
Intensional and Extensional Views in DL-Lite Ontologies

Marco Console1 , Giuseppe De Giacomo1 , Maurizio Lenzerini1 and Manuel Namici1
1University of Rome, “La Sapienza”, Italy

{console,degiacomo,lenzerini,namici}@diag.uniroma1.it

Abstract
The use of virtual collections of data is often es-
sential in several data and knowledge management
tasks. In the literature, the standard way to define
virtual data collections is via views, i.e., virtual re-
lations defined using queries. In data and knowl-
edge bases, the notion of views is a staple of data
access, data integration and exchange, query opti-
mization, and data privacy. In this work, we study
views in Ontology-Based Data Access (OBDA)
systems. OBDA is a powerful paradigm for ac-
cessing data through an ontology, i.e., a conceptual
specification of the domain of interest written using
logical axioms. Intuitively, users of an OBDA sys-
tem interact with the data only through the ontol-
ogy’s conceptual lens. We present a novel frame-
work to express natural and sophisticated forms
of views in OBDA systems and introduce funda-
mental reasoning tasks for these views. We study
the computational complexity of these tasks and
present classes of views for which these tasks are
tractable or at least decidable.

1 Introduction
Views have numerous applications in data and knowledge
bases. For example, they can provide the user with virtual
data collections derived from elementary objects, thus im-
proving abstraction. Views can also represent a selection of
the underlying data that limits the exposure of sensitive infor-
mation. Indeed, users of a given class may have permission to
query the knowledge base only through a set of views, effec-
tively limiting their access to only specific parts of the data.
Additionally, views may serve as a specification mechanism
for data and knowledge exchange and integration. For exam-
ple, a set of views can specify the portion of the source data
that populates the target knowledge base in an exchange task,
or the so-called global schema in data integration.

Generally speaking, the notion of view adapts naturally
to ontological knowledge bases. In this paper, we focus on
knowledge bases expressed in Description Logics (DL) and,
specifically, in the lightweight DL DL-LiteR [Calvanese et
al., 2007b]. Intuitively, DLs are logical formalisms repre-
senting the domain of interest in terms of concepts, i.e., sets

of individuals, and roles, i.e., binary relations between ob-
jects. Surprisingly, few papers deal directly with views in
DL knowledge bases. In [Buchheit et al., 1998], the authors
propose to split the axioms of a DL knowledge base into
two sets, one for standard intensional knowledge regarding
concepts and roles of interest (forming the schema) and one
for defining views, i.e., new unary predicates with an associ-
ated definition. While intensional axioms may refer only to
schema elements, view definitions may refer to both schema
and view elements. In this context, views may be recursive,
i.e., their definition may contain (either direct or indirect) ref-
erences to themselves, thus beyond first-order logic. The au-
thors advocate fixpoint semantics for dealing with cycles in
the definitions. Another seminal work on views for DLs is
[Beeri et al., 1997], where the authors introduce the prob-
lem of rewriting queries using views. Intuitively, the latter
asks for a query expression that uses only a set of views de-
fined over a DL knowledge base and is equivalent to the in-
put query. While query rewriting aims at computing a query
over the views that is equivalent to the original one, view-
based query answering has the goal of computing the an-
swers to a query by relying only on the pre-computed ex-
tensions of a set of views. Observe that rewriting is a tech-
nique for addressing view-based query answering, but the lat-
ter is a much more general problem. Algorithms and com-
plexity for view-based query answering in DLs, including
DL-Lite, have been investigated in [Calvanese et al., 2000;
Calvanese et al., 2012].

In this paper, we present a novel framework for including
views in DL knowledge bases following an approach simi-
lar to the one adopted in [Buchheit et al., 1998], but with
the following differences. (i) View definitions in our frame-
work consist of epistemic logic formulae rather than just DL
concept expressions. Thus, they can use joins, projections,
selections, and differences and the modal operator K to talk
about what is “known” in the knowledge base, i.e., answers
for queries. (ii) We do not limit views to unary or binary
predicates, and thus each view symbol has an associated ar-
ity, which corresponds to the number of distinguished vari-
ables of the formula constituting its definition. (iii) We disal-
low recursion in view definitions and base our semantics upon
epistemic logic.

Example 1. Assume a DL knowledge base K storing HR
data. K defines the following concepts and roles: Emp,

for employees, Mng, for managers, Dep, for departments,
hasDep, connecting employees to their departments; and
hasMng, connecting departments to their managers. The ax-
ioms of K define the relationships between the concepts and
roles introduced above.

A fundamental notion for the users of K is the relationship
between employees, their department, and their managers.
This relation is ternary, and its definition requires joins, and
therefore it is beyond the expressive power of DLs. However,
we can define the desired relationship using a view V . How-
ever, to define V properly, we first need to clarify the users’
intended meaning for this view.

For example, users may want to define the ontological con-
cept isMngOf of being the manager of an employee in a de-
partment. The following formula ϕmng(x, y, z) defines this
view: Emp(y) ∧ hasDep(y, z) ∧ hasMng(z, x).

Also, users may be interested in restricting the concept
isMngOf only to the employees, managers, and departments
known to the system. That is, those obtained by the certain
answers of the query ϕmng to K. We call this view qMngOf.
Observe that, while isMngOf is just a handy shortcut for
ϕmng, qMngOf is grounded upon an extra-logical concept, i.e.,
query answers. In this sense, qMngOf is closer to the standard
notion of views for databases, and it requires an epistemic
extention of first-order logic to be defined in a DL knowledge
base. For its definition, we can use the following formula
ϕqmng(x, y, z) of epistemic modal logic: K(ϕmng(x, y, z)). In-
tuitively, ϕqmng(m, e, d) holds in some model of K if only if
ϕmng(m, e, d) holds in all the models of K.

Finally, users may want to define complex views by means
of a sophisticated use of the notion of query answers. For ex-
ample, they may be interested in employees and managers of
known departments, where the latter are the certain answers
of Dep(x) over K. The latter view, that we call kMngOf, can
be defined by the formula ϕkmng(x, y, z) defined as follows:
ϕmng(x, y, z) ∧K(Dep(z)).

The above example shows that views can enrich a DL
knowledge base with new powerful abstractions. Such ab-
stractions can play a crucial role in ontology exploration
and query answering. The introduction of view predicates
may also help overcome some intrinsic characteristics of
Ontology-based Data Access (OBDA) systems. The first
characteristic has to do with the nature of the ontology lan-
guages used in OBDA, which typically allow only unary and
binary predicates. The use of views provides the possibil-
ity of using n-ary predicates in modelling the domain. The
second characteristic is related to the restricted expressive
power of DL axioms required for decidability. For exam-
ple, no such languages allow the free use of joins in concepts
and role expressions. Once again, views may help to mitigate
such restrictions. Moreover, views can be used to introduce a
lightweight mechanism for distinguishing truth from knowl-
edge, i.e., being a given query’s certain answer. The latter re-
quires a modal mechanism, whose use through views remains
controlled, avoiding intractability.

Views in knowledge bases can enhance all standard rea-
soning tasks of OBDA, including query answering and query
containment. Moreover, there are specific reasoning tasks of
interest on views, including checking consistency and con-

tainment. In this paper, we present several forms of view
definitions, and we study the complexity of fundamental rea-
soning tasks involving them.

The rest of this paper is organized as follows. Section 2
introduces some preliminary notions; in Section 3 we present
our framework; in Section 4 we study the complexity of rea-
soning with positive views; in Section 5 we discuss the impact
of negation on view definitions; in Section 6 we conclude.

2 Preliminaries
We briefly review the main concepts used in the technical de-
velopment of this paper.

Logic and Complexity We will assume basic familiarity
with the standard notions of computational complexity and
first-order logic, and refer the reader to [Arora and Barak,
2009] for a detailed account. Given a formula φ and a vector
of variables x̄, we will sometimes use φ(x̄) to say that x̄ are
the free variables of φ. A substitution ν for x̄ is a mapping
from x̄ to a given set of symbols, and ν(φ) is the formula
obtained from φ by substituting each x ∈ x̄ with ν(x̄).

Description Logics Knowledge Bases Let NI , NC , and
NR be countably infinite sets of individual, concept, and role
names, respectively. A DL-LiteR knowledge base (KB), or
ontology, is a pair 〈T ,A〉, where T and A are, respectively,
a DL-LiteR TBox and a Description Logic ABox, i.e., finite
sets of logical axioms of the form

T : B1 v B2;R1 v R2 (inclusion)
B1 v ¬B2;R1 v ¬R2 (disjointness)

A : A(a) P (a, b) (membership)

where a, b are individual names, A and P are concept and
role names, respectively, B1, B2 are basic concepts, i.e., ex-
pressions of the form A, ∃R, and R, R1, and R2 are basic
roles, i.e., expressions of the form P or P−. Intuitively, T
and A consist of the intensional and extensional information
captured by the KB, respectively. As customary, semantics
of DL-LiteR are defined via Description Logic interpreta-
tions (interpretations for short). An interpretation is a pair
I = 〈∆I , ·I〉, where ∆ is a countable set, called the do-
main of I, and ·I is a function such that aI ∈ ∆I , for each
a ∈ NI , A ⊆ ∆I , for each A ∈ NC , and P ⊆ ∆I × ∆I ,
for each P ∈ NR. For interpretations, we assume standard
names [Levesque and Lakemeyer, 2000], i.e., we assume that
∆I = NI and aI = a, for every interpretation I and a ∈ NI .
In other words, we assume that constants are always inter-
preted into themselves, effectively blurring out the difference
between constants and the individuals they represent. The
standard name assumption is very common in OBDA, and it
implies the unique name assumption. An interpretation I sat-
isfies an axiom α v β if αI ⊆ βI ; it satisfies α v ¬β if
αI ∩ βI = ∅; and it satisfies A(a), resp. P (a, b), if a ∈ AI ,
resp. (a, b) ∈ P I . We say that I satisfies 〈T ,A〉, written
I |= 〈T ,A〉, if I satisfies all the axioms in the KB.

Epistemic Knowledge Bases We assume the standard epis-
temic logic based on the modal logic S5 and extend this con-
cept to DL-LiteR ontologies in the spirit of [Calvanese et
al., 2007a]. An epistemic formula is a standard first-order

formula over NI , NC , and NR that can use the unary modal
operator K with the intuitive meaning of ‘it is known’ or ‘it
is certain’. Epistemic formulae are interpreted over epistemic
interpretations, i.e., pairs 〈w,W 〉, where w is an interpreta-
tion and W is a set of interpretations that contains w. An
epistemic interpretation W = 〈w,W 〉 satisfies an epistemic
formula φ (written 〈w,W 〉 |= φ) if the following hold:

• φ = P (c̄), with c̄ ∈ NI , and w |= φ;
• φ = φ1 ∧ φ2 andW |= φ1 andW |= φ2;
• φ = φ1 ∨ φ2 andW |= φ1 orW |= φ2;
• φ = ¬φ1 andW 6|= φ1;
• φ = ∃x.φ1(x) andW |= φ1(c), for some c ∈ NI .
• φ = K(φ1) and 〈w,W 〉 |= φ1, for every w ∈W .

An epistemic interpretationW = 〈w,W 〉 is compatible with
a KB K if w |= K. Compatible interpretations represent the
possible epistemic states of K, i.e., what K might know for
sure. Among compatible interpretations, we want those that
carry correct and minimal knowledge. Intuitively, given an
interpretation W compatible with K, to enforce correctness
we require that every possible world ofW satisfies the state-
ments of K, and to enforce minimality we require that every
interpretation that satisfies the statements of K is a possible
world of W . In light of these considerations, we define the
epistemic models of a DL-LiteR KB K as follows. An in-
terpretation W = 〈w,W 〉 is an epistemic model for K if W
is compatible with K and w′ ∈ W if and only if w′ |= K.
With a slight abuse of notation, we write W |= K for W is
a model of K and use Mod(K) to denote the epistemic mod-
els of K. A DL-LiteR KB K is satisfiable if Mod(K) 6= ∅.
Observe that the epistemic models of a DL-LiteR KB K ex-
tend the standard notion of models of K, i.e., the set of all
interpretations that satisfy K. Therefore, we can naturally ex-
tend reasoning tasks of standard DL-LiteR ontologies to the
case of epistemic models. Assume an epistemic formula q(x̄)
over the alphabet of K with n free variables x̄. The certain
answers of φ over K are the set of substitutions ν for the free
variables of φ such thatW |= ν(φ), for everyW ∈Mod(K).
Given a DL-LiteR KB 〈T ,A〉, an epistemic formula φ, and
a substitution ν for the free variables of φ, Query Answering
is the following decision problem: is ν a certain answer for φ
over 〈T ,A〉? The data complexity of Query Answering is the
complexity of checking whether ν is a certain answer for φ
over 〈T ,A〉, for fixed T and φ, and input A and ν. It is easy
to see that, if φ does not contain the operator K, Certain An-
swers defined above coincide with standard certain answers
for queries over Description Logics ontologies. Complexity
of Query Answering in this context is known in the litera-
ture for many interesting cases. For example, when φ is a
union of conjunctive queries, i.e., the union of a set of exis-
tentially quantified conjunction of atoms without K, Query
Answering is NP -complete, and in AC0 in data complex-
ity ([Calvanese et al., 2007b]). Query Answering for queries
expressed via epistemic formulae was first studied in [Cal-
vanese et al., 2007a], where the authors show a broad class of
epistemic formulae with AC0 data complexity.

3 Views for Knowledge Bases
We proceed to introduce our framework for view-enriched
KBs. Assume a countably infinite set NV of predicate sym-
bols with an associated arity, pairwise disjoint with NI , NC ,
and NR. We call NV the set of view names. In what fol-
lows, we useN andNO to denote the set of all symbols, i.e.,
NI ∪ NC ∪ NR ∪ NV , and the set of ontological symbols
NI ∪ NC ∪ NR, respectively. A view definition V (view for
short) is a pair 〈v(x̄), φ(x̄)〉, where v is a view name from
NV , called the name of V , x̄ is a tuple of distinct variables,
and φ(x̄) is an epistemic formula with free variables x̄, called
the definition of V . Observe that, since φ is an epistemic
formula, it cannot contain predicates from NV . A View Box
V (VBox for short) is a finite set of view definitions such
that, for every distinct U,U ′ ∈ V , the name of U is differ-
ent from the name of U ′. A view-enriched DL-LiteR inten-
sional specification (intensional specification for short) is a
pair 〈T ,V〉, where T is a DL-LiteR TBox and V is a VBox.
Finally, a view-enriched DL-LiteR KB (KB for short) is a
triple 〈T ,V,A〉, where 〈T ,V〉 is an intensional specification,
and A is an ABox.
Example 2. Assume the KB of Example 1. Relevant inten-
sional knowledge is: (i) hasDep connects employees to de-
partments; (ii) departments with a manager have at least one
employee; (iii) all managers direct at least one department.
The following TBox captures this information.

T : ∃hasDep v Emp ∃hasDep− v Dep
∃hasMng v ∃hasDep− Mng v ∃hasMng−

The ABox A represents relevant extensional information.

A : hasDep(Bob,D1) hasMng(D1, Dylan)
hasMng(D2, Cora) Mng(Alice)

Views in the example can be defined by the following VBox

V : 〈isMngOf(x̄), ϕmng(x̄)〉 〈qMngOf(x̄), ϕqmng(x̄))〉
〈kMngOf(x̄), ϕkmng(x̄)〉

Finally, we writeKhr for the triple 〈T ,V,A〉 in this example.
Semantics of view-enriched KBs extend the notion of epis-

temic models of DL-LiteR KBs. A view-enriched interpre-
tation is a triple W = 〈w,W, f〉, where 〈w,W 〉 is an epis-
temic interpretation over NO, and f is an interpretation for
NV with domain NI . Given a view V = 〈v(x̄), φ(x̄)〉, we
say thatW satisfies V if,

vf = {ν(x̄) ∈ Nn
I | 〈w,W 〉 |= ν(φ(x̄))}

where ν is a substitution for x̄. We call vf the extension of
v in W (sometimes denoted by vW). In simple words, W
satisfies V if the extension of V inW is defined according to
φ. Assume a view-enriched DL-LiteR KB K = 〈T ,V,A〉.
We say that W is a model for K if 〈w,W 〉 satisfies 〈T ,A〉
and every V ∈ V . We write Mod(K) for the set of all models
of K and K |= φ if W |= φ, for each W ∈ Mod(K). We
illustrate semantics of view-enriched KBs in the following
example.
Example 3. Assume formulae ψi(x) = ∃y∃zRi(x, y, z) with
R1 = isMngOf, R2 = kMngOf, and R3 = qMngOf. In-
tuitively, each ψi asks for managers of departments with at

least one employee via the view Ri. Since every department
with a manager has at least one employee, and every manager
directs a department, we have KHR |= ψ1(x) for x = Alice,
x = Cora, and x = Dylan. Moreover, since Dylan and
Cora direct departments D1 and D2, respectively, and D1
and D2 are known in the KB, we have KHR |= ψ2(x) for
x = Cora, and x = Dylan. On the other hand, while Alice
is known to be a manager in the KB, the department she di-
rects is not, and therefore KHR 6|= ψ2(Alice). Finally, since
Bob works in D1, we haveKHR |= ψ3(Dylan). On the other
hand, Alice and Cora direct no known employee. Therefore,
KHR 6|= ψ3(x), for x = Alice, and x = Cora.

3.1 Reasoning with Views
In a view-enriched KB, it is of interest to study several forms
of reasoning involving views to enhance the conceptual anal-
ysis as well as our understanding of the data. Below we in-
vestigate these forms of reasoning.

View Consistency A fundamental reasoning task in DL
KBs is concept and role consistency, i.e., checking whether
the extension of a given concept or role is non-empty in some
of the possible worlds described by the KB. Consistency al-
lows designers to discover hidden properties of the model
and automatically recognize possibly ill-defined concepts and
roles. We extend consistency to view definitions with the no-
tion of View Consistency. Given an intensional specification
S and a view definition V from S, we say that V is con-
sistent in S if there exists an ABox A and an interpretation
W ∈ Mod(〈S,A〉) such that the extension of V inW is not
empty. View Consistency is the following decision problem:
given S and V as above, check whether V is consistent in S.

View Containment Another fundamental reasoning task in
DL KBs is concept and role containment. Intuitively, contain-
ment asks whether a concept or role extension is contained
inside another in all the possible worlds described by K. We
extend containment to view definition with the notion of View
Containment. Intuitively, a view V is contained in a view V ′

under the KB K if the extension of V is all the models of
K. View Containment could be used, for instance, to check
for redundancy in view definitions and optimize query an-
swering. Perhaps more interestingly, view containment can
be used to check whether a given view enjoys specific prop-
erties. For example, View Containment can type the compo-
nents of a view, i.e., check whether they are subsumed by a
given ontological concept.

We formalize the notion of view containment as follows.
Given an intensional specification S and view definitions V
and V ′ from S, V is contained in V ′ under S, written V vS
V ′, if for every ABox A and modelW ∈ Mod(〈S,A〉), the
extension of V inW is contained in the extension of V ′ inW .
View Containment is the following decision problem: given
S, V , and V ′ as above, check whether V vS V ′.
Query Answering Given a formula ψ over N and a view-
enriched interpretation W , we can define naturally when W
satisfies ψ, written W |= ψ. In light of this consideration,
given a KB K, it is natural to talk about the Certain Answers
for ψ over K and therefore Query Answering. To formalize
Query Answering in this context, we introduce two classes

of formulae over N . A View-Enriched Conjunctive Query
(VE-CQ) is an existentially-quantified conjunction of atoms
with predicates fromN . A View-Enriched Union of Conjunc-
tive Query (VE-UCQ) is the union of finitely-many VE-CQs.
Given K and a VE-UCQ Q(x̄), Certain Answers for Q(x̄)
over K are defined as customary, and we use ans(Q,K) to
denote the set of certain answers of Q over K. VE-UCQ An-
swering is the following decision problem: for input a view-
enrichedDL-LiteR KB 〈T ,V,A〉, VE-UCQQ(x̄), and sub-
stitution ν for x̄, check whether ν ∈ ans(Q, 〈T ,V,A〉). The
data complexity of VE-UCQ Query Answering is the com-
plexity of checking whether ν ∈ ans(Q, 〈T ,V,A〉), for input
A and ν, and fixed Q, T , and V . We call VE-CQ Answering
the restriction of VE-UCQ Answering to VE-CQs.

Query Containment The basic reasoning task in query
optimization is Query Containment, i.e., checking whether,
given queries Q and Q′, Q subsumes Q′. We can naturally
extend Query Containment to view-enriched KBs as follows.
Given VE-UCQsQ andQ′ and an intensional specification S,
we say that Q is contained in Q′ under S, written Q ⊆S Q′,
if ans(Q, 〈S,A〉) ⊆ ans(Q′, 〈S,A〉), for every ABoxA. VE-
UCQ Containment is the following decision problem: for in-
putQ,Q′, and 〈T ,V〉 as above, check whetherQ ⊆S Q′. We
call VE-CQ Containment the restriction of VE-UCQ Contain-
ment to VE-CQs.

Computability Before concluding this section, we briefly
discuss the decidability of the decision problems defined
above.

Assume a VBox V and a VE-CQQ of the form
∧

iRi(z̄i)∧∧
j Sj(z̄j), where eachRi is an ontological symbol fromNO,

and Sj is a view name from NV such that 〈Sj(x̄), φj(x̄)〉 ∈
V . The unfolding of Q according to V is the formula
unf(Q,V) ≡

∧
iRi(z̄i) ∧

∧
j ψj(z̄j), where each ψj(z̄j) is

obtained from φj(x̄) by
• Renaming apart the variables in φj(x̄); and
• Substituting z̄j to x̄ in φ.

Intuitively, the unfolding described above is a simplified ver-
sion of the standard notion of mapping unfolding (see, e.g.,
[Poggi et al., 2008]). The unfolding of a VE-UCQ Q ac-
cording to V is simply the union of the unfolding of all the
conjunctive queries composing Q.

Proposition 1. Assume a VE-UCQ Q, a VBox V , and an in-
terpretationW that satisfies V . W satisfies Q if and only if it
satisfies unf(Q,V).

Proposition 1 follows from the fact that Q and unf(Q,V)
are logically equivalent under V . Given a VE-UCQ Q and a
VBox V , it is clear that unf(Q,V) can be computed in poly-
nomial time w.r.t. Q and V . In spite of this result, all the deci-
sion problems defined above are undecidable for unrestricted
view definitions due to the the unrestricted use of first-order
formulae. We say that an intensional specification is view-
only if it is of the form 〈∅,V〉, i.e., S has no ontological ax-
ioms. It is easy to see that View Containment, View Consis-
tency, VE-UCQ Answering, and VE-UCQ Containment are
undecidable even for view-onlyDL-LiteR intensional speci-
fications. Therefore, in order to achieve decidability, we need
to restrict the language allowed in view definitions. In the

subsequent sections, we present meaningful decidable lan-
guages for view definitions and examine the complexity of
relevant decision problems.

4 Lightweight Views
In this section, we introduce a class of view definitions that
we dubbed lightweight. Lightweight views represent an inter-
esting conceptual extension of DL-LiteR KBs while having
a very limited impact on their computational characteristics.
A lightweight epistemic conjunction ϕ(x̄) is an epistemic for-
mula of the form

∃ȳ∃ū. α(x̄o, ȳo, ū) ∧
n∧

i=1

K(∃z̄i. βi(x̄i, ȳi, z̄i))

where α and βi, for each i, are conjunctions of relational
atoms, x̄ = x̄o ∪ x̄k, with x̄k =

⋃
i x̄i, occur free in ϕ(x̄),

ȳ =
⋃

i ȳi, and ȳo ⊆ ȳ. A view definition 〈v(x̄), ϕ(x̄)〉 is
lightweight if ϕ(x̄) is a lightweight epistemic conjunction,
and a knowledge base is lightweight if its views are. Observe
that all the views in Example 2 are lightweight. We proceed to
analyse the complexity of reasoning with lightweight views.
First, given ϕ(x̄) as above, we define the following formulas.

• ϕo(x̄o, ȳo) = ∃ū.α(x̄o, ȳo, ū);
• ϕk(x̄k, ȳ) =

∧n
i=1 ∃z̄i.βi(x̄i, ȳi, z̄i), with x̄k =

⋃
i x̄i;

• ϕ+(x̄, ȳ) ≡ ϕo(x̄o, ȳo) ∧ ϕk(x̄k, ȳ)
The canonical ABox A of ϕ+(x̄), resp., ϕk and ϕo, is an
ABox obtained from ϕ+(x̄), resp., ϕk and ϕo, by replacing
each variable with a distinct individual name. When not oth-
erwise specified, we will assume, w.l.o.g., that each variable
z of q is replaced with cz ∈ NI in A, and denote by c̄x the
image of x̄ inA. In the reminder of this section, we assume a
DL-LiteR intensional specification S = 〈T ,V〉, lightweight
views V = 〈v(x̄), ϕ(x̄)〉 and V ′ = 〈v′(x̄), ϕ′(x̄)〉 in V , and
VE-UCQ Q and Q′.

View Consistency Consistency of lightweight views is
tractable as the following theorem shows.

Theorem 1. For input S and V as above, View Consistency
is in PTime.

To prove the claim, we observe the following. For everyW
satisfying V , vW 6= ∅ if and only ifW contains a homomor-
phic copy of the canonical ABoxA of ϕ+(x̄). Therefore, one
can prove that V is consistent in 〈T ,V〉 if and only if 〈T ,A〉
is satisfiable, being T a DL-LiteR TBox. The desired com-
plexity follows from the fact that satisfiability of DL-LiteR
KBs can be checked in PTime.

View Containment View Containment is decidable for
lightweight views as the following theorem shows.

Theorem 2. For input S, V and V ′ as above, View Contain-
ment is NP-Complete.

To prove the claim, we observe the following. Given an
ABoxA, an epistemic witness of V ′ in 〈S,A〉 is a substitution
occurring in ans(ϕ′k, 〈T ,A〉). Assume W ∈ Mod(S,A).
Intuitively, a tuple ν(x̄) is in v′W only if ν can be extended
to become an epistemic witness. Let Aϕ+ and Aϕk be the
canonical ABox of ϕ+ and ϕk, respectively. One can prove

that V vS V ′ if and only if there exists an epistemic witness
of ϕ′ in 〈S,Aϕk〉 such that ν′ ∈ ans(〈T ,Aϕ+〉), for some
extension ν′ of ν such that ν(x̄) = c̄x. The desired com-
plexity upper bound follows from the fact that we can guess,
in nondeterministic polynomial time, Certain Answers for
conjunctive queries over DL-LiteR KBs. The lower bound
can be obtained with a reduction from Query Answering for
DL-LiteR KBs.

Query Answering In light of Proposition 1, checking
whether ν ∈ ans(Q,K) amounts to checking whether ν ∈
ans(unf(Q,V), 〈T ,A〉). Therefore, we can prove decidabil-
ity of VE-UCQ.

Theorem 3. For input K and Q as above, VE-UCQ Answer-
ing is NP-Complete and AC0 in data complexity.

To prove the claim, we observe the following. By a slight
abuse of notation, given unf(Q,V), we use q ∈ unf(Q,V) to
denote the disjuncts of unf(Q,V). Observe that, for each such
q, unf(q,V) is a lightweight epistemic conjunction. In light
of these considerations, one can prove that ν ∈ ans(Q,K)
if and only if there exists an extension ν′ of ν such that
ν′ ∈ ans(q+,K), for some q ∈ unf(Q,V). The desired
complexity follows from the fact that answering conjunctive
queries over DL-LiteR KBs is NP-Complete and in AC0 in
data complexity.

Query Containment Checking whetherQ ⊆S Q′ amounts
to checking whether unf(Q,V) is contained in unf(Q′,V) un-
der T . Once again, this is a consequence of Proposition 1. In
light of these considerations, we can prove the following.

Theorem 4. For input S, Q and Q′ as above, VE-UCQ Con-
tainment is in NP-Complete.

To prove the claim, we observe the following. One can
prove that Q ⊆S Q′ if and only if for every q1 ∈ unf(Q,V)
there exists q2 ∈ unf(Q′,V) such that ν ∈ ans(q+2 , 〈T ,Aq〉),
where Aq is the canonical ABox of q+1 and ν(x̄) = c̄x. The
desired complexity upper bound follows from the fact that
one can guess an answer for q+2 in nondeterministic polyno-
mial time. To prove the lower bound, we can show a reduction
from Query Answering for UCQ under DL-LiteR KBs.

5 Adding Negation
An important feature of ontological languages is the ability
to express negative information, i.e., information about what
should not hold for a given set of individuals. Unfortunately,
several fundamental reasoning tasks become undecidable as
soon as we allow unrestricted forms of negation in ontological
KBs (see, e.g., [Gutiérrez-Basulto et al., 2015]). A standard
solution to restore decidability consists in restricting the oc-
currence of negation to specific syntactic positions. This is
the case, e.g., of DL-LiteR KBs where negation can occur
only in disjointness axioms. One may wonder whether a less
restricted form of negation could be recovered using views.
We explore this possibility in what follows, showing that, if
we settle for epistemic negation, i.e., negation occurring only
in front of the K operator, it is possible to define expressive
decidable languages of view definitions.

Intensional Negation We start our analysis of negation in
view definitions with intensional negation, i.e., negation oc-
curring only in front of non-epistemic atoms. An inten-
tional conjunction with safe negation is a formula of the
form ∃ȳ.

∧
iRi(x̄i, ȳi) ∧

∧
j ¬Rj(x̄j , ȳj), where x̄ =

⋃
i x̄i,

ȳ =
⋃

i ȳi, x̄j ⊆ x̄ and ȳj ⊆ ȳ, for every j, and Ri and Rj

are predicates in NO. A conjunctive view definition with safe
negation is a view definition 〈v(x̄), ϕ(x̄)〉 such that ϕ is an in-
tentional conjunction with safe negation. Conjunctive views
with safe negation have a deep negative impact on decidabil-
ity of query answering as the following proposition shows.
Proposition 2. For conjunctive views with safe negation, VE-
CQ Answering is undecidable.

The claim follows from the fact that Query Answering for
conjunctions with safe negation defined above is undecidable
over DL-LiteR KBs ([Gutiérrez-Basulto et al., 2015]).
Epistemic Negation A possible way to mitigate the nega-
tive effects of negation is to allow it in front of the K operator
only. A lightweight epistemic conjunction with negation is an
epistemic formula ϕ(x̄) of the form

∃ȳ. ψ(x̄, ȳ) ∧
∧
j

¬K(∃w̄j .γj(x̄j , ȳj , w̄j))

where ∃ȳ.ψ(x̄, ȳ) is a lightweight epistemic conjunction of
the form ∃ȳ∃ū. α(x̄o, ȳo, ū) ∧

∧n
i=1 K(∃z̄i. βi(x̄i, ȳi, z̄i)),

and ȳj ⊆ ȳ and x̄j ⊆
⋃

i x̄i, for each j. A lightweight
view with negation is a view definition 〈v(x̄), ϕ(x̄)〉 where ϕ
is a lightweight epistemic conjunction with negation. Views
in this class can express meaningful properties, e.g., differ-
ence between certain answers of conjunctive queries, while
preserving query answering decidability. The following theo-
rem defines the computational complexity of query answering
with this class of views.
Theorem 5. For lightweight views with negation, VE-CQ an-
swering is Σp

2-complete and AC0 in data complexity.
To prove the claim, we simply observe that we can un-

fold Q according to V and obtain a lightweight epistemic
conjunction with negation unf(Q,V). Therefore, the de-
sired complexity upper bounds are a direct consequence of
the results presented in [Calvanese et al., 2007a]. To prove
hardness, we can show an encoding of (the negation of)
tuple-generating dependencies(tgds) as lightweight epistemic
conjunctions with negation. The desired lower bounds fol-
low from the fact that satisfaction of binary tgds is Π2

p-hard
([Pichler and Skritek, 2011]).

While VE-CQ Answering remains decidable for
lightweight views with negation, this is not the case of
several other relevant reasoning tasks. A notable example is
VE-UCQ Containment, as the following theorem shows.
Theorem 6. VE-UCQ Containment is undecidable for inten-
sional specifications with lightweight views with negation.

To prove the claim, one can show a reduction from finite
tgd entailment, i.e., the problem of checking whether Σ en-
tails τ over finite models, for input a set Σ of tgds and a single
tgd τ . Checking finite tgd entailment is a notoriously unde-
cidable problem also in the case of binary tgds ([Beeri and
Vardi, 1981]).

Lightweight Epistemic Negation Is it possible to preserve
computability of relevant decision problems while still hav-
ing a restricted form of negation in view definitions? Be-
fore concluding this section, we present a meaningful class
of views with these characteristics. A lightweight negative
epistemic conjunction is a lightweight epistemic conjunction
with negation where wj is empty, for each j. In simple
words, lightweight negation forbids the use of existentially
quantified variables inside the scope of ¬K. A lightweight
negative view is a view definition 〈v(x̄), ϕ(x̄)〉 where ϕ is
a lightweight negative epistemic conjunction. Lightweight
negative views have a limited impact on the decidability of
relevant reasoning tasks as the following theorem shows.
Theorem 7. For lightweight negative views, VE-CQ Contain-
ment is in Πp

3.

To prove the claim, one can show that a counter-example
of containment, i.e., an ABoxA such that ans(Q′, 〈T ,V,A〉)
is not contained in ans(Q, 〈T ,V,A〉), has size at most poly-
nomial in the input. With this upper bound in place, an algo-
rithm can guess suchA in non-deterministic polynomial time,
and check whetherA is an actual counterexample of contain-
ment simply by evaluating queries Q and Q′ over 〈T ,V,A〉.
The latter can be done using the result presented in Theo-
rem 5. With similar arguments, one can prove decidability of
View Containment.
Theorem 8. For lightweight negative views, View Contain-
ment is in Πp

3.

Finally, we can show that View Consistency is decidable
for lightweight views with lightweight negation. To prove this
claim, we can once again show a polynomial upper bound on
the size of a counter-example.
Theorem 9. For lightweight negative views, View Consis-
tency is in coNP .

6 Conclusions
We presented a novel framework for enriching DL KBs with
views. We defined languages for view definitions that can
capture several interesting properties. For views defined in
these languages, we studied the complexity of several rea-
soning tasks and showed that, under reasonable restrictions,
views do not impact the overall complexity of reasoning with
DL-LiteR KBs. The directions for future work are many.
From the practical standpoint, it is of interest to implement
our framework in real OBDA systems. From the theoretical
standpoint, it is of interest to further investigate negation in
view definitions, also considering relationship with the work
on merging DLs and rules (e.g. [Rosati, 2008]).

Acknowledgements
This work has been partially supported by the ERC Advanced
Grant WhiteMech (No. 834228), by the EU ICT-48 2020
project TAILOR (No. 952215), by the ANR AI Chair IN-
TENDED (ANR-19-CHIA-0014), and by the MIUR PRIN
2017 project “HOPE” (prot. 2017MMJJRE).

References
[Arora and Barak, 2009] Sanjeev Arora and Boaz Barak.

Computational Complexity - A Modern Approach. Cam-
bridge University Press, 2009.

[Beeri and Vardi, 1981] Catriel Beeri and Moshe Y. Vardi.
The implication problem for data dependencies. In Shi-
mon Even and Oded Kariv, editors, Automata, Languages
and Programming, 8th Colloquium, Acre (Akko), Israel,
July 13-17, 1981, Proceedings, volume 115 of Lecture
Notes in Computer Science, pages 73–85. Springer, 1981.

[Beeri et al., 1997] Catriel Beeri, Alon Y. Levy, and Marie-
Christine Rousset. Rewriting queries using views in de-
scription logics. In Alberto O. Mendelzon and Z. Meral
Özsoyoglu, editors, Proceedings of the Sixteenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, May 12-14, 1997, Tucson, Arizona,
USA, pages 99–108. ACM Press, 1997.

[Buchheit et al., 1998] Martin Buchheit, Francesco M.
Donini, Werner Nutt, and Andrea Schaerf. A refined
architecture for terminological systems: Terminology =
schema + views. Artif. Intell., 99(2):209–260, 1998.

[Calvanese et al., 2000] Diego Calvanese, Giuseppe De Gi-
acomo, and Maurizio Lenzerini. Answering queries us-
ing views over description logics knowledge bases. In
Henry A. Kautz and Bruce W. Porter, editors, Proceedings
of the Seventeenth National Conference on Artificial Intel-
ligence and Twelfth Conference on on Innovative Applica-
tions of Artificial Intelligence, July 30 - August 3, 2000,
Austin, Texas, USA, pages 386–391. AAAI Press / The
MIT Press, 2000.

[Calvanese et al., 2007a] Diego Calvanese, Giuseppe De Gi-
acomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Eql-lite: Effective first-order query process-
ing in description logics. In Manuela M. Veloso, editor,
IJCAI 2007, Proceedings of the 20th International Joint
Conference on Artificial Intelligence, Hyderabad, India,
January 6-12, 2007, pages 274–279, 2007.

[Calvanese et al., 2007b] Diego Calvanese, Giuseppe De Gi-
acomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Tractable reasoning and efficient query an-
swering in description logics: The DL-Lite family. J. Au-
tom. Reasoning, 39(3):385–429, 2007.

[Calvanese et al., 2012] Diego Calvanese, Giuseppe De Gi-
acomo, Maurizio Lenzerini, and Riccardo Rosati. View-
based query answering in description logics: Semantics
and complexity. J. Comput. Syst. Sci., 78(1):26–46, 2012.

[Gutiérrez-Basulto et al., 2015] Vı́ctor Gutiérrez-Basulto,
Yazmı́n Angélica Ibáñez-Garcı́a, Roman Kontchakov, and
Egor V. Kostylev. Queries with negation and inequalities
over lightweight ontologies. J. Web Semant., 35:184–202,
2015.

[Levesque and Lakemeyer, 2000] Hector J. Levesque and
Gerhard Lakemeyer. The logic of knowledge bases. MIT
Press, 2000.

[Pichler and Skritek, 2011] Reinhard Pichler and Sebastian
Skritek. The complexity of evaluating tuple generating de-
pendencies. In Tova Milo, editor, Database Theory - ICDT
2011, 14th International Conference, Uppsala, Sweden,
March 21-24, 2011, Proceedings, pages 244–255. ACM,
2011.

[Poggi et al., 2008] Antonella Poggi, Domenico Lembo,
Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenz-
erini, and Riccardo Rosati. Linking data to ontologies. J.
Data Semantics, 10:133–173, 2008.

[Rosati, 2008] Riccardo Rosati. On combining description
logic ontologies and nonrecursive datalog rules. In Diego
Calvanese and Georg Lausen, editors, Web Reasoning and
Rule Systems, Second International Conference, RR 2008,
Karlsruhe, Germany, October 31-November 1, 2008. Pro-
ceedings, volume 5341 of Lecture Notes in Computer Sci-
ence, pages 13–27. Springer, 2008.

	Introduction
	Preliminaries
	Views for Knowledge Bases
	Reasoning with Views

	Lightweight Views
	Adding Negation
	Conclusions

