CEUR-WS.org/Vol-2211/paper-25.pdf

Comparing Query Answering in OBDA Tools
over W3C-Compliant Specifications

Manuel Namici and Giuseppe De Giacomo

DIAG, Sapienza, University of Rome
lastname@diag.uniromal.it

Abstract. The Ontology-Based Data Access (OBDA) paradigm aims at
providing to the users a unified and shared conceptual view of the domain
of interest (ontology), while still enabling the data to be stored in differ-
ent data sources. Such data are mapped to the ontology through declar-
ative specifications. In this work we consider the ontology expressed in
OWL 2 QL, relational sources, the mapping expressed in R2RML, and
the user queries expressed in SPARQL. In this W3C-compliant setting,
we compare query answering in the two main tools for OBDA, namely,
Mastro and Ontop, by resorting to the NPD Benchmark, and the full-
fledged OBDA application developed for the Italian Automobile Club
(ACI). We also discuss how R2RML support is added to Mastro.

1 Introduction

The Ontology-Based Data Access (OBDA) paradigm [10] aims at providing to
the users of the system a unified and shared conceptual view of the domain of
interest (ontology), while still enabling the data to be stored in different data
sources, which are managed by a relational database. In an OBDA system the
link between the data stored at the sources and the ontology is provided through
a declarative specification given in terms of a set of mappings.

The interest in the adoption of the OBDA paradigm has lead to the creation
of prototype tools, that have evolved into full-fledged systems. While these tools
effectively enable to answer queries over the ontology, their use in industrial
applications still represents a challenge due to the performance requirements
that have to be met.

In this work we focus on comparing two systems for OBDA, namely, Mas-
tro! and Ontop?. To do so, we first add support for R2ZRML mappings in Mas-
tro, a tool for Ontology-Based Data Access developed at Sapienza, University
of Rome. R2RML is the W3C recommendation for expressing mappings in an
OBDA specification, and was a missing feature in order to enable Mastro to use
a completely-standard specification. We then proceed in performing a compari-
son between these systems over two OBDA specifications: (i) The NPD Bench-
mark [6,3,5] based on the Norwegian Petroleum Directorate (NPD) use-case

! https://wuw.obdasystems.com/mastro
2 https://ontop.inf.unibz.it/

https://www.obdasystems.com/mastro
https://ontop.inf.unibz.it/

adopted in the Optique Project®, and adapted for benchmarking purposes in
the OBDA setting, that is available online*. (ii) The ACI application that is
currently in development between Sapienza University of Rome and the Italian
Automobile Club (ACI).

The rest of this work is organized as follows: In Section 2, we give an overview
of the systems that we have considered, Mastro and Ontop. In Section 3 we
briefly describe how support for the standard R2RML mapping language has
been integrated in Mastro. In Section 4, we discuss the comparison over the NPD
Benchmark, a specification developed by the University of Oslo, and adapted for
its use as a benchmark in the OBDA setting [6,3,5]. In Section 5, we discuss the
comparison over an application of the OBDA paradigm, developed in collabo-
ration between Sapienza University of Rome and the Italian Automobile Club
(ACI), that is used to evaluate the benefits of the OBDA approach in a real
industrial setting.

2 Overview of the systems

Mastro is a Java tool for Ontology-Based Data Access, developed by OBDA
Systems® and Sapienza University of Rome. The theoretical foundations under-
pinning the system are those described in [1,2,10].

Ontologies in Mastro are specified in a logic of the DL-Lite family of lightweight
DLs, that is the logic underpinning the OWL 2 QL profile of the standard OWL
2 language. The system is equipped with a module that enables ontologies ex-
pressed in the OWL 2 language to be approximated in the fragment of DL-Lite
supported by Mastro, using the semantic approach presented in [4]. The query
language supported by Mastro is a subset of the SPARQL 1.0, corresponding to
the class of (union of) conjunctive queries.

The mappings in Mastro are expressed in an internal format, written in XML
syntax. In addition, through the course of this work, we adapted the system to
support most of the R2ZRML standard as an alternative mapping language. The
set of mappings in Mastro can be represented as a triple (M,, M,,, X), where:

— M, constitutes the set of so-called view predicate mappings. Fach assertion
in M, has the following form:

qpp(x) ~ v(z)

where gpp(x) is a query over the alphabet of the data sources (i.e. an SQL
query over the source database), whose free variables are in @, and v(x) is a
view predicate (not in the ontology alphabet), whose free variables are from
x.

3 http://www.optique-project.eu/
4 https://github.com/ontop/npd-benchmark
® http://www.obdasystems.com

http://www.optique-project.eu/
https://github.com/ontop/npd-benchmark
http://www.obdasystems.com

— M, constitutes the set of so-called ontology predicate mappings, that asso-
ciates atomic predicates in the ontology alphabet to conjunctive queries over
the alphabet of the views [9]. Assertions in M, have the following form:

q(x) ~ C(f(y)) (1)
qu(x) ~ P(f1(y1), f2(y2)) (2)
qu(®) ~ A(f(y1),92) (3)

Assertions of the form (1) are called concept mapping assertions, where g, (x)
is a conjunctive query over the views in M,,, with free variables x, y C x, f
is a function term and C' is an atomic concept in the ontology.

Assertions of the form (2) are called role mapping assertions, where g, (x) is
a conjunctive query over the views in M,, with free variables x, y1,y2 C ,
f1 and f3 are function symbols used to build objects out of the values stored
at the data layer, and P is an atomic predicate in the ontology.

Assertions of the form (3) are called atéribute mapping assertions, where
gv(x) is a conjunctive query over the views in M,, with free variables x,
y1 C x, y2 € x, f is a function term and A is an atomic attribute in the
ontology.

Furthermore, the conjunctive queries in the left-hand side of the mappings
can also express conditions over the variables in the mapping, in the form of
(in)equalities, and relational operators.

— XY is a set of data constraints over the view predicates. Data constraints
are used during query reformulation in order to reduce the size of the final
rewriting by applying techniques that take advantage of the semantics of the
views expressed through the constraints. Such techniques are usually referred
to as semantic query optimization (SQO). Assertions in X are divided into:

e Key Constraints, which are assertions of the form:

Key(v[ir, ..., ix])

where v is a view predicate, and i1, ...,7; is a set of pairwise distinct
integers ranging from 1 to the arity of v. Intuitively, these assertions
state that the subset of the attributes of v corresponding to the integers
i1, ..., 1} is an identifier of its tuples. These constraints correspond to the
notion of primary keys in relational databases.

e Inclusion Constraints, which are assertions of the form:

v1fin, ...y in] € 0201, .., ji]

where v1,v2 are two distinct view predicates, i1, ..., i is a set of pairwise
distinct integers ranging from 1 to the arity of vl, and ji, ..., ji is a set
of pairwise distinct integers ranging from 1 to the arity of v2. These
assertions state that the projection of the view vl over the attributes
corresponding to the indexes i1, ...,7; is contained in the projection of
the view v2 over the attributes corresponding to the indexes jq, ..., ji.

e Denial Constraints, which are assertions of the form:
CQ}VI” — 1

where C'Q) s, is a conjuntive query over the view predicates in M,. These
assertions are used to state the query CQas, evaluates to an empty set
and can be used to remove entire sub-queries from the final union of
conjunctive queries.

Query answering for UCQ in Mastro is divided into four phases: (i) The first
phase comprises the rewriting of the input UCQ according to the knowledge
expressed by the TBox of the ontology. The rewriting process, performed by
the Presto [13] algorithm, encodes the knowledge expressed by the TBox and
the user query g into a UCQ ¢’ so that the evaluation of ¢’ produces the same
results of ¢ without taking into account axioms in the TBox. (ii) During the sec-
ond phase the UCQ over the ontology is rewritten, taking into account mapping
from M,, through a mapping unfolding step, based on the partial evaluation
techniques described in [10], in order to deal with the presence of function sym-
bols. The output of this phase is a UCQ expressed over the alphabet of the
views in M,,. This phase is referred to in Mastro as high-level unfolding. (iii) In
the third stage of the query reformulation, optimizations are performed, taking
into account inclusions between views, denial constraints and key constraints,
S0 as to minimize the reformulated query by removing redundant joins or entire
sub-queries contained into others. (iv) Finally, during the last stage of the query
reformulation the optimized UCQ is rewritten taking into account mappings
from M, through a further unfolding step, so as to obtain an SQL query that
can be directly evaluated over the input database. This last phase is referred to
in Mastro as low-level unfolding.

The entire reformulation process in Mastro is implemented in a parallel ap-
proach, that is, each of the rewritings of the input UCQ is treated indipendently
in the reformulation pipeline, and the union of all the answers is performed as
the they are available to the system.

The other system the we considered is Ontop®. Ontop is an open source
OBDA framework, written in Java, developed at the Free University of Bolzen-
Bolzano and released under the terms of the Apache version 2.0 license.

Ontop is based on theoretical foundations from [1,10,11] and supports all
the relevant W3C standards and major relational databases. Ontop supports
OWL 2 QL and RDFS as the ontology languages, SPARQL 1.0 and the OWL
2 QL entailment regime of SPARQL 1.1 for the user queries, and R2RML as
the mapping language. Additionally Ontop has its internal mapping language,
in which mappings consist of (i) a source, which is an SQL query; (ii) a target,
which is an RDF triple pattern, with placeholders from the attributes of the
source query.

In Ontop, the query answering engine Quest transforms SPARQL queries over
the virtual RDF graph into SQL queries, which are executed by the relational

S http://ontop.inf.unibz.it

http://ontop.inf.unibz.it

database engine storing the data. The workflow of the translation is divided into
two stages: The first stage happens during the system initialization, in which
the information contained at the intentional level of the ontology is integrated
into the mappings, generating the so-called T -mappings [11]. The second stage
happens during query execution, where the input SPARQL query is decomposed
into a tree structure (referred to as the SPARQL algebra tree) and each node is
translated into an SQL expression. This second stage makes makes use of the 7T -
mappings generated at system start-up and of the database integrity constraints.
During the translation of this intermediate representation of the query into SQL,
optimizations are applied in order to avoid redundant self-joins, sub-queries, and
joins over complex expressions [12].

3 Adding R2RML Support to Mastro

Support for R2ZRML mappings in Mastro has been added through a module
that translates from/to its internal format to/from a set of mappings expressed
in the R2ZRML syntax. The process of translation of an R2ZRML mapping into
the Mastro internal format is pretty straightforward: We associate to each differ-
ent logical table in the original R2RML mapping a new view predicate mapping,
where the right-hand side corresponds to the effective SQL query of the logi-
cal table, and for each mapping that associates this logical table to a predicate
over the ontology, we create a new ontology predicate mapping, associating to
it the corresponding view predicate. Since R2RML does not allow to express
constraints over the logical tables of the form shown in 2, no data constraint is
generated for the translated mapping. This means that effectively, when using
R2RML as the mapping language, the system is not able to perform any opti-
mization on the final rewriting, as this would require the specification of such
constraints by the mapping designer.

On the other hand, when translating from its internal format to the R2RML
format, we face the problem of how to represent mappings expressed as conjunc-
tive queries over the alphabet of the view predicates. The solution we adopted is
to take the unfolding of the right-hand side of such mappings, and associate this
unfolding to a new logical table that can be used to construct the corresponding
R2RML representation of the original mapping. Also, similarly to what happens
in the opposite direction, the data constraints expressed over the view predicates
are discarded during the translation, as they have no equivalent in R2RML.

The approach here presented has a pretty notable consequence: When using
R2RML as the mapping language, Mastro is not able to perform any (other
than very basic) optimizations over the produced rewriting, as it cannot take
advantage of the SQO module, which requires data constraints to be explicitly
stated in the mappings.

4 Comparison on the NPD Benchmark

The NPD Benchmark is a recent proposal [6,3,5], based on the Norvegian Petroleum
Directorate (NPD) FactPages 7, for the purpose of the evaluation of the perfor-
mance of an OBDA system in a real world scenario.

The NPD FactPages contains information regarding the petroleum activities
on the Norwegian continental shelf. Such information is actively used by oil
companies like Statoil. The Factpages are periodically synchronized with the
NPD’s databases.

The NPD FactPages have been mapped to the ontology and stored in a rela-
tional database. Together with the ontology, the benchmark is provided with a
dump of the original database created from the NPD FactPages, the set of map-
pings expressed in the R2ZRML mapping language, and a set of queries that have
been formulated by domain experts starting from an informal set of questions
provided to the users of the NPD FactPages.

The NPD Ontology [14] describes activities on the Norwegian continental
shelf (NCS), e.g., about companies that own or operate petroleum fields [14].
The ontology has been created by the University of Oslo, and presents rich hier-
archies of classes and properties, axioms that infer new objects, and disjointness
assertions.

The ontology is specified in OWL and for the purpose of the benchmark it
has been restricted to the fragment corresponding to the OWL 2 QL profile.
Overall is composed by about 350 concepts, 142 roles and 238 attributes, with
a maximum hierarchy depth of 10. This restriction is essential for its use in the
context of OBDA as guarantees first-order rewritability for the class of union of
conjunctive queries.

The NPD specification provides a set of 1173 mapping assertions, charac-
terized by an average of 1.7 joins per query. The mappings have been partially
bootstrapped automatically from the database and the ontology, and partially
created by hand, and are specified in the R2RML mapping language.

The mappings have purposely not optimized, to measure the efficiency of
the optimization strategies employed by an OBDA system. This means that the
number of mappings that refer to the same ontology predicate is in general very
large, up to about 30 in some cases.

The 1.9 revision of the NPD benchmark devises 30 SPARQL queries of dif-
ferent complexity, defined by domain experts starting from an informal set of
questions to the users of the NPD FactPages. Among the set of queries, some
have been specifically generated to stress the efficiency of a system when reason-
ing with respect to existential variables.

Some of the characteristics of the queries are the presence of concepts with
a rich hierarchy and the presence of aggregations. For the purpose of this ex-
perimentation, we are only interested in the subset of these SPARQL queries
corresponding to the class of union of conjunctive queries, as this is the seman-
tics for SPARQL queries that is supported by Mastro. The only exception is that

" http://factpages.npd.no/factpages/

http://factpages.npd.no/factpages/

we make is for the use of duplicate elimination from the results. This requires
to change part of the query set (for a detailed description of each of the queries
adopted, we refer the reader to [8]).

The original NPD databases is derived from the data published on the Norve-
gian Petroleum Directorate FactPages®.

The data from FactPages has been translated from CSV files into a structured
database. The generated schema consists of 70 tables with 276 distinct columns
(about 1000 columns in total), and 94 foreign keys.

The schemas of the tables overlap in the sense that several attributes are
replicated in several tables. In fact, there are tables with more than 100 columns.
The total size of the initial database is about 60 MB.

Since OBDA are expected to work in the context of Big Data, the authors of
the benchmark have provided a tool that enables the initial database instance
to be scaled in order to obtain larger instances. The scaling process, imple-
mented by the Virtual Instances Generator (VIG) [7]°, is performed by taking
into account the axioms in the ontology, the structure of the mappings, and
the database constraints in order to preserve a set of similarity measures in the
original database.

Starting from this initial database, instances of different size have been cre-
ated with the use of the VIG generator, and have been loaded into separate
databases. Table 1 shows the scaling factor and the size for each of the gen-
erated databases that have been used in our experiment. the number of the
database represents its scale with respect to the original instance.

Name |Scale Factor| Size
NPD1 1 60 MB
NPD10 10 710 MB
NPD50 50 2570 MB
NPD100 100 5300 MB

Table 1: generated databases

We ran the NPD Benchmark on both the version of Mastro 1.0.2 and On-
top 3.0-beta2'®, on the same physical system using the same set of generated
databases. The underlying DBMS is MySQL version 5.7.21, running locally on
the testing machine.

The specifications of the platform used for the experiments are the following:

CPU Intel Xeon E5-2670 running at 2.60ghz
RAM 16 GB DDR3 1600 mhz

8 http://factpages.npd.no/factpages/

9 https://github.com/ontop/vig

10 The particular version of Ontop used is a snapshot of the development version 3.0-
beta2, compiled on the 17th of October 2017

http://factpages.npd.no/factpages/
https://github.com/ontop/vig

OS Ubuntu 17.10 running in a virtualized environment (4 cores)
The experimentation is performed in the following mode:

— We iterate over the set of queries. at each iteration we pick a random query
from the set and evaluate it over the system. This is done in order to reduce
the effect of the caching in the dbms.
for each execution we store the results and the time it took to complete. we
consider the combined time needed for evaluating the query and processing
the set of results. queries are executed sequentially through the use of a
testing platform designed specifically for this task, which accesses directly
the internal apis of the systems.

— We repeat the process until all queries have been executed a fixed amount
of time, in this case 5 executions were performed.

— Finally, we take the average of the execution times for each of the queries in
the set.

In order to compare the systems under the same setting we enabled for both
reasoning with respect to existential variables. Our metric of comparison is the
total time taken to complete the execution of the query and to process the
results. A comparison of the execution times for both systems for each of the
database instance considered is shown in Figure 1.

We start our analysis by looking at some of the most interesting results. In
particular, the queries where Ontop performs worse are those requiring reasoning
with respect to the existential variables. Examples of these queries are ¢9 and
q10, which cause the system to produce rewritings consisting of unions of tens
of sub-queries.

Queries ¢1,¢2,93,94,97,q15,¢16,¢g25 instead produce a simple SPJ rewriting,
although the difference here is given by the fact that Ontop applies strictly the
rules specified by the OWL 2 standard, performing the datatype casts and the
generation of the IRIs directly at the SQL level, which causes a slowdown of
the execution. Instead, Mastro adopts a less strict approach for dealing with
datatypes, avoiding to perform casts and IRI-construction at the SQL level.

As for queries ¢24-¢25, and ¢28-¢29, it can be noted that in this case Mas-
tro performs considerably slower than Ontop. This is due to the high number
of mappings for the ontology predicates involved in these queries, that have
to be unfolded by the system, and by the high number of sub-classes and sub-
properties for the concepts and properties in the query, which cause the rewriting
to grow exponentially in size. In Mastro, this phenomenon is mitigated with the
addition of data constraints during the design of the views, in such a way that
this redundancy is avoided. In this case, since view are generated automatically
from the R2RML mapping, these constraints are not available to the system,
effectively disabling all the optimizations that the system is capable of perform-
ing. Instead, in Ontop this problem is mitigated during the offline stage, when
the mappings and the ontology are compiled to form the so-called T-mappings,
using the database constraints to optimize the mappings.

ananan

o950
o950

w
W@ e w e @ @ a0 ws ws o a9 w0 @ @ @ @ @ @ @ 6 W@ e W e @ w @ a0 w5 ws @ a9 w0 @ @ @ @ @ @ 6

i ms (LS
i ms (LS

Mesto m Ortop e Masto " Oricp e

(c) NPD50 (d) NPD100

Fig. 1: Query Answering over NPD (Execution Time)

Finally, queries ¢q17-¢19, and ¢26-q27 are less interesting, as they produce
empty unfoldings (due to mismatching function names in the mappings), and
their execution time does not depend on the database size. For these queries,
it can be noted that moving part of the computation to an offline stage gives
Ontop a big advantage, as the system has to check a small amount of mappings
at query execution time.

5 Comparison on the ACI application

The second scenario that we considered is the one currently in development
within a joint project between Sapienza University of Rome and the Italian Au-
tomobile Club (ACI). The main objective of the project is assessing the benefits
of the OBDA approach as a way of extracting data of interest for the ACI users.
The ACI ontology comprises about 500 concepts, 200 roles and 200 attributes,
Among the most important notions in this ontology are the concept of vehicle,
characterizing also its evolution over time, through the notion of state, and the
concept of subject, modeling the possible roles played by the subjects (physical
people or organizations) with respect to the taxation concerning vehicles.

The most important characteristic of this specification is that while the ontol-
ogy has been designed to accurately reflect the reality of the domain of interest,
the data sources are structured as to accomodate the requirements of the appli-
cations that make use of them. This large semantic gap between the data sources
and the ontology has a large impact on the complexity of the mappings used to
map the data at the sources to the ontology.

In this particular application the database is managed by an instance of the
Oracle DBMS, for which we were granted accessed remotely through the use
of a VPN. The relevant portion of the data for our experiment is distributed
across 6 schemas. These schemas are composed of hundreds of tables, but for
what regards the portion of the domain that is of interest in this experiment we
concentrate on about 90 relational tables, ranging from information regarding
the domain of PRA (Pubblico Registro Automobilistico), to those regarding the
taxation concerning the vehicles. Some of these tables count from 200 million
tuples up to above 1 billion tuples, with a number of attributes ranging from 30
to 100. The overall size of the portion of interest of the data source is several
gigabytes of data (an accurate estimate was not possible).

The specification comprises 976 ontology mappings, composed from a set of
about 110 views over the data source. About 300 of these ontology mappings are
built from single view atoms, while the remaining are specified as conjunctive
queries over the view predicates. For the purpose of our experimentation the
mappings have been previously translated in R2ZRML through the use of the ap-
proach described in Section 3, and then imported back into both systems. During
the translation process the constraints over the view predicates are discarded,
since they cannot be expressed in R2RML.

We devised a set of 10 queries for our experiment (we refer the reader to [8]
for a detailed description of the query set). Query ¢l to ¢5 are basic naviga-
tional queries, that span some of the relevant part of the ontology. The remaining
queries g6 to ¢q10 are variations of the real queries used in the original experimen-
tation of the project. These queries are built from a set of competency questions,
defined by interviewing the domain experts over the practical questions that
have to be posed to the system, and are used to validate the quality and the
coherency of the specification.

We ran the queries on Mastro, version 1.0.2, and Ontop 3.0-beta2!!, using
the same specification composed by the ontology and the mappings exported in
R2RML.

The specifications of the platform used for the experiments are the same
adopted in the case of the NPD Benchmark (cf. 4). In order to compare the
systems under the same setting we enabled for both reasoning with respect to
existential variables. Our metric of comparison is the total time taken to complete
the execution of the query and to the process the results. Due to restrictions in
the amount of time we were allowed for experiments, the queries were executed
with a timeout of 3 hours. As a reference, we report also the time needed by the

11 The particular version of Ontop used is a snapshot of the development version 3.0-
beta2, compiled on the 17th of October 2017

Mastro system using the original mapping specification to evaluate the same set
of queries. Figure 2 shows the overall execution times for both systems.

Time in ms (Log Scale)

Query
Mastro B Mastro R2RML e Ontop ==

Fig. 2: Query Answering over ACI (Execution Time)

The first thing we notice from our experimentation is that in the case of the
more complex queries (¢6 — 10) Ontop was not able to complete in the time
allowed, even though both systems are using the same specification. By further
inspecting the generated SQL rewritings, We identified a few reasons for this
phenomenon: (i) One reason is that, in the case of Ontop, the entire rewriting is
executed as a single, complex SQL query, and the database management system
was not able to compute an efficient query plan for such large queries. (ii) An-
other reason is that when the optimizations performed to reduce the size of the
T-mappings fail, because there may be missing database constraints, or possibly
due to the complexity of the queries in the mappings, the system produces rewrit-
ing containing complex sub-queries, composed of unions of several SPJ queries
and these types of queries are not evaluated efficiently. (iii) Finally, having the
objects to be constructed directly at the level of the data sources, through the
use inherently poorly performing operations such as string concatenation and
type casts, is not feasible in real industrial applications. We noticed that in this
particular case little to no optimizations were applied by Ontop, which caused
it to produce rewritings where the intermediate views are composed by complex
nested unions of select-project-join queries, that are not dealt with efficiently by
the DBMS.

On the other hand, the approach adopted in Mastro, of splitting the queries
in several, simpler conjunctive queries, still enabled the system to complete the
task in the time allowed, even if in this case there are no optimizations performed,
as the constraints over the views are not expressible in R2ZRML, which cause the
time taken by the system to increase up to almost three orders of magnitude for
the most difficult query.

References

10.

11.

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Fam-
ily. J. Autom. Reasoning 39(3), 385-429 (2007). https://doi.org/10.1007/s10817-
007-9078-x, https://doi.org/10.1007/s10817-007-9078-x

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data
complexity of query answering in description logics. Artif. Intell. 195, 335-360
(2013). https://doi.org/10.1016/j.artint.2012.10.003, https://doi.org/10.1016/
j.artint.2012.10.003

Calvanese, D., Lanti, D., Rezk, M., Slusnys, M., Xijao, G.: A scalable benchmark
for OBDA systems: Preliminary report. In: Informal Proceedings of the 3rd Inter-
national Workshop on OWL Reasoner Evaluation (ORE 2014) co-located with the
Vienna Summer of Logic (VSL 2014), Vienna, Austria, July 13, 2014. pp. 36-43
(2014), http://ceur-ws.org/Vol-1207/paper_5.pdf

Console, M., Mora, J., Rosati, R., Santarelli, V., Savo, D.F.: Effective com-
putation of maximal sound approximations of description logic ontologies. In:
The Semantic Web - ISWC 2014 - 13th International Semantic Web Confer-
ence, Riva del Garda, Italy, October 19-23, 2014. Proceedings, Part II. pp. 164—
179 (2014). https://doi.org/10.1007/978-3-319-11915-1_11, https://doi.org/10.
1007/978-3-319-11915-1_11

Lanti, D., Rezk, M., Slusnys, M., Xiao, G., Calvanese, D.: The NPD benchmark
for OBDA systems. In: Proceedings of the 10th International Workshop on Scal-
able Semantic Web Knowledge Base Systems co-located with 13th International
Semantic Web Conference (ISWC 2014), Riva del Garda, Italy, October 20, 2014.
pp. 3-18 (2014), http://ceur-ws.org/Vol-1261/5SWS2014_paperl.pdf

Lanti, D., Rezk, M., Xiao, G., Calvanese, D.: The NPD Benchmark: Reality
Check for OBDA Systems. In: Proceedings of the 18th International Conference
on Extending Database Technology, EDBT 2015, Brussels, Belgium, March 23-
27, 2015. pp. 617-628 (2015). https://doi.org/10.5441/002/edbt.2015.62, https:
//doi.org/10.5441/002/edbt.2015.62

Lanti, D., Xiao, G., Calvanese, D.: Data scaling in OBDA benchmarks: The VIG
approach. CoRR abs/1607.06343 (2016), http://arxiv.org/abs/1607.06343
Namici, M.: R2RML mappings in OBDA systems: Enabling comparison among
OBDA tools. CoRR abs/1804.01405 (2018), http://arxiv.org/abs/1804.
01405

Pinto, F.D., Lembo, D., Lenzerini, M., Mancini, R., Poggi, A., Rosati, R., Ruzzi,
M., Savo, D.F.: Optimizing query rewriting in ontology-based data access. In: Joint
2013 EDBT/ICDT Conferences, EDBT ’13 Proceedings, Genoa, Italy, March 18-
22, 2013. pp. 561-572 (2013). https://doi.org/10.1145/2452376.2452441, http://
doi.acm.org/10.1145/2452376.2452441

Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M.,
Rosati, R.: Linking Data to Ontologies. J. Data Semantics 10, 133-173
(2008). https://doi.org/10.1007/978-3-540-77688-8_5, https://doi.org/10.1007/
978-3-540-77688-8_5

Rodriguez-Muro, M., Kontchakov, R., Zakharyaschev, M.: Ontology-Based Data
Access: Ontop of Databases. In: The Semantic Web - ISWC 2013 - 12th Interna-
tional Semantic Web Conference, Sydney, NSW, Australia, October 21-25, 2013,
Proceedings, Part I. pp. 558-573 (2013). https://doi.org/10.1007/978-3-642-41335-
3_35, https://doi.org/10.1007/978-3-642-41335-3_35

https://doi.org/10.1007/s10817-007-9078-x
https://doi.org/10.1007/s10817-007-9078-x
https://doi.org/10.1007/s10817-007-9078-x
https://doi.org/10.1016/j.artint.2012.10.003
https://doi.org/10.1016/j.artint.2012.10.003
https://doi.org/10.1016/j.artint.2012.10.003
http://ceur-ws.org/Vol-1207/paper_5.pdf
https://doi.org/10.1007/978-3-319-11915-1_11
https://doi.org/10.1007/978-3-319-11915-1_11
https://doi.org/10.1007/978-3-319-11915-1_11
http://ceur-ws.org/Vol-1261/SSWS2014_paper1.pdf
https://doi.org/10.5441/002/edbt.2015.62
https://doi.org/10.5441/002/edbt.2015.62
https://doi.org/10.5441/002/edbt.2015.62
http://arxiv.org/abs/1607.06343
http://arxiv.org/abs/1804.01405
http://arxiv.org/abs/1804.01405
https://doi.org/10.1145/2452376.2452441
http://doi.acm.org/10.1145/2452376.2452441
http://doi.acm.org/10.1145/2452376.2452441
https://doi.org/10.1007/978-3-540-77688-8_5
https://doi.org/10.1007/978-3-540-77688-8_5
https://doi.org/10.1007/978-3-540-77688-8_5
https://doi.org/10.1007/978-3-642-41335-3_35
https://doi.org/10.1007/978-3-642-41335-3_35
https://doi.org/10.1007/978-3-642-41335-3_35

12.

13.

14.

Rodriguez-Muro, M., Rezk, M.: Efficient SPARQL-to-SQL with R2RML mappings.
J. Web Sem. 33, 141-169 (2015). https://doi.org/10.1016/j.websem.2015.03.001,
https://doi.org/10.1016/j.websem.2015.03.001

Rosati, R., Almatelli, A.: Improving Query Answering over DL-Lite Ontologies.
In: Principles of Knowledge Representation and Reasoning: Proceedings of the
Twelfth International Conference, KR 2010, Toronto, Ontario, Canada, May 9-13,
2010 (2010), http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1400
Skjeeveland, M.G., Lian, E.H., Horrocks, I.: Publishing the norwegian
petroleum directorate’s factpages as semantic web data. In: The Seman-
tic Web - ISWC 2013 - 12th International Semantic Web Conference, Syd-
ney, NSW, Australia, October 21-25, 2013, Proceedings, Part II. pp. 162—
177 (2013). https://doi.org/10.1007/978-3-642-41338-4_11, https://doi.org/10.
1007/978-3-642-41338-4_11

https://doi.org/10.1016/j.websem.2015.03.001
https://doi.org/10.1016/j.websem.2015.03.001
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1400
https://doi.org/10.1007/978-3-642-41338-4_11
https://doi.org/10.1007/978-3-642-41338-4_11
https://doi.org/10.1007/978-3-642-41338-4_11

	Comparing Query Answering in OBDA Tools over W3C-Compliant Specifications

