, 1] – sym ↘ var var ↘

Confidence/Precision P(B|A) [0, 1] � asym → var const ↘

Coverage P(A) [0, 1] – asym ↘ var var ↘

Prevalence P(B) [0, 1] – asym ↗ var var ↘

Recall P(A|B) [0, 1] � asym ↘ var var

Specificity P(¬B|¬A) [0, 1] – asym ↘ const var ↘

Accuracy P(AB)+ P(¬A¬B) [0, 1] – sym ↘ var var ↘

Lift/Interest
P(B|A)
P(B)

or
P(AB)

P(A)P(B)
[0,+∞) – sym ↘ const var ↘

Leverage P(B|A)− P(A)P(B) [−1, 1] – sym ↗ var var ↘

Added Value/
Change of Support/
Centered Confidence

P(B|A)− P(B) [−1, 1] – asym ↘ const var ↘

Relative risk
P(B|A)
P(B|¬A)

[0,+∞) – asym ↘ const var ↘

Jaccard
P(AB)

P(A)+ P(B)− P(AB)
[0, 1] � sym ↘ var var ↘

Certainty factor
P(B|A)− P(B)

1− P(B)
[−1, 1] – asym ↘ const const ↘

Odds ratio/
Bayes Factor

P(AB)P(¬A¬B)
P(A¬B)P(¬BA)

[0,+∞) – sym ↘ const const

Yule’s Q
P(AB)P(¬A¬B)− P(A¬B)P(¬AB)
P(AB)P(¬A¬B)+ P(A¬B)P(¬AB)

[−1, 1] – sym ↘ const const

Yule’s Y
√
P(AB)P(¬A¬B)−

√
P(A¬B)P(¬AB)

√
P(AB)P(¬A¬B)+

√
P(A¬B)P(¬AB)

[−1, 1] – sym ↘ const const

Klosgen
√
P(AB)×max(P(B|A)− P(B), P(A|B)− P(A)) [−1, 1] – asym ↘ const var ↘

Conviction
P(A)P(¬B)
P(A¬B)

[0,+∞) – asym ↘ const const

Interestingness
Weighting
Dependency

((
P(AB)

P(A)P(B)

)k

− 1

)
× P(AB)m [0,+∞) – sym ↘ const var

Collective Strength
P(AB)+ P(¬B|¬A)

P(A)P(B)+ P(¬A)P(¬B)
×

1− P(A)P(B)− P(¬A)P(¬B)
1− P(AB)− P(¬B|¬A)

[0,+∞) – asym ? var var

Laplace Correction
N(AB)+ 1
N(A)+ 2

[0.5, 1] � asym → var var ↘

Gini Index P(A)× (P(B|A)2 + P(¬B|A)2)
+P(¬A)× (P(B|¬A)2 + P(¬B|¬A)2)
−P(B)2 − P(¬B)2

[0, 1] – asym ↘ const var ↘

J-Measure P(AB) log
P(B|A)
P(B)

+ P(A¬B) log
P(¬B|A)
P(¬B)

(−∞,+∞) – asym ↘ const const

One-Way Support P(B|A) log2
P(AB)

P(A)P(B)
(−∞,+∞) – asym ↘ const var ↘

Two-Way Support P(AB) log2
P(AB)

P(A)P(B)
(−∞,+∞) – sym ↘ const var ↘

Two-Way Support
Variation

P(AB) log2
P(AB)

P(A)P(B)
+ P(A¬B) log2

P(A¬B)
P(A)P(¬B)

+P(¬AB) log2
P(¬AB)

P(¬A)P(B)
+ P(¬A¬B) log2

P(¬A¬B)
P(¬A)P(¬B)

(−∞,+∞) – sym ↘ const const ↘
(continued on next page)
Laplace Correction [45] is a variation of Confidence to take into
account small data.

Gini index [46] measures if the entropy introduced by a rule
brings a marked difference.
5

J-measure [47] is an entropy based measure for the information
content of a rule.

One-way Support and Two-way Support [48] combine respec-
tively Confidence and Support of a rule with the degree of
independence between the variables.
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T
able 3 (continued).
Measure Formula Range P1 P2 P3 P4 P5 P6

Ø–Coefficient
(Pearson’s Linear
Correlation
Coefficient)

P(AB)− P(A)P(B)
√
P(A)P(B)P(¬A)P(¬B)

(−∞,+∞) – sym ↘ const var ↘

Piatetsky–Shapiro P(AB)− P(A)P(B) [−1, 1] – sym ↘ const var ↘

Cosine
P(AB)
√
P(A)P(B)

[0,+∞) � sym ↘ var var ↘

Loevinger 1−
P(A)P(¬B)
P(A¬B)

(−∞, 1] – asym ↗ const const

Information Gain log
P(AB)

P(A)P(B)
(−∞,+∞) – sym ↘ const var

Sebag–Schoenauer
P(AB)
P(A¬B)

[0,+∞) � asym → var const

Least Contradiction
P(AB)− P(A¬B)

P(B)
(−∞,+∞) � asym ↘ var var ↘

Odd Multiplier
P(AB)P(¬B)
P(B)P(A¬B)

[0,+∞) – asym ↘ const const

Example and
Counterexample
Rate

1−
P(A¬B)
P(AB)

(−∞, 1] � asym → var const

Zhang
P(AB)− P(A)P(B)

max(P(AB)P(¬B), P(B)P(A¬B))
(−∞,+∞) – asym ↘ const const
Two-way Support Variation [48] measures the change in the
Two-way-Support.

Linear Correlation Coefficient [49] measures the Pearson’s cor-
relation between the variables.

Piatetsky–Shapiro [9] measures the difference between the co-
occurrences of antecedent and consequent and their inde-
pendent frequency.

Cosine [37] measures the geometric mean between Lift and Sup-
port of a rule.

Loevinger [50] measures the homogeneity between antecedent
and consequent.

Information Gain [51] is the logarithm of the Lift.

Sebag–Schoenauer [52] measures the proportion of positive and
negative occurrences of the antecedent.

Least Contradiction [53] measures the difference between pos-
itive and negative occurrences of the antecedent weighted
by its frequency.

Example and Counterexample Rate [11] measures the propor-
tion of the antecedent occurrences with and without con-
sequent.

Zhang [54] measures the positive or negative association be-
tween the antecedent and the consequent.

Different studies have been dedicated to the analysis of gen-
eral properties for measures [9,11,15,37]. Properties show the
response of measures under certain conditions. Therefore, prop-
erties can be used to group similar measures and decide the
proper ones to be employed depending on the context. For ex-
ample, we will analyze the sensitivity of measures to the increase
of noise in the data as an important selection criterion for rule
monitoring or discovery. We will delve deeper into this aspect
in Section 6. In this paper, we focus specifically on a subset of
the properties proposed in [37] and [15], as their meaning and
effects are reportedly recognizable in a clear manner by the final
user. The selected properties are explained below and associated
to each measure M in Table 3.
6

P1. Null invariance [37]. The measure is unaffected by traces
not containing neither A or B. Therefore, it assesses whether
the traces not related to the rule affect the measurement or
not. To satisfy this property, the measure should not vary
when |¬A¬B| increases in the contingency table, while
the other values remain fixed. In Table 3, we use the ‘✓’
or ‘–’ symbols to indicate whether the property holds or
not, respectively. For example, for Confidence and Recall
this property holds, whereas for Support, Leverage and
Collective Strength it does not.

P2. Asymmetric processing of variables [15]. The measure is
asymmetric under variable swap, i.e., the measure of if
A then B differs from that of if B then A. The measure
enjoys this property if it does not vary upon the swapping
of the values of |¬AB| and |A¬B| in the contingency table.
In Table 3, every measure is marked with ‘‘asym’’ or ‘‘sym’’
to indicate whether the property is enjoyed or not, respec-
tively. For instance, Support and Leverage are symmetric
under variable swap, whereas Confidence, Recall and Col-
lective Strength provide an asymmetric processing of the
variables.

P3. Variation with occurrences of B in the absence of A [15].
The value of the measure varies when the occurrences
of B in the absence of A increase. In other words, this
property focuses on whether the independent occurrence
of B influences the measure. Given an if A then B rule, if B
is very likely to occur regardless of A, the influence of A on B
may be questioned. To verify this, the value of the measure
varies when |¬AB| increases in the contingency values (and
the other values remain fixed). In Table 3, measures are
marked with ‘↘’ if the variation is a decrease (as in the case
of Support), ‘↗’ if it is an increase (e.g., Leverage), ‘?’ if the
variation can be either a decrease or an increase depending
on the values of B (e.g., Collective Strength), ‘→’ if the value
does not vary at all (e.g., Confidence).

P4. Reference situations: independence [15]. If the variables
are independent, then the measure exhibits a known value.
The variables are considered independent when their joint
probability is equal to the product of their respective prob-
abilities, i.e., P(AB) = P(A)P(B). The measure should have a
constant and known value in that case. In Table 3, measures
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are labeled as ‘‘const’’ (e.g., Lift) if this property holds, and
‘‘var’’ otherwise (e.g., Support).

P5. Reference situations: logical rule [15]. If the rule is always
satisfied, then the measure exhibits a known value. An if
A then B rule is always satisfied if P(A¬B) = 0. In other
words, if there are no counterexamples in the data, the
value of the measure that enjoys this property is a known
constant (let it be a number or tendency to infinite). In
Table 3, measures are labeled as ‘‘const’’ if this property
holds (as in the case of Confidence), and ‘‘var’’ otherwise
(see, e.g., Lift).

P6. Trend with P(A¬B) [15]. If the number of counterexamples
to the rule rises, the value of the measure reacts exhibiting
a decreasing trend that denotes a higher or lower sensi-
tivity. For an if A then B rule, a higher number of coun-
terexamples translates into an increase of P(A¬B). Against
that increase, the measure may show a fast (convex), lin-
ear, or slow (concave) decrease. Measures in Table 3 are
labeled either as ‘ ’ (convex, e.g., Conviction), ‘↘’ (linear,
e.g., Support), or ‘ ’ (concave, e.g., Recall) accordingly.

These properties, according to [15], can be divided into norma-
ive (i.e., always desirable: P2, P3, P4, P5) and subjective (i.e., de-
ending on the user needs: P1, P6).
We will resort to these properties to examine the quality

easures in the context of process mining.
In the following section, therefore, we extend the aforemen-

ioned measures to temporal process rules.

. Temporal-extended measurement framework

Our framework addresses the limits of Support and Confidence
easurements by building on LTLpf formal semantics and the
pectrum of measures defined in different areas of computer
cience. Furthermore, it is generic as it allows for the usage of
ny probabilistic measure (including those of Table 3) on any
emporal-logic-based rules specification. To this end, Section 4.1
ormalizes the reactive temporal specification of rules, Section 4.2
iscusses their probabilistic interpretation, and Section 4.4 de-
ines the overall framework.

.1. Reactive temporal specification

Our first building block is the concept of Reactive Constraint
RCon), originally introduced in [14], the paper which we extend
ere. A rule typically expresses that the occurrence of given
reconditions (activator) implies certain consequences (target).
he reactive nature of this kind of rule lies in the fact that the
ondition on the target is exerted only if the activator is verified.
e codify this intuition in RCons, whose semantics is based on

TLpf .

efinition 4.1 (Reactive Constraint (RCon)). Given an alphabet of
ropositional symbols Σ ∪ {tStart, tEnd, True, False}, let ϕα and ϕτ

e LTLpf formulae over Σ . A Reactive Constraint (RCon) Ψ is a pair
ϕα, ϕτ ) hereafter denoted as Ψ ≜ ϕα ϕτ .

An RCon is interpreted as follows: Each time the activator
s true, the target should be true at that point of the trace.
or example, a 3c is an RCon stating that every time a (the
ctivator, ϕα) is True, then also 3c (the target, ϕτ ) must evaluate

to True. That RCon corresponds to Response(a, c) in Declare as it
equires that if a occurs in a trace, it must be eventually followed
by c. c 3d corresponds to Precedence(d, c) in Declare because
t requires that every time c (the activator) occurs in a trace, then
t has to be preceded by d (the target). Table 1 provides a list
f standard Declare constraints expressed in the form of RCons.
7

Table 4
Evaluation (0 is False and 1 is True) and probabilistic interpretation of RCon
a 3c.
Trace t1 = ⟨ a, b, c, d, f, c, e, c, h ⟩

ϕα : a 1 0 0 0 0 0 0 0 0
ϕτ : 3c 1 1 1 1 1 1 1 1 0

P(ϕα, t) = 1/9 P(¬ϕα ∩ ϕτ , t) = 7/9 P(¬ϕα ∩ ¬ϕτ , t) = 1/9

P(ϕτ , t) = 8/9 P(ϕα ∩ ¬ϕτ , t) = 0/9 P(ϕα ∩ ϕτ , t) = 1/9

P(ϕτ |ϕα, t) = 1/1 P(ϕτ |¬ϕα, t) = 7/8

P(¬ϕτ |ϕα, t) = 0/1 P(¬ϕτ |¬ϕα, t) = 1/8

Table 5
Evaluation (0 is False and 1 is True) and probabilistic interpretation of RCon.
c 3d.
Trace t1 = ⟨ a, b, c, d, f, c, e, c, h ⟩

ϕα : c 0 0 1 0 0 1 0 1 0
ϕτ : 3d 0 0 0 1 1 1 1 1 1

P(ϕα, t) = 3/9 P(¬ϕα ∩ ϕτ , t) = 4/9 P(¬ϕα ∩ ¬ϕτ , t) = 2/9

P(ϕτ , t) = 6/9 P(ϕα ∩ ¬ϕτ , t) = 1/9 P(ϕα ∩ ϕτ , t) = 2/9

P(ϕτ |ϕα, t) = 2/3 P(ϕτ |¬ϕα, t) = 4/6

P(¬ϕτ |ϕα, t) = 1/3 P(¬ϕτ |¬ϕα, t) = 2/6

Table 6
Evaluation (0 is False and 1 is True) and probabilistic interpretation of RCon
(3b ∧ 3e) (¬c ∨ 3f).
Trace t1 = ⟨ a, b, c, d, f, c, e, c, h ⟩

ϕα : (3b ∧ 3e) 0 1 1 1 1 1 1 0 0
ϕτ : (¬c ∨ 3f) 1 1 1 1 1 0 1 0 1

P(ϕα, t) = 6/9 P(¬ϕα ∩ ϕτ , t) = 2/9 P(¬ϕα¬ϕτ , t) = 1/9

P(ϕτ , t) = 7/9 P(ϕα ∩ ¬ϕτ , t) = 1/9 P(ϕα ∩ ϕτ , t) = 5/9

P(ϕτ |ϕα, t) = 5/6 P(ϕτ |¬ϕα, t) = 2/3

P(¬ϕτ |ϕα, t) = 1/6 P(¬ϕτ |¬ϕα, t) = 1/3

An RCon that goes beyond the standard repertoire of Declare is
(3b∧3e) (¬c∨3f): Its activator is the formula ϕα = 3b∧3e,
atisfied between the occurrence of b and the occurrence of e in
a trace; its target is the formula ϕτ = ¬c∨3f, which evaluates to
True if either c is False, or c occurs and is eventually followed by
f. Because at every event of the trace (i.e., any point in time) both
he activator and target can be either True or False, the possible
valuation of an RCon can result in either of the following four
ombinations.

efinition 4.2 (RCon Evaluation). Given an RCon Ψ ≜ ϕα ϕτ

and a trace t of length n ∈ N, let i denote the ith event in the
trace (1 ⩽ i ⩽ n). For each ti ∈ t the possible evaluations of Ψ

re:

α = False, ϕτ = False if t, i ⊭ ϕα and t, i ⊭ ϕτ ;

ϕα = False, ϕτ = True if t, i ⊭ ϕα and t, i |H ϕτ ;

ϕα = True, ϕτ = False if t, i |H ϕα and t, i ⊭ ϕτ ;

ϕα = True, ϕτ = True if t, i |H ϕα and t, i |H ϕτ .

For example, the second and third rows of Tables 4–6 show
the evaluation of RCons a 3c (i.e., Response(a, c) in Table 4),
c 3d (i.e, Precedence(d, c) in Table 5) and (3b∧3e) (¬c∨3f)
(Table 6) on trace ⟨a, b, c, d, f, c, e, c, h⟩. Notice that ϕα and ϕτ are
valuated separately at every event of a trace.
The RCon evaluation can be performed efficiently based on

he automaton-based techniques defined in [14], adapting it for
ffline verification. The full discussion on this aspect can be found
n Appendix, but we briefly outline the rationale here. Intuitively,
e resort to [14, Theorem 4]: An RCon can be separated in
ure-past, pure-present and pure-future components. The respec-
ive sub-formulae contain only past temporal operators, none,
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Table 7
Contingency table of the probabilities of an RCon ϕα ϕτ in a trace.

ϕα ¬ϕα

ϕτ P(ϕα ∩ ϕτ , t) P(¬ϕα ∩ ϕτ , t) P(ϕτ , t)
¬ϕτ P(ϕα ∩ ¬ϕτ , t) P(¬ϕα ∩ ¬ϕτ , t) P(¬ϕτ , t)

P(ϕα, t) P(¬ϕα, t) 1

r only future ones, respectively. As they are LTLpf formulae, all
omponents correspond to finite state automata (FSAs). The key
oint is that, by mirroring pure-past formulae and reversing their
utomata, a single replay of the sub-trace from the beginning to
he activator event keeps track of the truth value of the pure-
ast formula till that point. As we have knowledge of the whole
race, and thus of the suffix too a fortiori, we can apply the same
rinciple to pure-future formulae too: A single replay from the
nd of the trace to the activator event keeps track of the truth
alue of the pure-future formula from that point onwards.
From this optimization, it follows that any LTLpf formula can

e evaluated at each event reading the trace only twice (as in [4,
5] though for any RCon and not just Declare constraints): Once
rom tStart to tEnd (past components) and once from tEnd to tStart
future components). This result implies that the computational
ost depends linearly on the number of events in the event log
nd in the number of rules to verify. Specifically, given an event
og L of cardinality |L|, assuming that (i) every trace t ∈ L has a
ength of up to n, and (ii) |R| rules are under analysis, the cost to
valuate all rules on L is: O(|L| × n× |R|).

.2. Probabilistic interpretation on a trace

The evaluation of RCons indicates whether a rule holds true
r false within a trace. In real life, traces often contain noise
r partially deviate from desired process specifications. In those
ccasions wherein the trace may contain also events that do not
atisfy the rule, we are interested in understanding to what degree
rule is satisfied. As we have previously defined the notion of
atisfaction for ϕα and ϕτ on single events (Definition 4.2), we
an devise a probabilistic interpretation for RCons over traces.

efinition 4.3 (Probability of an LTLpf Formula in a Trace). Given
n LTLpf formula ϕ and a trace t of length |t| = n, we define the
robability of ϕ in t2 as the proportion of the events in t that
atisfy ϕ:

(ϕ, t) =
|{i ∈ [1, n] : t, i |H ϕ}|

n
.

Definition 4.4 (Joint Probability of LTLpf Formulae in a Trace).
iven two LTLpf formulae ϕ1 and ϕ2 and a trace t of length n,
e define the probability of the intersection of ϕ1 and ϕ2 in t
joint probability) as the proportion of the events in t that satisfy
oth ϕ1 and ϕ2:

(ϕ1 ∩ ϕ2, t) =
|{i ∈ [1, n] : t, i |H ϕ1 and t, i |H ϕ2}|

n
.

The probabilities of the evaluations of activator and target of
n RCon follow from the above definitions (Table 7 shows the
esulting contingency table):

(¬ϕα ∩ ¬ϕτ , t) =
|{i ∈ [1, n] : t, i ⊭ ϕα and t, i ⊭ ϕτ }|

n
;

P(¬ϕα ∩ ϕτ , t) =
|{i ∈ [1, n] : t, i ⊭ ϕα and t, i |H ϕτ }|

n
;

2 Notice that we use the comma in P(ϕ, t) and similar following expressions
o separate the parameters, namely the formula to be evaluated (here, ϕ) and
he structure on which the formula is analyzed (here, t).
8

Table 8
Contingency table of the probabilities of RCon (3b∧3e) (¬c∨3f) in
trace ⟨a, b, c, d, f, c, e, c, h⟩ (based on the results illustrated in Table 6).

3b ∧ 3e ¬(3b ∧ 3e)
¬c ∨ 3f 5/9 2/9 7/9

¬(¬c ∨ 3f) 1/9 1/9 2/9
2/3 1/3 1

Table 9
Trace measures computation and event log statistics of a sample of measures
for RCon (3b∧3e) (¬c∨3f). The statistics are computed skipping divisions
of zero by zero (marked with ‘‘NaN’’), whenever they occur.

Event log Support Confidence Specificity Lift

P(ϕα ∩ ϕτ ) P(ϕτ |ϕα) P(¬ϕτ |¬ϕα)
P(ϕα ∩ ϕτ )
P(ϕα)P(ϕτ )

t1 = ⟨a, b, c, d, f, c, e, c, h⟩ 0.56 0.83 0.33 1.07
t2 = ⟨b, d, a, f, g, d, e, d⟩ 0.88 1.00 0.00 1.00
t3 = ⟨a, c, d, b, c, e, f, c⟩ 0.38 1.00 0.20 1.14
t4 = ⟨b, c, c, e, a⟩ 0.40 0.50 0.00 0.83
t5 = ⟨b, c, d, a⟩ 0.00 NaN 0.25 NaN

Mean 0.44 0.83 0.16 1.01
Standard deviation 0.32 0.24 0.15 0.13

Variance 0.10 0.06 0.02 0.02

P(ϕα ∩ ¬ϕτ , t) =
|{i ∈ [1, n] : t, i |H ϕα and t, i ⊭ ϕτ }|

n
;

P(ϕα ∩ ϕτ , t) =
|{i ∈ [1, n] : t, i |H ϕα and t, i |H ϕτ }|

n
.

For example, Tables 4–6 show the probabilities resulting from
the evaluation of RCons a 3c, c 3d, and (3b∧3e) (¬c∨
3f), respectively, on trace ⟨a, b, c, d, f, c, e, c, h⟩. Table 8 summa-
rizes the results of Table 6 in a contingency table.

In association rule mining, rules are in the form ‘‘if A then
B’’, given an antecedent A and a consequent B. Probabilities de-
fined as above allow for the application of measures defined for
association rule mining [11] to the context of temporal logic
specifications over finite traces. To that extent, it suffices to
map ϕα to A and ϕτ to B, thus having P(A) as P(ϕα, t), P(B) as
P(ϕτ , t), and P(AB) as P(ϕα ∩ ϕτ , t). For example, Table 9 shows
some measures computed from the probabilities associated to
the activator and the target of RCon (3b ∧ 3e) (¬c ∨ 3f).
These probabilities pertain to the events in the traces, intuitively
answering the question: ‘‘How likely is it that an event satisfies
the constraint?’’. It follows that also the measures based on them
pertain to events with respect to traces, and that their statistics
over the entire event logs will preserve the focus on the singles
events.

4.3. Probabilistic interpretation on an event log

Following the probability definition for LTLpf formulae over
traces, it is of interest to define similar probabilities over event
logs. Intuitively, if the trace probabilities assess the likelihood of
the rule correctness in events within a trace, event log probabil-
ities should question the likelihood of the rule correctness in the
traces of an event log. As previously mentioned, the descriptive
statistics of trace measures across an event log are suitable for
this purpose because they preserve the focus on the events. In
order to achieve this goal, we have to first derive the condi-
tional probability of the target given the activator in a trace,
i.e., P(ϕτ |ϕα, t). Intuitively, this is the probability for the target
to hold true when the activator holds true. Notice that this view-
point is conceptually closer to the notion of Reactive Constraint
than the joint probability of activator and target. Furthermore, the
conditional interpretation of rules is also more in line with their
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uman interpretation [56]. This makes the conditional probability
suitable means for the probabilistic analysis of a constraint in a
race as a whole.

efinition 4.5 (Conditional Probability of LTLpf Formulae in a
Trace). Given two LTLpf formulae ϕ1 and ϕ2 and a trace t of length
, we define the conditional probability of ϕ2 given ϕ1 over t as
he proportion of events satisfying ϕ2 among those that satisfy
1:

(ϕ2|ϕ1, t) =
|{i ∈ [1, n] : t, i |H ϕ1 and t, i |H ϕ2}|

|{i ∈ [1, n] : t, i |H ϕ1}|
.

From the above definition, it follows that:

P(ϕτ |ϕα, t) =
|{i ∈ [1, n] : t, i ⊨ ϕα and t, i ⊨ ϕτ }|

|{i ∈ [1, n] : t, i ⊨ ϕα}|
;

P(¬ϕτ |ϕα, t) =
|{i ∈ [1, n] : t, i ⊨ ϕα and t, i ⊭ ϕτ }|

|{i ∈ [1, n] : t, i ⊨ ϕα}|
;

P(ϕτ |¬ϕα, t) =
|{i ∈ [1, n] : t, i ⊭ ϕα and t, i ⊨ ϕτ }|

|{i ∈ [1, n] : t, i ⊭ ϕα}|
;

P(¬ϕτ |¬ϕα, t) =
|{i ∈ [1, n] : t, i ⊭ ϕα and t, i ⊭ ϕτ }|

|{i ∈ [1, n] : t, i ⊭ ϕα}|
.

Tables 4–6 show the conditional probabilities of RCon (3b ∧
e) (¬c∨3f) on trace ⟨a, b, c, d, f, c, e, c, h⟩. Notably, the condi-
ional probability is not influenced by the total amount of events
n the trace, but only by the events of interest.

To devise the probability of an RCon in an event log L (hence-
forth, event log probability), we have to detect the portion of
the event log satisfying an LTLpf formula. To this end, we split
the event log into a sub-log that has only the traces in which
the activator occurs at least once (i.e., every t ∈ L such that
P(ϕα, t) > 0), and the complementary sub-log consisting of the
traces in which the activator does not occur (i.e., every t ∈ L
such that P(ϕα, t) = 0). Given the above considerations and the
definition of conditional probability for RCons in single traces
(Definition 4.5), we devise a probabilistic interpretation for RCons
over event logs as follows.

Definition 4.6 (Conditional Probability of LTLpf Formulae in an
Event Log). Let ϕ1 and ϕ2 be two LTLpf formulae and L an event
og of cardinality |L|. We say that ϕ1 is non-null in a trace t ∈ L if
nd only if P(ϕ1, t) > 0. If P(ϕ1, t) = 0, we say that ϕ1 is null in
. The conditional probability of ϕ2 given ϕ1 in L is the portion of
he event log that consists of traces for which ϕ1 is non-null and
atisfies ϕ2, given the satisfaction of ϕ1:

(ϕ2|ϕ1, L) =

∑
t∈L:P(ϕ1,t)>0 P(ϕ2|ϕ1, t)

|L|
.

he conditional probability of ϕ2 given¬ϕ1 in L is the portion of the
vent log that consists of traces for which ϕ1 is null and satisfies
2, given the satisfaction of ¬ϕ1:

P(ϕ2|¬ϕ1, L) =

∑
t∈L:P(ϕ1,t)=0 P(ϕ2|¬ϕ1, t)

|L|
.

Table 10 shows the resulting contingency table. In the follow-
ng, we provide the proof of the correctness of our approach.

heorem 4.1 (Contingency of Event Log Conditionals). Given two
LTLpf formulae ϕ1 and ϕ2 and an event log L of cardinality |L|,
let |L|P(ϕ1)>0 be the number of traces in which ϕ1 is non-null and
|L|P(ϕ1)=0 the number of traces in which ϕ1 is null. It follows that
P(ϕ2|ϕ1, L)+ P(¬ϕ2|ϕ1, L)+ P(ϕ2|¬ϕ1, L)+ P(¬ϕ2|¬ϕ1, L) = 1.

Proof. In light of the fact that there cannot be a trace where P(ϕ1)
is both 0 and not 0 at the same time, the proof of Theorem 4.1
9

proceeds as follows.

P(ϕ2|ϕ1, L)+ P(¬ϕ2|ϕ1, L)+ P(ϕ2|¬ϕ1, L)+ P(¬ϕ2|¬ϕ1, L) = 1

(1)∑
t∈L:P(ϕ1)>0 P(ϕ2|ϕ1, t)

|L|
+

∑
t∈L:P(ϕ1)>0 P(¬ϕ2|ϕ1, t)

|L|

+

∑
t∈L:P(ϕ1)=0

P(ϕ2|¬ϕ1, t)

|L|
+

∑
t∈L:P(ϕ1)=0

P(¬ϕ2|¬ϕ1, t)

|L|
= 1

(2)∑
t∈L:P(ϕ1)>0

P(ϕ2|ϕ1, t)+
∑

t∈L:P(ϕ1)>0

P(¬ϕ2|ϕ1, t)

+

∑
t∈L:P(ϕ1)=0

P(ϕ2|¬ϕ1, t)+
∑

t∈L:P(ϕ1)=0

P(¬ϕ2|¬ϕ1, t) = |L| (3)

∑
t∈L:P(ϕ1)>0

(P(ϕ2|ϕ1, t)+ P(¬ϕ2|ϕ1, t))

+

∑
t∈L:P(ϕ1)=0

(P(ϕ2|¬ϕ1, t)+ P(¬ϕ2|¬ϕ1, t)) = |L| (4)

∑
t∈L:P(ϕ1)>0

(
P(ϕ1 ∩ ϕ2, t)

P(ϕ1, t)
+

P(ϕ1 ∩ ¬ϕ2, t)
P(ϕ1, t)

)
+

∑
t∈L:P(ϕ1)=0

(
P(¬ϕ1 ∩ ϕ2, t)

P(¬ϕ1, t)
+

P(¬ϕ1 ∩ ¬ϕ2, t)
P(¬ϕ1, t)

)
= |L| (5)

∑
t∈L:P(ϕ1)>0

(
P(ϕ1 ∩ ϕ2, t)+ P(ϕ1 ∩ ¬ϕ2, t)

P(ϕ1, t)

)
+

∑
t∈L:P(ϕ1)=0

(
P(¬ϕ1 ∩ ϕ2, t)+ P(¬ϕ1 ∩ ¬ϕ2, t)

P(¬ϕ1, t)

)
= |L| (6)

∑
t∈L:P(ϕ1)>0

(
P(ϕ1, t)
P(ϕ1, t)

)
+

∑
t∈L:P(ϕ1)=0

(
P(¬ϕ1, t)
P(¬ϕ1, t)

)
= |L| (7)

∑
t∈L:P(ϕ1)>0

1+
∑

t∈L:P(ϕ1)=0

1 = |L| (8)

|L|P(ϕ1)>0 + |L|P(ϕ1)=0 = |L| (9)

|L| = |L| ■ (10)

Probabilities defined as above permit the application of the
association rule mining measures presented in Section 3.2 over an
entire event log. In the light of the contingency table in Table 10,
it suffices to map

P(A) to P(ϕα, L) =

∑
t∈L:P(ϕα ,t)>0 P(ϕα, t)

|L|
,

(B) to P(ϕτ , L)

=

∑
t∈L:P(ϕα ,t)>0 P(ϕτ |ϕα, t)+

∑
t∈L:P(ϕα ,t)=0 P(ϕτ |¬ϕα, t)

|L|
, and

(AB) to P(ϕτ |ϕα, L) =

∑
t∈L:P(ϕα ,t)>0 P(ϕτ |ϕα, t)

|L|
.

We remark that the non-trivial mapping from P(AB) to P(ϕτ |ϕα, L)
is intuitively rooted into the inherent nature of ‘‘if A then B’’
ules such as the RCons, as evidenced in [56], and its sound-
ess is evidenced by Theorem 4.1. For example, Table 11 shows
few measures computed from the probabilities of the RCon

3b ∧ 3e) (¬c ∨ 3f) over a log composed of five traces. We
remark that this result is distinct from the mere aggregation
of trace measures. For example, comparing the average of the
Support values in Table 9 (0.44) and the Support value presented
in Table 11 (0.67), we observe that the former is the average
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Table 10
Contingency table of conditional event log probabilities.

P(ϕα, t) > 0 P(ϕα, t) = 0

ϕτ

∑
t∈L

P(ϕτ |ϕα, t)

|L|

∑
t∈L

P(ϕτ |¬ϕα, t)

|L|

∑
t∈L:P(ϕα ,t)>0

P(ϕτ |ϕα, t)+
∑

t∈L:P(ϕα ,t)=0
P(ϕτ |¬ϕα, t)

|L|

¬ϕτ

∑
t∈L

P(¬ϕτ |ϕα, t)

|L|

∑
t∈L

P(¬ϕτ |¬ϕα, t)

|L|

∑
t∈L:P(ϕα ,t)>0

P(¬ϕτ |ϕα, t)+
∑

t∈L:P(ϕα ,t)=0
P(¬ϕτ |¬ϕα, t)

|L|∑
t∈L

P(ϕα, t)

|L|

∑
t∈L

P(¬ϕα, t)

|L|
1

Table 11
Event log probabilities and measures of a sample of measures for the RCon (3b ∧ 3e) (¬c ∨ 3f).

Event log P(ϕα, t) P(ϕτ |ϕα, t) P(¬ϕτ |ϕα, t) P(ϕτ |¬ϕα, t) P(¬ϕτ |¬ϕα, t)
t1 = ⟨a, b, c, d, f, c, e, c, h⟩ >0 0.83 0.17 0.67 0.33
t2 = ⟨b, d, a, f, g, d, e, d⟩ >0 1.00 0.00 1.00 0.00
t3 = ⟨a, c, d, b, c, e, f, c⟩ >0 1.00 0.00 0.80 0.20
t4 = ⟨b, c, c, e, a⟩ >0 0.50 0.50 1.00 0.00
t5 = ⟨b, c, d, e⟩ =0 NaN NaN 0.75 0.25

P(ϕα, L) = 0.80 P(ϕτ |ϕα, L) = 0.67 P(ϕτ |¬ϕα, L) = 0.13
P(ϕτ , L) = 0.82 P(¬ϕτ |ϕα, L) = 0.15 P(¬ϕτ |¬ϕα, L) = 0.05

Support: 0.67 Confidence: 0.83 Specificity: 0.25 Lift: 1.02
proportion of events in a trace satisfying both the target and the
activator, while the latter represents the proportion of traces of
the event log satisfying the RCon.

4.4. Measurement system

Given an event log L, a set of RCons R, and a set of probabilistic
measures M as input, our framework returns the measurement of
every measure inM for each constraint in R both over every single
trace t ∈ L and over the entire event log L. More specifically, the
output can be reported at three different levels of detail:

Event level: distinct evaluation of ϕα and ϕτ of each constraint
in R on every event of every trace in L;

Trace level: measurement of each measure in M for each con-
straint in R for every trace in L;
Aggregated view: descriptive statistics over the event log
of all the trace-level measures.

Event log level: measurement of every measure in M for every
constraint in R for the entire event log L.

For example, Table 9 shows some trace level measures together
with their descriptive statistics and Table 11 shows the corre-
sponding event log level measures for the RCon (3b∧3e) (¬c∨
3f). Since being able to perceive the overall status of a constraint
is as important as the possibility to analyze its details in single
traces, we report the entire statistical distribution of a measure
across the event log to provide a complete information spectrum.
Fig. 1 depicts the pipeline of the framework from the input to
the output. In the first stage, an RCon is evaluated on each trace
of the event log. Then, the evaluation result is used to compute
the probabilities of the rule. On top of them, the measures of the
rule in each trace and in the entire event log are computed. Also,
descriptive statistics over the event log are reported for each trace
measure.

We remark that the design of the RCons is crucial for the
evaluation and the computation of the measures especially in
terms of definition of their activator. Let us take as an ex-
ample the RespondedExistence(a, b) constraint from the reper-
toire of Declare (see Table 1). The classical LTLf formula un-
derlying RespondedExistence(a, b) for whole-trace evaluations is
10
¬3a ∨ 3b [28]. However, the formulation of the rule as an RCon
can lead to different interpretations:

• a (3b∨3b): If a occurs, b is expected to occur somewhere
in the trace;
• (3a ∨ 3a) (3b ∨ 3b): For every event in the trace such

that a occurs either in the past or in the future, also b should
occur somewhere in the trace;
• True ¬(3a∨3a)∨(3b∨3b): For every event in the trace,

if a occurs in the trace, also b is expected to occur;
• tStart (¬3a∨3b): At the beginning of the trace, if a occurs

in the trace, also b should occur.

All the formulations above are legitimate as they entail that the
occurrence of a in the trace demands the occurrence of b. How-
ever, the difference in the way the activator is represented turns
out to be crucial. The activator, indeed, encodes when the rule is
of interest. For example: Are we interested in each occurrence
of task a or only in its eventual occurrence in the trace? Do
we want the rule to be satisfied in every point of the trace or
just at the beginning of the trace? These choices have a clear
impact on the measures. Table 12 presents the evaluation of a
trace with the different formulations seen above and their trace
measurements for Confidence and Support. Confidence is equal
to 1 as each time the activator holds true, also the target holds
true. Support (i.e., the frequency of ϕα ∩ ϕτ ) varies considerably
instead. Notice that this phenomenon comes with neither a good
nor with a bad connotation, but stresses the idea that a full
control over the formula implies a mindful decision about its
design and subsequently on picking the right measures for it. In
Table 1, we devised the RCon formulae based on the activators
of Declare templates described in [3,20] — hence, e.g., the choice
for RespondedExistence of the first option presented in Table 12.
While Declare templates are reasonably simple and well-known
standard cases, encoding the right activator is crucial for the
design of custom RCons and their measures. Lastly, we would
like to remark that all the variants in Table 12 take exactly the
same amount of computational time to be checked as any formula
requires a trace to be read only twice, as described in Section 4.1.

In summary, we have described in this section a novel mea-
surement framework for reactive temporal specifications based
on LTLp , supporting probabilistic interestingness measures at
f
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Fig. 1. Measurement framework architecture.
able 12
easurements of a constraint expressed with different formulations on trace

d, a, b, c, a⟩.
RCon formulation Evaluation Support

P(ϕαϕτ , t)
Confidence
P(ϕτ |ϕα, t)

a (3b ∨ 3b) ϕα : ⟨0, 1, 0, 0, 1⟩
ϕτ : ⟨1, 1, 1, 1, 1⟩

2/5 = 0.4 2/2 = 1

(3a ∨ 3a) (3b ∨ 3b) ϕα : ⟨1, 1, 1, 1, 1⟩
ϕτ : ⟨1, 1, 1, 1, 1⟩

5/5 = 1 5/5 = 1

True ¬(3a ∨ 3a) ∨
(3b ∨ 3b)

ϕα : ⟨1, 1, 1, 1, 1⟩
ϕτ : ⟨1, 1, 1, 1, 1⟩

5/5 = 1 5/5 = 1

tStart (¬3a ∨ 3b) ϕα : ⟨1, 0, 0, 0, 0⟩
ϕτ : ⟨1, 1, 1, 0, 0⟩

1/5 = 0.2 1/1 = 1

both trace and event log levels. The framework is designed to
be suitable for any custom formula in the form of a Reactive
Constraint, and any measure that is based on the probability of
the activator and target of the constraints. Therefore, it supports
template sets like Declare and all the interestingness measures
rom association rule mining seen in Table 3, though not being
imited to them. Next, we evaluate our approach through tests
onducted with our implemented prototype.

. Implementation and performance analysis

We have implemented our measurement framework as a
roof-of-concept software prototype built upon the existing
eclarative process specification processor tool Janus [14,16].
he Java source-code can be found at github.com/Oneiroe/Janus.
he core component of the software is the RCons verification
ngine, upon which are build independently a declarative process
iscovery module and the present declarative rules measure-
ent module. All the process specifications used in the following
xperiments are discovered with this discovery module imple-
enting the technique presented in [14]. In the remainder of

his section, we first report on the results of a time and space
nalysis with simulated data. Then, we investigate the com-
utational performance on real-world event log datasets. The
esults demonstrate the practical feasibility and applicability of
ur approach.

.1. Time analysis

To assess the efficiency of our implemented technique, we
easure its time performance against an increase in the data size

i.e., the cardinality of the event log and the length of its traces)
nd the model size (i.e., the number of rules) with synthetic event
ogs. We repeated every experiment 10 times to smooth random
11
Table 13
The set of Declare rules used in the experiments.
Init(a) Response(e, f) ChainResponse(o, p)
End(b) Precedence(g, h) ChainPrecedence(q, r)
AtMostOne(c) AlternatePrecedence(i, l) RespondedExistence(s, t)
Participation(d) AlternateResponse(m, n) CoExistence(u, v)
Succession(w, x) AlternateSuccession(y, z) ChainSuccession(j, k)
NotCoExistence(0, 1)

factors. The reported results average over the ones of the single
repetitions. The machine used for the experiments was equipped
with an Intel Core i5-7300U CPU at 2.60GHz, quad-core, 16Gb of
RAM and an Ubuntu 18.04 LTS operating system.

To test the response of our implemented framework against
the input data size, we set up a controlled experiment in which
we first generate logs of varying sizes that are compliant with a
fixed set of rules, resorting to the simulation engine of MINER-
ful [57]. Thereupon, we compute the measures listed in Table 3
against all the rules of a larger test specification (not fully compli-
ant with the event log). For every run, we recorded the wall-clock
time of our prototype.

The starting set of rules stems from the Declare repertoire
of templates [5] and is provided in Table 13. Notice that the set
contains all the rule templates seen in Table 1 and is designed in
a way that every constraint insists on different tasks.

The test model consists of 649 constraints extracted by the
discovery algorithm of Janus (setting the Support and Confidence
threshold parameters to 0.05 and 0.8) from a synthetic event log
of 834963 events, 500 traces and tasks in {a, . . . , z, 0, 1} that is
compliant with the initial model.3 Given the test specification
obtained as described above, we performed two tests of 65 it-
erations (1) increasing the length of the traces (with a step of
100 events per iteration, keeping the number of traces per event
log equal to 500), and (2) increasing the number of traces in the
event log (with a step of 50 new traces per iteration, keeping
the trace lengths between 900 and 1000 events). Fig. 2 illus-
trates the results of both experiments. We observe that the factor
actually influencing the wall-clock time is the total amount of
events rather than the trace length: indeed, Fig. 2 shows that the
recorded timings of both experiments tend to lie on the same line.
This experimental result confirms the linear relation between
the total number of events in the log and the computational
performance illustrated in Section 4.1.

Next, we investigate the response of the framework to an
increase in the model size. To do so, we first generate an event log
containing 1000 traces with a trace length between 100 and 500

3 Available at https://oneiroe.github.io/DeclarativeMeasurements-static.

https://github.com/Oneiroe/Janus
https://oneiroe.github.io/DeclarativeMeasurements-static
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Fig. 2. The computation time is linearly dependent on the total number of
events in the event log.

Fig. 3. The computation time is linearly dependent on the total number of rules
to check.

events from the simulation of the rules in Table 13. Thereupon,
we use the discovery algorithm of Janus to automatically retrieve
different test models with varying levels of compliance. To that
extent, we make the Confidence threshold range from 1.0 (full
model compliance), down to 0.0 with a step of 0.05. The rationale
is, the lower the Confidence threshold, the higher the number of
constraints in the test model. Then, we calculate all the measures
in Table 3 for every constraint of each test model. The time
taken for the measurements are shown in Fig. 3. Notice that the
computation time is linearly dependent on the number of rules
to check, thus in line with the theoretical computational cost
exposed in Section 4.1.

5.2. Space analysis

The space consumption of our technique depends on the data
tructures required to store the multi-level results. More specifi-
ally, four multidimensional matrices are used, containing respec-
ively (1) the evaluation at the event level, (2) the measures at the
race level, (3) their descriptive statistics over the log, and finally
4) the measures at the event log level.

Considering |L| the number of traces in the log, |E| the total
number of events in a log, |R| the number of constraints, |M| the
number of measures, the sizes of the matrices are respectively the
following:
12
(1) Events evaluation: |E| × |R|, wherein each cell contains
two boolean values (i.e., the evaluation of the activator and
target of the constraint);

(2) Trace measures: |L| × |R| × |M|, having a real number in
every cell;

(3) Trace measures statistics: |R| × |M|, containing seven real
numbers per cell (for the mean, geometric mean, variance,
population variance, standard deviation, maximum value,
and minimum value, respectively);

(4) Event log measures: |R| × |M|, with a real number each.

The events matrix is optimized as a bit matrix, where two bits
are sufficient to store the boolean results of the evaluation of
both the activator and target for one event. We implemented our
framework in Java, so we employ 1-byte Byte objects and 4-byte
Float numbers (6 decimal digits are sufficiently accurate for our
purpose). Taking these indicators into account, we can estimate
the space consumption. For example, assuming that |L| = 1000,
he maximum number of events in a trace n is 50, |R| = 100,
M| = 30, the expectation for the space demands are distributed
s follows:

(1) Events evaluation: 1000× 20× 260× 1 = 5200000 bit =
5.2Mb;

(2) Trace measures: 1000 × 260 × 37 × 4 = 38480000 bit =
38.48Mb;

(3) Trace measures statistics: 260×37×7×4 = 269360 bit =
269.36 Kb;

(4) Event log measures: 260× 37× 4 = 38480 bit = 38.48 Kb.

Therefore, the most memory-demanding data structures are
hose that pertain to the events evaluation and the trace mea-
urements matrices. The former is bigger than the latter only if
he average number of events per trace is greater than 4 times the
umber of measures used, i.e., |E|

|L| > 4× |M|. In our experiments,
even using all the 37 measures of Table 3, this has not occurred.

As with the experiments for the evaluation of time, we analyze
empirically the space consumption through simulations, control-
ling the number of events n per trace, the number of traces |L|,
nd the number of constraints under analysis |M|. To measure
he memory consumed by the data structures, we perform a Bit
erialization of the matrix objects listed above. This allows us to
ave a precise measure of the space consumed by every object,
hough it unavoidably requires that the available memory is twice
s much as the strictly necessary amount.
Fig. 4 illustrates the results of our experiments. As it can be

een, the resulting linear trends are in line with the expectations,
odulo the constant factors introduced by the Java Virtual Ma-
hine objects. It can be noticed that the number of constraints
o check, being a common factor among all the objects, increases
he overall required memory quicker than the other parameters.
e remark that depending on the desired outcome, not all the
easures nor all the matrices are necessary. For example, if the

og measures are desired, the trace measures and their statistics
an be ignored and vice-versa. The events evaluation is the only
andatory object upon which all other computations are based.
At present, our implementation works in-memory, thus it is

ssumed that all the objects fit in main memory (which proved
o be sufficient for all the real life log under analysis). However,
e would remark that every measure calculation (both at log and
race levels) is independent from the other one, thus it is possible
o either (i) compute one measure or constraint at the time in
ipeline, in order to reduce the memory load, or (ii) to distribute
he workload, by making each system compute independently
ne measure per constraint. Both are interesting directions for the
uture upgrades of our implementation.
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5.3. Application on real-world event logs

To test the performance also in real settings, we compute the
rule measures on 13 event logs, whose characteristics are exposed
in Table 14. Twelve of those event logs are openly available4
and belong to the Business Process Intelligence Challenge (BPIC)
collection, a Road-Traffic Fines Management Process (RTFMP) and
the aforementioned Sepsis event log. In addition, we analyze the
performance of our prototype on an event log stemming from a
partner of a smart-city project in which the authors are involved
(labeled as ‘‘Smart city’’ in Table 14). We included the Smart city
event log due to its considerable size: as it can be noticed from
the table, it is the one bearing the largest amount of events in this
experiment.

For each log, we ran the discovery algorithm of Janus [14] in
order to extract a test model to check the event log against. We
tuned the parameters of the discovery algorithm to obtain a set
of rules to which the event log complies for the most part (Confi-
dence threshold of 0.8), even though the constrained tasks are
possibly infrequently co-occurring (Support threshold of 0.05).
Table 14 illustrates the results. For each event log we report, along
with the number of traces, the occurring tasks, the events, the
number of constraints in the test model, the total time from the
launch to the termination of the software (‘‘Time’’), the time to
evaluate the rules on events (‘‘Checks’’), the time to compute the
measures both at the trace and log levels (‘‘Measures’’), and the
total space consumed by the data structures of our tool (‘‘Space’’)
against their expected value (‘‘Expectation’’). We remark that the
space consumption is consistent with our theoretical expectation
and that the wall-clock time remains within acceptable ranges
as the slowest run takes around 4.5 min to check about 600
constraints in a considerably big event log such as BPIC17 [58]
handling around 2.5Gb of data.

5.4. Analysis of custom rules

In order to demonstrate that our framework can handle any
Reactive Constraints, beyond the standard Declare repertoire,
we applied our approach to compute the discussed measures
of a custom rule on the Sepsis event log. We name the cus-
tom rule BidirectionalTimeConsequent(a, b, c) as its RCon for-
mulation is a 3b ∧ 3c. It states that if a occurs, it is ex-
ected that either c occurred before it or b will occurs after-
ards. Table 15 reports the measures at log and trace level for
idirectionalTimeConsequent(Admission NC, CRP, IV Liquid) calcu-

lated on the Sepsis real-life log [34]. As it can be noticed, Confi-
dence and Recall are relatively high (0.82 and 0.79, respectively)

4 https://data.4tu.nl/.
13
and the values of Coverage and Prevalence (0.76 and 0.79, re-
spectively) suggest a frequent occurrence of activator and target.
The value of Lift is greater than 1, which denotes dependency
between activator and target (especially at a trace level). The
detailed results of the evaluation on each trace can be found at
oneiroe.github.io/DeclarativeMeasurements-static.

The capability of our framework to handle non-standard rules
opens up new possibilities for the claimed extendibility of De-
clare as a declarative specification language, claimed from its
very inception to be open to customization through the definition
of new rules according to the process analyst needs [65].

6. Evaluation

In this section, we report on experiments that show interest-
ing implications of having a vast availability of measures with
customization options. Specifically, Section 6.1 investigates over
which measures can be of interest in the scope of declarative
specification discovery, and Section 6.2 shows how the properties
of measures can be exploited to characterize the alterations of
constraints when the underlying process changes.

All the experimental data (code, input data, results) can be
found at https://oneiroe.github.io/DeclarativeMeasurements-stat
ic. In the following experiments, we resort to the following tools:
(i) The Janus discovery algorithm [14] for the discovery of declar-
ative models from events logs; (ii) The simulation engine of MIN-
ERful [57] for the generation of event logs complying with given
declarative specifications; (iii) The error injection engine of MIN-
ERful [66] for the controlled insertion of noise into event logs; (iv)
he declarative model simplification technique of MINERful [33]
or the removal of redundancies from declarative specifications.

.1. Ranking experiment

The objectives of this experiment are the following: (1) Em-
irically showing that relying on more measures than the sole
upport and Confidence measures is effective to characterize
rocess rules in an event log; (2) Highlighting insightful measures
n a declarative process mining context.

To achieve both objectives we rank the measures according to
ow many correct and interesting rules they are able to recog-
ize. We take inspiration from the correct rules at N experiment
ntroduced by the seminal work of Le and Lo [6]. Given an event
og L, a ground truth set of rules RG satisfied in L, a set of
ules RD ⊃ RG containing also loosely satisfied rules in L, the
et of interestingness measures M of Table 3, and a predefined
hreshold N , we compute the value of each measure m ∈ M for
ll the rules r ∈ RD on L. Then, for every measure m ∈ M we
reate sets of rules that are associated to a common value and

https://data.4tu.nl/
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able 14
erformance records on real-life datasets.
Event log Traces Tasks Events Rules Time [s] Checks [ms] Measures [ms] Space [Mb] Expectation [Mb]
BPIC12 [59] 13087 36 262200 519 106.7 19237.1 83160.6 1222.76 1141.93
BPIC13_cp [60] 1487 7 6660 20 1.2 221.2 338.3 5.10 4.56
BPIC13_i [60] 7554 13 65533 14 3.6 584.9 1064.3 18.09 16.59
BPIC14_f [61] 41353 9 369485 51 29 3977.1 21277.4 357.10 331.04
BPIC15_1f [62] 902 70 21656 3856 42.2 13686 25974.4 670.45 602.83
BPIC15_2f [62] 681 82 24678 5889 57.8 19790.6 35029.5 832.38 745.84
BPIC15_3f [62] 1369 62 43786 4098 81.2 26468 51764.6 1105.65 1014.59
BPIC15_4f [62] 860 65 29403 4690 60.4 18997.8 38492.4 818.55 740.39
BPIC15_5f [62] 975 74 30030 5164 69.7 22947.1 43684.2 999.51 906.35
BPIC17_f [58] 21861 41 714198 611 275.9 58909.8 207182.2 2561.93 2413.94
RTFMP [63] 150370 11 561470 49 80.1 7887.5 65214 1210.04 1118.05
Sepsis [34] 1050 16 15214 260 3.8 765.8 1842.6 49.80 44.67
Smart city [64] 4347 20 692333 292 61.5 23261.8 32301.8 398.74 390.37
Table 15
Measures resulting from the evaluation of constraint BidirectionalTimeConsequent(Admission NC, CRP, IV Liquid) on the Sepsis event log [34].
Measure Log Trace
Support 0.62 0.06
Confidence 0.82 0.82
Recall 0.79 0.09
Lovinger −0.16 0.05
Specificity 0.30 0.36
Accuracy 0.70 0.39
Lift 1.04 1.24
Leverage 0.22 0.76
Compliance 0.86 0.98
Odds Ratio 1.95 Infinity
Gini Index 0.01 0.03
Certainty factor 0.14 0.67
Coverage 0.76 0.07

Measure Log Trace
Prevalence 0.79 0.66
Added Value 0.03 0.18
Relative Risk 1.17 1.36
Jaccard 0.67 0.09
Ylue Q 0.32 0.63
Ylue Y 0.17 0.63
Klosgen 0.02 0.07
Conviction 1.16 Infinity
Interestingness
Weighting Dependency

0.03 0.01

Collective Strength 6.47 Infinity
Laplace Correction 0.82 0.60
J Measure 0.00 0.01

Measure Log Trace
One-way Support 0.04 0.51
Two-way Support 0.03 0.05
Two-Way Support
Variation

0.01 0.02

Linear Correlation Coefficient 0.13 0.13
Piatetsky–Shapiro 0.02 0.01
Cosine 0.80 0.30
Information Gain 0.04 0.30
Sebag–Schoenauer 4.56 Infinity
Least Contradiction 0.62 0.00
Odd Multiplier 1.20 Infinity
Example and
Counterexample Rate

0.78 0.81

Zhang 0.17 0.63
s
n
t
i

sort those sets accordingly. This leads to a separate sorting of the
rules for every measure. If, for instance, rules r1 and r2 have a
Confidence of 1.0, rule r3 has a Confidence of 0.9, and rules r4,
r5 and r6 have a Confidence of 0.8, the top-N sets are: {r1, r2}
n the top-1, {r1, r2, r3} in the top-2, and r1, r2, r3, r4, r5, r6 in the
op-3 for Confidence. Intuitively, a good measure should assign
igh scores to correct rules. Therefore, we finally count howmany
f the rules in RG are within the top-N sets. We repeated the
xperiment 10 times and considered the average of the results
o avoid fluctuations caused by the random factors of simulation.
e performed the experiment with N set to 1, 5, 10, 25, 50,
00, 200, 500, 1000, and 1500, i.e., ranging from considering only
he best-scoring rules to considering all the rules in RD. The final
anking of a measure is computed as the average of its ranking for
ach N . Table 16(a) shows the final rankings for this experiment.
ogether with the ranking, for each measure we report also the
umber of correct rules (‘‘Correct’’ column) and the average ratio
f correct rules over the total number (‘‘Ratio’’ column) in the
op-N sets, averaged over the 10 repetitions of the experiment.

We run our experiments with three different event logs: (i)
simulation of a synthetic process specification (Section 6.1.1);

ii) a simulation of a synthetic process specification with random
hanges in the event log so as to mimic partial non-compliance
Section 6.1.2); (iii) a real-life event log (Section 6.1.3). At the
nd of this section, we draw some conclusions from the obtained
esults.

.1.1. Process simulation
More specifically, we simulate the specification described in

able 13. Notice that the rules are designed to not interfere
ith one another and each of them constrains different tasks.
he simulation produces an event log that is fully compliant
ith the rules in Table 13. From the simulated event log, we
iscover a new process specification with loose bounds (Support
nd Confidence thresholds set to 0.05 and 0.5, respectively) in
rder to discover also infrequent and seldom violated rules. We
14
implify the resulting set of rules by removing those that do
ot match yet strictly subsume or are entailed by the ground-
ruth rules, in order to avoid misleading results — for example,
f ChainResponse(o, p) and Response(o, p) both belong to the
returned set of rules, the former is retained and the latter is
removed because ChainResponse(o, p) is part of the ground-truth
specification (see Table 13) and is subsumed by Response(o, p).
The full detail of the technique that deals with the removal of
redundant rules is out of scope for this paper. The interested
reader can find a detailed description of the problem and the
approach in [33]. The simplified discovered model consists of
1310 rules on average. Thereupon, we apply our measurement
framework to compute the measures in Table 3 at the event
log level for all the discovered rules. Finally, we sort the rules
according to each measure, and rank the measures according to
how many of the original rules are among in top N sets.

Notice that Support ranks only sixteenth. Confidence, by con-
trast, is at the top of the ranking. It should be observed, however,
that the experiment considers by design never violated rules
(i.e., those with maximal Confidence), hence the top position of
this measure. Nevertheless, there are two measures that match
Confidence, namely (i) Example and Counterexample Rate and (ii)
the Sebag–Schoenauer measure. This is in accordance with P5,
as the absence of counterexamples for the rules makes measures
with known maximal values highly rank the original, correct
rules. The ‘‘Ratio’’ column reported in Table 16(a) helps to distin-
guish the accuracy of the results. For example, Odd Multiplier and
Odd Ratio have the same rank (i.e., the same amount of correct
rules identified), although the Odd Ratio returns 3 times more
rules than the Odd Multiplier within the top-N sets.

6.1.2. Process simulation with noise
The previous experiment tests a perfectly compliant setup

where the reference rules are never violated. For this reason, we
conduct a modified version of the experiment, this time injecting
noise in the event log in order to check if the ranking is preserved
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able 16
anking of measures according to the simulation experiment with a fully compliant simulated event log (left), with an altered event log (center), and with a real-life
vent log (right).
(a) Simulation

Rank Measure Correct Ratio
1 Confidence 11.00 24.79%
1 Example and

Counterexample
Rate

11.00 24.79%

1 Sebag–Schoenauer 11.00 24.81%
4 Laplace Correction 8.65 17.70%
5 Accuracy 6.62 10.69%
6 Least

Contradiction
6.35 10.55%

7 Cosine 6.24 10.51%
8 Jaccard 6.23 10.51%
8 Prevalence 6.15 10.17%

10 Conviction 7.00 24.90%
10 Odd Multiplier 7.00 22.24%
10 Odds Ratio 7.00 7.57%
10 Ylue Q 7.00 7.57%
10 Ylue Y 7.00 7.57%
15 Support 5.18 6.15%
16 Lift 4.94 9.55%
17 Certainty factor 4.48 3.66%
18 One-way Support 4.39 3.24%
18 Zhang 4.35 4.15%
20 Two-way Support 4.26 1.79%
21 Interestingness

Weighting
Dependency

4.27 1.79%

22 Added Value 4.25 1.95%
22 Klosgen 4.24 2.25%
24 Piatetsky–Shapiro 4.19 1.65%
25 Recall 4.64 3.69%
26 Information Gain 4.33 3.91%
27 Linear Correlation

Coefficient
3.92 2.44%

28 Leverage 3.40 1.20%
29 Coverage 3.24 0.81%
30 Specificity 2.68 0.38%
31 Gini Index 3.01 0.84%
31 Lovinger 2.23 0.32%
33 Relative Risk 2.48 0.33%
34 Collective Strength 2.02 0.24%
35 J Measure 0.00 0.00%
35 Two-Way Support

Variation
0.00 0.00%

(b) Simulation with noise
Rank Measure Correct Ratio

1 Confidence 5.58 6.21%
1 Example and

Counterexample
Rate

5.58 6.21%

3 Laplace Correction 5.53 6.72%
4 Odd Multiplier 5.42 11.16%
5 Conviction 5.43 11.20%
6 Lift 4.58 11.38%
7 Prevalence 4.42 4.31%
8 Accuracy 4.61 4.06%
9 Least

Contradiction
4.31 3.98%

10 Recall 4.20 0.51%
11 Jaccard 4.22 3.97%
12 Cosine 4.18 3.97%
13 One-way Support 4.09 3.12%
14 Certainty factor 4.50 2.95%
15 Added Value 4.01 2.21%
16 Information Gain 4.05 3.40%
17 Support 3.85 3.88%
18 Zhang 4.44 2.77%
19 Two-way Support 4.05 1.99%
20 Klosgen 4.02 2.02%
21 Interestingness

Weighting
Dependency

4.04 1.80%

22 Piatetsky–Shapiro 3.94 1.73%
23 Sebag–Schoenauer 3.30 3.19%
24 Coverage 3.28 0.88%
25 Ylue Q 2.99 0.46%
25 Ylue Y 2.99 0.46%
27 Leverage 3.28 0.97%
28 Two-Way Support

Variation
3.96 2.70%

29 Lovinger 3.87 0.93%
30 Linear Correlation

Coefficient
3.58 1.38%

31 Gini Index 3.00 0.83%
32 J Measure 2.77 0.78%
33 Specificity 2.14 0.28%
34 Odds Ratio 1.94 0.24%
35 Collective Strength 1.98 0.23%
36 Relative Risk 2.06 0.25%

(c) Real-world based
Rank Measure Correct Ratio

1 Recall 77.67 14.64%
2 Confidence 76.67 51.00%
2 Example and

Counterexample
Rate

76.67 51.00%

4 Sebag–Schoenauer 74.78 50.39%
5 Least

Contradiction
70.56 56.43%

6 Cosine 70.44 56.40%
6 Jaccard 70.44 56.40%
8 Odds Ratio 72.33 19.88%
8 Ylue Q 72.33 19.88%
8 Ylue Y 72.33 19.88%

11 Accuracy 70.11 56.03%
12 Laplace Correction 42.89 31.07%
12 Relative Risk 71.33 20.46%
12 Specificity 71.33 20.46%
15 Conviction 65.33 54.59%
16 Odd Multiplier 65.00 54.50%
17 Certainty factor 52.56 36.07%
18 Linear Correlation

Coefficient
41.00 37.66%

19 Gini Index 34.78 39.72%
19 One-way Support 30.44 27.55%
21 Interestingness

Weighting
Dependency

31.67 18.93%

22 Information Gain 29.78 25.97%
22 Piatetsky–Shapiro 30.78 19.64%
24 Zhang 38.33 27.05%
25 Added Value 29.67 17.07%
25 Leverage 29.78 19.62%
27 Prevalence 31.56 26.90%
28 Two-way Support 30.22 16.00%
29 Lift 29.44 25.21%
30 Klosgen 29.56 14.75%
31 Support 28.22 19.04%
32 Coverage 19.89 4.68%
33 Lovinger 27.00 7.44%
34 Collective Strength 20.78 5.81%
35 J Measure 7.22 4.10%
36 Two-Way Support

Variation
2.11 1.48%
in non-optimal situations. Specifically, we randomly delete or
duplicate 5% of the occurrences of every task. The results can be
found in Table 16(b). It can be seen that also in the presence of
partial non-compliance, the measures of Confidence and Example
and Counterexample Rate continue to be on top of the ranking,
while Sebag–Schoenauer measure drops in the second half of the
list, together with Ylue Q, Ylue Y and Odds Ratio. This sudden
change due to noise is motivated by the fact that these measures
are convex, as we discussed in regard with P6, so they rapidly
ecrease in presence of counterexamples. Support persists in the
iddle of the ranking, with 17 measures scoring better than it.
ift and Information Gain perform by far better in presence of
oise. Understanding how measures react to changes in the data
noise in this case), is key for process drift analysis [67], where the
volution of the process is the main objective. We study more in
etails the influence of noise on the measurements in Section 6.2.

.1.3. Real-life event log
We replicate our ranking experiment based on a real-life event

og, specifically the Sepsis data-set [34]. In [35], Mannhardt and
linde illustrate a procedural model discovered with the help of
omain experts representing the sepsis treatment process at a
ospital. We manually translated the model into Declare rules
15
that we use as a ground-truth specification to replicate the rank-
ing experiment. The model consists of 100 rules, listed in Ta-
ble 17. Because it is a real life event log, we do not inject any
noise. Table 16(c) illustrates the results. It can be seen that the
measures of Confidence and Example and Counterexample Rate
remain at the top of the ranking. Also, while Recall conquers the
first position for the amount of correct rules reported, it also
returns a high number of other incorrect rules as signaled by its
low average ratio score. In this case, Support drops at the bottom
of the ranking.

These experiments suggest possible candidate measures to
be used for declarative process discovery. We tested different
scenarios, thereby showing how the measures’ scores vary in each
of them and how the evaluation of rules can benefit from the
perspectives of multiple measures that were not previously avail-
able for temporal specifications. However, we remark that some
measures should be handled in a specific manner. For example,
Coverage is a descriptive measure reporting on the portion of the
event log in which the rule activator occurs: this characteristic
determines its low ranking in all the previous experiments. A low
score in these experiments does not imply that a measure is of
scarce use in general, though. Indeed, we can only highlight the
average top ranking measures of these experiments as excellent
options, as we do in the next section while depicting the current
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Table 17
Declare model of SEPSIS data-set based on [35].
Init(ER Registration) AtMostOne(ER Registration) AtMostOne(ER Sepsis Triage)
AtMostOne(ER Triage) Succession(ER Registration, ER Triage) Succession(ER Triage, ER Sepsis Triage)
Precedence(ER Registration, CRP) Precedence(ER Registration, Leucocytes) Precedence(ER Registration, LacticAcid)
AtMostOne(IV Liquid) AtMostOne(IV Antibiotics) Precedence(ER Sepsis Triage, IV Liquid)
Precedence(ER Sepsis Triage, IV Antibiotics) CoExistence(IV Liquid, IV Antibiotics) Precedence(ER Sepsis Triage, Admission NC)
Precedence(ER Sepsis Triage, Admission IC) NotSuccession(Admission IC, IV Antibiotics) NotSuccession(Admission IC, IV Liquid)
NotSuccession(Admission NC, IV Antibiotics) NotSuccession(Admission NC, IV Liquid) Precedence(ER Sepsis Triage, Return ER)
AtMostOne(Return ER) NotSuccession(Return ER, Admission IC) NotSuccession(Return ER, Admission NC)
NotSuccession(Return ER, CRP) NotSuccession(Return ER, ER Sepsis Triage) NotSuccession(Return ER, IV Antibiotics)
NotSuccession(Return ER, IV Liquid) NotSuccession(Return ER, LacticAcid) NotSuccession(Return ER, Leucocytes)
NotSuccession(Return ER, Release A) NotSuccession(Return ER, Release B) NotSuccession(Return ER, Release C)
NotSuccession(Return ER, Release D) NotSuccession(Return ER, Release E) AtMostOne(Release A)
AtMostOne(Release B) AtMostOne(Release C) AtMostOne(Release D)
AtMostOne(Release E) NotCoExistence(Release A, Release B) NotCoExistence(Release A, Release C)
NotCoExistence(Release A, Release D) NotCoExistence(Release A, Release E) NotCoExistence(Release B, Release A)
NotCoExistence(Release B, Release C) NotCoExistence(Release B, Release D) NotCoExistence(Release B, Release E)
NotCoExistence(Release C, Release B) NotCoExistence(Release C, Release A) NotCoExistence(Release C, Release D)
NotCoExistence(Release C, Release E) NotCoExistence(Release D, Release A) NotCoExistence(Release D, Release C)
NotCoExistence(Release D, Release B) NotCoExistence(Release D, Release E) NotCoExistence(Release E, Release B)
NotCoExistence(Release E, Release C) NotCoExistence(Release E, Release D) NotCoExistence(Release E, Release A)
NotSuccession(Release A, Admission IC) NotSuccession(Release A, Admission NC) NotSuccession(Release A, CRP)
NotSuccession(Release A, ER Sepsis Triage) NotSuccession(Release A, IV Antibiotics) NotSuccession(Release A, IV Liquid)
NotSuccession(Release A, LacticAcid) NotSuccession(Release A, Leucocytes) NotSuccession(Release B, Admission IC)
NotSuccession(Release B, Admission NC) NotSuccession(Release B, CRP) NotSuccession(Release B, ER Sepsis Triage)
NotSuccession(Release B, IV Antibiotics) NotSuccession(Release B, IV Liquid) NotSuccession(Release B, LacticAcid)
NotSuccession(Release B, Leucocytes) NotSuccession(Release C, Admission IC) NotSuccession(Release C, Admission NC)
NotSuccession(Release C, CRP) NotSuccession(Release C, ER Sepsis Triage) NotSuccession(Release C, IV Antibiotics)
NotSuccession(Release C, IV Liquid) NotSuccession(Release C, LacticAcid) NotSuccession(Release C, Leucocytes)
NotSuccession(Release D, Admission IC) NotSuccession(Release D, Admission NC) NotSuccession(Release D, CRP)
NotSuccession(Release D, ER Sepsis Triage) NotSuccession(Release D, IV Antibiotics) NotSuccession(Release D, IV Liquid)
NotSuccession(Release D, LacticAcid) NotSuccession(Release D, Leucocytes) NotSuccession(Release E, Admission IC)
NotSuccession(Release E, Admission NC) NotSuccession(Release E, CRP) NotSuccession(Release E, ER Sepsis Triage)
NotSuccession(Release E, IV Antibiotics) NotSuccession(Release E, IV Liquid) NotSuccession(Release E, LacticAcid)
NotSuccession(Release E, Leucocytes)
E

W

results. The informed proposal of best practices for the selection
of measures and combinations thereof depending on the analysis
purposes (e.g., discovery) constitutes a highly interesting outlook
for research.

6.2. Sensitivity and resilience to noise

In this section, we study in details the effect of noise injec-
ion in the event log on the constraints log measurements. We
xperimentally observed in Section 6.1.2 that measures exhibit
ifferent changes upon the presence of alterations from the ex-
ected behavior in an event log. A measure may ‘‘sense’’ the
lteration in the data with respect to a rule or remain unaffected.
lso, if the alteration is perceived, the magnitude of the measures
eaction may be different, in light of the different properties that
he measures enjoy, as discussed in Section 3.2. Markedly, we
ill empirically demonstrate that the properties originally for
ssociation rules hold also in the context of temporal rules. The
ossibility to characterize a constraint evolution is crucial in con-
inuous measurement settings such as streaming analysis [68] or
rift analysis [67]. Informed decisions on the measures to monitor
ased on the characteristic they have and the properties they
njoy is, therefore, key. Providing a set of guidelines to support
uch decisions is out of scope for this paper and paves the path
or future research avenues. Nevertheless, with this experiment,
e hope to provide useful preliminary indications in that sense.
e also remark that while we call uncommon or unexpected

vents as ‘‘noise’’ or ‘‘error’’ (reflecting our experimental setting),
he same measures evolution would occur in the case of process
mprovements or changes in the normative aspects the process is
ubject to.
We conducted the experiment as follows. We took as a ref-

rence model the set of rules in Table 13 and we simulated
t to generate a clean event log that is compliant wit it. We
emark again how the rules are designed to not interfere with
16
one another. In this way, it is possible to observe the response
of measures at varying noise levels targeting one constraint at a
time, thus limiting the effect of cross-interference.

Thereupon, we injected noise in the event log and calculated
all the measures in Table 3 for the reference model. In particular,
we made use of the following types of noise [66]:

Events insertion: Spurious events are included in the traces
(mimicking, e.g., double records, alien events, etc.);

vents deletion: Events are expunged from the event log (mim-
icking, e.g., missing records, uncommitted transactions,
etc.);

hite noise: Events are randomly inserted and deleted.

Addressing one rule at a time, we studied (1) the direct effect
of noise on that constraint by altering the occurrences of its
activator and target via insertions and deletions, and (2) the
indirect effect, by altering the occurrences of the other tasks in
the event log with white noise. We made the noise spread all over
the event log according to a controlled probability variable. For
instance, setting the noise injection as the deletion of occurrences
of task a with a probability of 20% results in the removal of 20%
of the occurrences of task a from the event log, picked at random.

More specifically, for every rule in the set of Table 13, we
ran a separate experiment for (i) event insertion noise affecting
the activator or (ii) the target, (iii) event deletion noise affecting
the activator or (iv)the target, (v) white noise affecting neither
the activator nor the target. For each of the combinations above,
we let the error-injection probability range from 0 to 100% with
a step of 10%. Because of the random factor, we repeated each
experiment 10 times and recorded the average results.

Fig. 5 shows the results of our experiments on constraint
Response(e, f). The Response constraint imposes that the target
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Fig. 5. Effect of error injection on constraint Response(e, f) for the best 10 scoring measures from the ranking experiment in Section 6.1.
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ccurs eventually after every occurrence of the activator. Plotting
ll the measures together in a static image within the boundaries
f a page results in a complex intertwining of lines, hampering
he readability of results. Thus we report here only the top 10
easures among the averaged results of the ranking experi-
ent presented in Section 6.1, namely: Confidence, Example and
ounterexample Rate, Laplace Correction, Least Contradiction, Ac-
uracy, Cosine, Jaccard, Sebag–Schoenauer, Conviction, and Odd
ultiplier plus Support as a baseline reference. Furthermore,
s the measures have different ranges, we normalize them be-
ween 0 and 1 in order to compare the different trends. The
ormalization formula used is(

vm
1+|vm|

−
minm

1+|minm|

)
(

maxm −
minm

)

1+|maxm| 1+|minm|

17
where vm is the value of measure, |vm| its absolute value, maxm
and minm the maximum and minimum values of the range of a
measure, respectively (in case of infinite ranges, the maximum
value supported by the software is considered). The full set of
plots with all the measures and constraints can be interactively
explored at https://github.com/Oneiroe/DeclarativeMeasurement
s-static.

For the Response constraint, the selected measures are overall
articularly sensitive to the deletions of the target and influenced
y both the deletions and insertions of the activator, while mostly
nsensitive to spurious insertions of the target and white noise.
ore specifically, we can derive the following observations.

• The deletion of events that satisfy the target leads to more
violations of the rule, i.e., lower P(ϕτ |ϕα, L) and higher
P(¬ϕτ |ϕα, L). The negative effect is thus reflected in the
constant decrease of all measures. The rapidity at which
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this phenomenon occurs is particularly interesting. In ac-
cordance with property P6, the decrease of concave mea-
sures (e.g., Example and Counterexample Rate) is slower
than that of linear ones (e.g., Confidence), and convex
measures decrease faster than all the others (e.g., Sebag–
Schoenauer).
• The deletion of events that satisfy the activator, instead,

does not bring further violations, but a higher P(¬ϕα, L).
As a consequence, the measures are mostly stable until the
error rate is close to 100%. As per P5, measures with a
decreasing trend (e.g., Laplace Correction or Accuracy) are
susceptible to the frequency of the rule activators in the
event logs, while measures depending only on rule satis-
faction (e.g., Conviction and Odd Multiplier) are constant
at all the error rates except 100% (in which case, they are
no longer defined due to a zero-by-zero division in their
formula).
• The insertion of more events that satisfy the target lead

to a higher P(ϕτ , L) but does not influence the constraint
satisfactions, as P(ϕτ |ϕα, L) remains constant. We remark
that the target ϕτ of Response(e, f) is 3f, thus injecting
more occurrences of f does imply an increase of P(ϕτ , L)
proportional to the error rate. Following from this consid-
eration and in light of P3, all the selected measures remain
constant.
• The insertion of more events that satisfy the activator

is less definite, as the new tasks may bring either to
more rule satisfactions, i.e., higher P(ϕτ |ϕα, L), or viola-
tions, i.e., higher P(¬ϕτ |ϕα, L). As Response(e, f) requires
the occurrence of f eventually after e at any distance in
the trace, in this experiment the injections mostly leads to
satisfactions. That is why most of the measures show only
a slightly decreasing trend. Notably, Conviction and Odd
Multiplier measures sense this alteration in a marked way
with respect to all the other rules.
• Lastly, the insertion of events not related to both the target

and the activation mostly do not alter the measures. The
satisfactions and violations remain constant, whilst the
only increase is in P(¬ϕα, L). Nevertheless, considering P1
and P5, we can distinguish the fluctuating measures due to
the frequencies change (e.g., Cosine and Jaccard) from the
unaffected ones (e.g., Confidence and Conviction).

Because of space limits, we cannot illustrate the outcome for
he other rules of Table 13. The interested reader can find the
ull set of experimental data and results at https://oneiroe.github.
o/DeclarativeMeasurements-static in a digital interactive format,
hich is more suitable for data exploration and browsing.

.3. Discussion

The applications of our framework presented in Sections 6.1
nd 6.2 allows for some reflections on the employment and
vailability of the measures. First, the measures evolution reflects
hether the alteration in the data affects either the target or the
ctivator of the rule (or both). This gives more insights into the
nalyzed phenomena than knowing whether a rule is satisfied or
ot at a given moment.
Nevertheless, given a constraint, not all the data alterations

re perceived by all measures. This implies that depending on the
equirements of the analysis the choice of the measure is crucial.
e reported, for example, an experiment to identify measures

uitable for discovery. Furthermore, given a certain alteration, it
s possible to identify groups of measures with similar trends that
ocus on the same aspects of a rule, as it can be easily noticed
n Fig. 5. Within such groups, it is then possible to select one

epresentative measure.

18
To this extent, the properties discussed in Section 3.2 are
clearly a guiding criterion for the selection of measures, markedly
reflected in our experiments in which measures with similar
trends could be distinctly identified by the properties they enjoy.
Ultimately, this choice is strictly related to the requirements and
goals of the event log analysis.

For instance, P6 turned out to be particularly relevant. While
easures may have similar trends, the magnitude of such trends,

eflected in the steepness of the curves with which the measure
volves (i.e., concave, convex, or linear), indicates how quickly
he measure react to changes in the data. Furthermore, it shows
he range of tolerance before the alteration in the data becomes
oo large to recognize the specific constraint behavior. A re-
ilient measure with a slower decrease is desirable to sense if
he fundamental characteristics of a log are still visible despite
he deviations (e.g., to implement discovery algorithms that are
obust to noise). On the other hand, a sensitive measure with a
aster decrease is desirable when exceptions to the rules are only
ccepted in a very limited manner (e.g., to monitor normative
rocesses).
An approach enabling such a vast number of measures for

emporal specifications is presented in the seminal work of Le and
o [6]. We extend their investigation along two main lines: first,
ur approach can handle arbitrary temporal formulae as activa-
or and target, as opposed to single-task variables only (which
lso restrict the analysis to the sole Response and Precedence

patterns). Second, our computation of the rule probabilities pro-
cesses the whole trace at once, while the calculation scheme in [6]
relies on a sliding window, whose size has to be manually set up
thereby influencing the results.

7. Conclusion

In this paper, we presented a comprehensive measurement
framework for declarative specifications modeled as Reactive
Constraints. Given an event log and a set of custom probabilistic
measures, the framework accepts in input any RCon and returns
as output the evaluation of the rule for each event of the log, the
computed measures for all the traces and their statistics over the
entire event log, and the computed measures over the entire log.
The framework goes beyond the current state of the art as it is
not limited to a specific set of measures or rules. The experiments
conducted reveal the possibility to characterize the behavior of a
given constraint through the combination of different measures,
which sense differently the behavior recorded in the log. Also,
while the choice of the measures to employ is highly context-
dependent, we showed how the measures properties can be used
to guide the selection, as their effects are clearly visible in the
results.

Future work Different possibilities are now open upon the foun-
dations of this measurement framework. It is possible to exploit
the possibility to characterize a phenomenon by studying the
evolution of different measures for, e.g., the dynamic recognition
of exceptions in process monitoring [69], the identification of
process drifts [67] or the analysis of process variants [70]. Also,
it can be employed as a post-processing tool for multi-measure
filtering of the results of declarative process discovery techniques
like [3,4,14].

As measures react differently to diverse stimuli for distinct
types of rules, a method to find the best combination of measures
depending on the analysis context turns out to be key. To this ex-
tent, future research could resort to existing techniques like [71]
or develop novel multi-measure heuristics. Also, the measures
can be integrated for the assessment of multi-constraint speci-

fications as a whole as in [1,20].

https://oneiroe.github.io/DeclarativeMeasurements-static
https://oneiroe.github.io/DeclarativeMeasurements-static
https://oneiroe.github.io/DeclarativeMeasurements-static
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While the analysis of multiple measures at once may be over-
helming for a human, machine learning techniques could ben-
fit from the availability of the great amount of information
eturned by the proposed framework, as they are designed to
eal with large sets of multidimensional data. Therefore, it seems
o be also promisingly exploitable for feature selection tasks in
equence classification [24].
Finally, we observe that the implementation of this framework

an largely benefit from run-time optimization for the verification
f the rules’ automata, particularly for as far as the recognition
f permanent violations and satisfactions is concerned [72]. The
esign and integration of such dedicated techniques serves as an
mpulse for future research.
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ppendix. Proof of linearity

The RCon evaluation can be performed efficiently based on
he automaton-based technique defined in [14]. The verifica-
ion is there defined for online settings (run-time analysis). In
ontrast, we can exploit the offline setting of the present contri-
ution (post-mortem analysis) to enhance furthermore the per-
ormances.

Before proceeding, we need to extend the LTLpf notations pre-
ented in Section 3. In the following, we will classify , 2, 3, U
as future operators,⊖,⊟, 3, S as past operators, and the following
airs of operators asmirror images: (i) and⊖, (ii) 2 and ⊟, (iii) 3
nd 3, (iv) U and S . A LTLpf formula ϕ is named: pure past (ϕ◀)
f it contains only past operators; pure present (ϕ▼) if it contains
o temporal operators at all; pure future (ϕ▶) if it contains only
uture operators [73]. For example, ϕ◀

= 3(a S g), ϕ▼
= a∧b∨ c,

nd ϕ▶
= (2e ∨ (3b) W p) are pure past, pure present, and

pure future formulae, respectively. Finally, the mirror image ϕM
f formula ϕ is the temporal formula obtained by replacing all its
perators with their mirror images [74].
In [14] it has been proven that

• any LTLpf formula ϕ can be decomposed in ϕ ≡
⋁m

j=1(ϕ
◀
∧

ϕ▼
∧ ϕ▶)j, where ϕ◀, ϕ▼, and ϕ▶ are respectively pure past,

present, and future formulae [14, Definition 2];
• each sub-formula of the decomposed formula can be valu-

ated through distinct automata [14, Theorem 3];
• The past-only automata can be reversed into future-only

automata valuating the reverse of a trace [14, Theorem 4].

he advantage of the reversion is that it allows for the verification
f past components in only one read of the trace. This was not
ossible for future components because the end of the trace is
nknown in an online setting. In an offline setting, as the entire
race is given, it is possible to apply the same reasoning to reverse
19
uture-only automata into past-only automata valuating a trace in
ne backward read from the end to the start of the trace.
In the following, we provide proof sketches of the intuitions

bove. We replicate the steps taken for past reversion [14] ap-
lying them for the future reversion. To this extent, we rely on
irror images and reversed automata.

emma A.1. Let t ∈ Σ∗ be a trace of length n and tR its reverse.
Given a pure future formula ϕ▶, and its mirror image ϕ▶

M, then
t, 1 |H ϕ▶ iff tR, n |H ϕ▶

M.

The proof follows from the semantics of future and past op-
erators of LTLpf provided in Section 3. For instance, verifying
ϕ▶
= 3a on t = ⟨f, e, d, c, b, a, g, h, i⟩ at instant i = 1 is equivalent

to verifying ϕ▶
M = 3a on tR = ⟨i, h, g, a, b, c, d, e, f⟩ at i = 9. Notice

hat this holds for sub-traces too, thus verifying ϕ▶ on t at instant
= 5 is equivalent to verifying ϕ▶

M over t[5:9]R = ⟨i, h, g, a, b, f⟩ at
i = 9.

It follows from Lemma A.1 that any pure future formula can
be seen as a pure past one on a reversed trace. Therefore the
automaton verifying the mirror image of ϕ▶ can be used for
verification on the reversed trace, as stated in the following.

Corollary A.1. Let Aϕ▶
M

be the automaton verifying ϕ▶
M. Then

, n |H ϕ▶ iff tR ∈ L

(
Aϕ▶

M

)
.

Notice that ϕ▶
M is a pure past formula, therefore Aϕ▶

M
can be

built by applying the technique of [75]. Furthermore, it is possible
to transform the obtained automaton in order to read directly the
original trace t thanks to the property of closure under reversion
of regular languages [76].

From Lemmas A.1 and A.1 we derive the following.

Theorem A.1 (Valuation through
←−
A ϕ▶

M
). Let ϕ▶ be a pure future

ormula and ϕ▶
M its mirror image. Let Aϕ▶

M
∈ A be the automaton

erifying ϕ▶
M. Given a trace t ∈ Σ∗ of length n, we have that:

, 1 |H ϕ▶ iff t ∈ L

(
←−
A ϕ▶

M

)
.

Consider t = ⟨f, e, d, c, b, a, g, h, i⟩ and the RCon Ψ = a (⊖b∨
3c) and the pure future formula of its separated automata set
(sep.aut.set) ϕ▶

= 3c. The RCon is activated by t(6). Its mir-
ror image is ϕ▶

M = 3c. It is possible to verify ϕ▶
M over trace

t[6:9]R = ⟨i, h, g, a⟩ at i = 9, thereby verifying ϕ▶ over t[6:9] as
per Lemma A.1. Thanks to Theorem A.1, ϕ▶

M can be verified on
t[6:9] with the reversed automaton

←−
A ϕ▶

M
.

In conclusion, we proved that any pure future formula can be
verified by parsing sub-traces from the end of the trace till the
activator event. As the verification of future formulae is the only
potentially exponential time element in [14], using the reversed
verification provided in this section guarantees the optimiza-
tion to linear time, which has been also empirically proved in
Section 5.
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