
Interestingness of traces

in declarative process mining:

the Janus LTLpf approach

Alessio Cecconi1r0000´0001´5730´6332s, Claudio Di Ciccio1r0000´0001´5570´0475s,
Giuseppe De Giacomo2r0000´0001´9680´7658s,

and Jan Mendling1r0000´0002´7260´524Xs

1 Vienna University of Economics and Business, Vienna, Austria
{alessio.cecconi,claudio.di.ciccio,jan.mendling}@wu.ac.at

2 Sapienza University of Rome, Rome, Italy
degiacomo@dis.uniroma1.it

Abstract. Declarative process mining is the set of techniques aimed at extracting
behavioural constraints from event logs. These constraints are inherently of a re-
active nature, in that their activation restricts the occurrence of other activities. In
this way, they are prone to the principle of ex falso quod libet: they can be satisfied
even when not activated. As a consequence, constraints can be mined that are hardly
interesting to users or even potentially misleading. In this paper, we build on the
observation that users typically read and write temporal constraints as if-statements
with an explicit indication of the activation condition. Our approach is called Janus,
because it permits the specification and verification of reactive constraints that,
upon activation, look forward into the future and backwards into the past of a trace.
Reactive constraints are expressed using Linear-time Temporal Logic with Past
on Finite Traces (LTLpf). To mine them out of event logs, we devise a time bi-
directional valuation technique based on triplets of automata operating in an on-line
fashion. Our solution proves efficient, being at most quadratic w.r.t. trace length,
and effective in recognising interestingness of discovered constraints.

Keywords: process mining, declarative processes, temporal logics, separation
theorem, automata theory

1 Introduction

Declarative process mining is the set of techniques aimed at extracting and validating tem-
poral constraints out of event logs, i.e., multi-sets of finite traces. The semantics of these
constraints are typically expressed using Linear Temporal Logic on Finite Traces (LTLf)
over activities occurring in traces. Examples of declarative process modelling languages
are DECLARE [23] and DCR Graphs [11]. In DECLARE, for instance, RESPONSEpa,bq is
a constraint applying the parametric template RESPONSE to activities a and b. It imposes
that if a occurs in a trace, then b must occur eventually afterwards. PRECEDENCEpc,dq
states that if d occurs in a trace, then c must have occurred before.

Constraints are inherently of a reactive nature in that the activation of certain conditions,
e.g., the occurrence of a or d, exert restrictions on the occurrence of other activities, that is

Pre-print copy of the manuscript published by Springer
(available at link.springer.com)

b afterwards and c beforehand in the examples. For this reason, they are prone to the prin-
ciple of ex falso quod libet: not activated constraints are satisfied. This is a serious problem
for the ambition of process mining to provide a precise understanding into the behaviour
of the process. Returning not activated constraints is hardly interesting to the user or even
misleading. A trace, e.g., in which neither a nor d occur, satisfies both RESPONSEpa,bq
and PRECEDENCEpc,dq. To avoid such spurious results, approaches have been introduced
to detect satisfaction vacuity. These are based on the parsing of the underlying LTLf

formulae [14], tailored to language-specific templates [18], and checking the state-change
of accepting automata [20]. Those solutions hardly provide results that meet the intuition
of users who read and write constraints [7], as they respectively provide different activation
criteria depending on how formulae are written [14], are restricted to the sole standard
DECLARE templates [18], and are bound to the underlying automata semantics, thus, e.g.,
considering the occurrence of c, and not d, as an activation for PRECEDENCEpc,dq [20].

Against this background, we introduce the Janus approach. First, with this approach,
the user can explicitly define activation conditions directly within the constraint formula,
similarly to what devised for Compliance Rule Graphs in [17]. The rationale is that users
themselves specify what the activation is, thereby making explicit what is of interest
and what is not. Because constraints are meant to be activated upon specified conditions,
we refer to them as reactive constraints. Second, we define a degree of interestingness

that is computed on traces for such constraints. These constraints are expressed using
Linear-time Temporal Logic with Past on Finite Traces (LTLpf) [22,16,2] in a specific
form that singles out the activating event, conditions on its past and conditions on its the
future. Third, in order to mine these constraints out of event logs, we automatically derive
triples of automata based on the well-known separation theorem [8], for the analysis of past
prefix, current event, and future suffix of the analysed trace, every time a new activation
occurs. Fourth, we integrate these concepts into a time bi-directional constraint evaluation
algorithm operating in an on-line fashion, which inspired us to call this approach Janus.
Our solution proves efficient with at most quadratic complexity w.r.t. trace length, and
is effective in terms of separating interesting from not interesting constraints.

The paper is structured as follows. Section 2 revisits preliminaries, in particular LTLpf

and how to separate its formulae through the separation theorem. Section 3 presents the
Janus approach, defining the reactive constraints, their interestingness degree, and how
to verify them using automata theory. Section 4 presents the algorithm to retrieve the in-
terestingness degree in an on-line fashion. Section 5 evaluates our proposal in comparison
with other state of the art process miners, both using synthetic and real-life logs. Section 6
concludes the paper and identifies directions for future research.

2 Preliminaries

Event logs. In this paper, we consider a trace as a sequence of events t “ xe1,...,eny,
where nPN is the length of the trace, and events ei belong to an alphabet of symbols⌃.
Function tpiq returns event ei occurring at instant i in the trace. With tri:js we identify a
segment (henceforth, sub-trace) extracted from trace t and ranging from instant i to instant
j, where 1§ i§ j§n. tR is the reverse of a trace t, i.e., such that tpiq “ tRpn´i`1q for
every 1§ i§n. An event logL“t|t1,t2,...,tm|uPMp⌃˚q, or log for short, is a multi-set of

Pre-print copy of the manuscript published by Springer
(available at link.springer.com)

Table 1: Some DECLARE constraints expressed as Reactive Constraints

Constraint LTLf expression [3] RCon Separation degree

PARTICIPATIONpaq ⌃a tStart �̋⌃a 1

INITpaq a tStart �̋a 1

ENDpaq l⌃a tEnd �̋a 1

RESPONDEDEXISTENCEpa,bq ⌃a Ñ⌃b a �̋p⌃b_⌃bq 2

RESPONSEpa,bq lpa Ñ⌃bq a �̋⌃b 1

ALTERNATERESPONSEpa,bq lpa Ñ⌃bq^lpa Ñ lp aW bqq a �̋lp aUbq 1

CHAINRESPONSEpa,bq lpa Ñ⌃bq^lpa Ñ lbq a �̋lb 1

PRECEDENCEpa,bq bW a b �̋⌃a 1

ALTERNATEPRECEDENCEpa,bq p bW aq^lpb Ñ lp bW aqq b �̋ap bSaq 1

CHAINPRECEDENCEpa,bq p bW aq^lplb Ñ aq b �̋aa 1

traces tj with 1§j§m, mPN. We shall use a compact notation denoting the multiplicity

of traces with a superscript, e.g., t51 means that t1 occurs 5 times in L.

Example 1. Let L “
 ̌̌
t
25
1 ,t

15
2 ,t

10
3 ,t

20
4 ,t

5
5,t

20
6 ,t

5
7

ˇ̌(
be an event log of 100 traces, de-

fined on the alphabet of events ⌃ “ ta, b, ... , iu, where t1 “ xd,f,a,f,c,a,f,b,a,fy,
t2 “ xf,e,d,c,b,a,g,h,iy, t3 “ xa,d,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,cy, t4 “ xd,b,a,ey,
t5 “ xa,d,a,c,ay, t6 “ xb,c,d,ey, t7 “ xb,c,ay. We have that t1p7q “ f, t1r3:7s “ xa,f,c,a,fy,
t2R “xi,h,g,a,b,c,d,e,fy.

DECLARE. DECLARE is a declarative process modelling language and notation [23]. It
defines a set of standard templates based on [7], abstracting from the actual semantics
used to describe them. In that way the complexity of the underneath logic is hidden to
the user. The template parameters are tasks occurring as events in traces. For example,
CHAINPRECEDENCE is a binary template stating that the occurrence of the second task
imposes the first one to occur immediately before. PRECEDENCE loosens that condition
requiring the second task to occur any time before the first one. DECLARE semantics are
rooted in temporal logics. Its standard template set, a part of which is listed in Table 1, is
meant to be extended with custom ones that suit best the user needs [23].
DECLARE constraints are templates whose parameters are assigned with tasks, e.g.,
PRECEDENCEpb,aq applies the PRECEDENCE template on tasks a, the activation, and
b. Constraints are verified over events of traces. Those that do not violate a con-
straint, satisfy it. In Ex. 1, e.g., all events of t7 satisfy PRECEDENCEpb, aq whereas
CHAINPRECEDENCEpb,aq is violated by t7(3). Notice the principle of ex falso quod

libet: both PRECEDENCEpb,aq and CHAINPRECEDENCEpb,aq are satisfied by t6, where a,
namely the activation, never occurs. This is arguably misleading, and calls for an approach
that considers the reactive nature of constraints, i.e., such that it (i) singles out activations
and (ii) dictates the conditions to check upon activation in the future and past of the trace.
In the literature, constraints are formulated in LTLf as of [3], as listed in Table 1. To cater
for temporal modalities referring to the past, we resort on an extension of the syntax of
LTLf , namely the one of Linear-time Temporal Logic with Past on Finite Traces (LTLpf).
LTLpf . Well-formed LTLpf formulae are built from an alphabet⌃Ötau of propositional
symbols and are closed under the boolean connectives, the unary temporal operators

Pre-print copy of the manuscript published by Springer
(available at link.springer.com)

l(next) and a(previous), the binary temporal operators U (Until) and S (Since):

' ::“a|p 'q|p'1^'2q|pl'q|p'1U'2q|pa'q|p'1S'2q.

From these basic operators it is possible to derive: classical boolean abbreviations
True,False,_,Ñ; constant tEnd, verified as lTrue, denoting the last instant of the trace;
constant tStart, verified as aTrue, denoting the first instant of the trace; ⌃' as TrueU'

indicating that ' holds true eventually before tEnd; '1W'2 as p'1U'2q_l'1, which
relaxes U as '2 may never hold true; ⌃' as TrueS' indicating that ' holds true even-
tually in the past after tStart; l' as ⌃ ' indicating that ' holds true from the current
instant till tEnd; a' as ⌃ ' indicating that' holds true from tStart to the current instant.
We remark that, w.l.o.g., we consider here the non-strict semantics of U and S [12].
Given a trace t, a LTLpf formula ' is satisfied in a given instant i (1§ i§n) by induction
of the following:
t,i |ùTrue; t,i*False; t,i |ùa iff tpiq is assigned with a;
t,i |ù ' iff t,i*'; t,i |ù'1^'2 iff t,i |ù'1 and t,i |ù'2;
t,i |ùl' iff i†n and t,i`1 |ù'; t,i |ùa' iff i°1 and t,i´1 |ù';
t,i |ù'1U'2 iff t,j |ù'2 with i§j§n, and t,k |ù'1 for all k s.t. i§k†j;
t,i |ù'1S'2 iff t,j |ù'2 with 1§j§ i, and t,k |ù'1 for all k s.t. j†k§ i.

In the following, we will classify l,l,⌃, U as future operators, a,a,⌃, S as past

operators, and the following pairs of operators as mirror images: (i) l and a, (ii) l and
a, (iii) ⌃ and ⌃, (iv) U and S . We shall also name as mirror image of formula ' the
temporal formula obtained by replacing all its operators with their mirror images [25],
henceforth denoted as 'M.

Definition 1 (Pure temporal formula [8]). A LTLpf formula ' is named: pure past

('
û
) if it contains only past operators; pure present ('

ù
) if it contains no temporal

operators at all; pure future ('
§
) if it contains only future operators.

For example, 'û “apaSp⌃bqq, 'ù “a^b_c, and '§ “lp⌃a_plbqUcq are pure past,
pure present, and pure future formulae, respectively.
We argue that separating formulae into ones that refer to the sole past, future, or present,
allows for a bi-directional on-line analysis of sub-traces at activation time. The separation
theorem, first introduced in [8], proves that such a separation can be obtained.

Theorem 1 (Separation theorem (adapted from [8])). Any propositional temporal

formula written with U , S , l, and a operators can be rewritten as a boolean combination

of pure temporal formulae.

The constructive proof of Theorem 1 in [8] provides a syntactic procedure to pull out a,
S from the scope of l, U in LTLpf formulae, and vice-versa. It thus provides the base
substitution rules such that their recursive application brings to the decomposition of a
LTLpf formula in pure temporal formulae. We capture this notion as follows.

Definition 2 (Temporal separation, separated formula). Let ' be a LTLpf formula

over⌃. A temporal separation is a function S :LTLpf Ñ2LTLpf ˆLTLpf ˆLTLpf . Indicating

Pre-print copy of the manuscript published by Springer
(available at link.springer.com)

'
û
, '

ù
, and '

§
respectively as pure past, present, and future formulae, defined over⌃ as

per Def. 1, S p'q“tp'û
,'

ù
,'

§q1,...,p'û
,'

ù
,'

§qmu is such that

'”
m™

j“1

p'û^'
ù^'

§qj .

We call separated formula any element in the co-domain of S p'q.

For example, pab_⌃cq”ppabq^pTrueq^pTrueqqöppTrueq^pTrueq^p⌃cqq.

s0

s1 s2

s3

xP⌃
b

xP⌃ztbu

xP⌃

xP⌃

Fig. 1: An automaton veri-
fying lb

Automata. A (deterministic finite-state) automaton is
a rooted finite-state labelled transition system A “
p⌃,S,�,s0,SFq P A, where: ⌃ is the alphabet; S is a finite
non-empty set of states; � :Sˆ⌃ÑS is a (total) transition
function; s0 is the initial state; SFÑS is the set of accepting
states. An automaton accepts a trace t“xe1,...,eny if a walk
of tuples xps0,e1,s1q,...,psn´1,en,snqy, namely a replay,
exists such that si “ �psi´1,eiq for 1§ i§ n and sn P SF.
We shall name si in tuple psi´1,ei,siq as current state of
the replay at instant i. The set of all traces accepted by A is
named language of A, denoted as L pAq. Figure 1 depicts
an automaton whose language consists of all traces of length n•2 having b as its second
event. Considering the event log of Ex. 1, it accepts only t4 “ xd,b,a,ey. Reportedly
approaches exist that build automata verifying any formula of Linear Temporal Logic
(LTL) [26], Linear-time Temporal Logic with Past (LTLp) [24,9], or LTLf [2] on traces:
such automata accept all and only the traces such that all events satisfy a formula '. We
indicate them as A'. The automaton of Fig. 1, e.g., verifies lb. Notice that automata
verification considers whole traces as either satisfying or violating a formula.

3 The Janus approach

Here we present the concepts upon which our approach is built, beginning with the core
notion of Reactive Constraints (RCons). RCons are meant to bear the interestingness
semantics, because the role of activation is singled out from the rest of exerted conditions:
only if the activation ↵ “triggers” the constraint and a LTLpf formula ' is verified on the
trace, then its fulfilment is interesting.

Definition 3 (Reactive Constraint (RCon)). Given an alphabet⌃, let↵P⌃YttStart,tEndu
be an activation, and ' be a LTLpf formula over⌃. A Reactive Constraint (RCon) is a

pair p↵,'q hereafter denoted as fi↵ �̋'. We denote the set of all RCons over⌃ as R.

In the following, we will assume traces, automata, LTLpf formulas and RCons to be
all defined over a shared alphabet⌃. Constraints of declarative process languages such
as DECLARE can be expressed as RCons, as shown in Table 1. For example, the RCon
corresponding to PRECEDENCEpd,aq is a �̋⌃d. Activations in constraints are identified
according to the classification of [5]. RCons can include non-standard DECLARE con-
straints such as a �̋pab_⌃cq, which imposes that if an event a occurs in a trace, either b

Pre-print copy of the manuscript published by Springer
(available at link.springer.com)

immediately precedes it, or c eventually occurs after. We say that a activates the RCon.
We remark that although ' is a LTLpf formula, semantics of RCons detach from classical
LTLpf in that every occurrence of ↵ triggers a new verification of ' on the trace.

Definition 4 (Activator, triggering trace). Given a trace t P ⌃
˚

of length n and an

instant i s.t. 1§ i§n, an RCon “↵ �̋' is activated at i if t,i |ù↵. Event tpiq is then

named activator of . A trace in which at least an activator of exists, is triggering for .

Consider, e.g., the event log from Ex. 1 and “ a ˝� ⌃d, i.e., PRECEDENCEpd,aq in
DECLARE. is activated in trace t4 “ xd,b,a,ey by t4p3q; in trace t5 “ xa,d,a,c,ay it is
activated by t5p1q, t5p3q, and t5p5q; in trace t6 “ xb,c,d,ey it is never activated; in trace
t7 “xb,c,ay is activated by t7p3q. Therefore t4,t5, and t7 are triggering for .

Definition 5 (Interesting fulfilment). Given a trace tP⌃˚
of length n, an instant i s.t.

1§ i§n, and an RCon “↵ �̋', is interestingly fulfilled at i if t,i |ù↵ and t,i |ù'.

The RCon is violated at instant i if t,i |ù↵ and t,i*'. Otherwise, the RCon is unaffected.

Consider again Ex. 1 and “ a �̋⌃d. In trace t4 the RCon is interestingly fulfilled by
t4p3q; in trace t5 it is interestingly fulfilled by t5p3q and t5p5q, and violated by t5p1q; in
trace t6 it is unaffected at all instants, i.e., neither interestingly fulfilled nor violated; in trace
t7 it is violated by t7p3q. We remark that instants at which a DECLARE constraint is satisfied
can be such that the corresponding RCon is unaffected, i.e., when t,i |ù' but t,i*↵.

3.1 Measuring the interesting fulfilments of a Reactive Constraint on a log

Because each activator triggers a new check for the RCon, the degree of interestingness of
a trace is analysed at the level of events as follows.
Definition 6 (Interestingness degree). Given a trace tP⌃˚

and an RCon “↵ ˝�',

we define the interestingness degree function ⇣ :Rˆ⌃
˚ Ñr0,1sÑR as follows:

⇣p ,tq“

$
&

%

|ti : t,i |ù↵ and t,i |ù'u|
|ti : t,i |ù↵u| if |ti : t,i |ù↵u|‰0;

0 otherwise.

Intuitively the interestingness degree measures the percentage of activations leading
to (interesting) fulfilment within the trace. For instance, the interestingness degree of
 “a �̋⌃d in t5 “xa,d,a,c,ay is ⇣p ,t5q“0.667, because it is interestingly fulfilled by
2 activators out of 3. All the 20 activators of in t3 “ xa,d,a,...,a,cy lead to interesting
fulfilment, except one (the first a event). Therefore ⇣p ,t3q“0.950.

Next, we introduce the computation of two measures for the whole event log, adapting
the classical definition of [1]: support measures how often the constraint is (interestingly)
satisfied in the whole event log; confidence quantifies how the constraint is satisfied in the
triggering traces in the event log.
Definition 7 (Support). Given an event log L“ t|t1,t2,...,tm|u PMp⌃˚q, and an RCon

 PR, we define as support of on L the function � :RˆMp⌃˚qÑr0,1sÑR calculated

as the average of interestingness degree values of over all traces tj PL, with 1§j§m:

�p ,Lq“
#∞m

j“1⇣p ,tjq
|L| if |L|°0;

0 otherwise.

Pre-print copy of the manuscript published by Springer
(available at link.springer.com)

Table 2: Interestingness degree, support, and confidence of RCons on an example log

PRECEDENCEpd,aq a �̋pab_⌃cq
Trace Multi. Activ.’s Int.fulfil.’s ⇣ Activ.’s Int.fulfil.’s ⇣

t1 xd,f,a,f,c,a,f,b,a,fy 25 3 3 1 3 2 0.667

t2 xf,e,d,c,b,a,g,h,iy 15 1 1 1 1 1 1

t3 xa,d,a,a,...,a,a,cy 10 20 19 0.950 20 20 1

t4 xd,b,a,ey 20 1 1 1 1 1 1

t5 xa,d,a,c,ay 5 3 2 0.667 3 2 0.667

t6 xb,c,d,ey 20 0 0 0 0 0 0

t7 xb,c,ay 5 1 0 0 1 0 0

Support 0.728 0.650

Confidence 0.910 0.813

Definition 8 (Confidence). Given an event log L “ t|t1,t2,...,tm|u P M p⌃˚q and an

RCon P R, let rL “
 ̌̌ rt1,rt2,...,rtp

ˇ̌(
with 1 § p § m be the portion of L that con-

sists of all the traces triggering . We define the confidence of on L the function

 :RˆMp⌃˚qÑr0,1sÑR as the average of interestingness degree values of over the

triggering traces rtj P rL:

p ,Lq“

$
&

%

∞p
j“1⇣p , rtjq

| rL| if |rL|°0;

0 otherwise.

As seen above, e.g., the interestingness degree of the RCon of
PRECEDENCEpd, aq, “ a ˝ � ⌃d, is ⇣p , t5q “ 2

3 “ 0.667. Averag-
ing the interestingness degree of PRECEDENCEpd, aq on all traces (includ-
ing their multiplicities), we obtain the support �p ,Lq, which amounts to
p1ˆ25q`p1ˆ15q`p0.95ˆ10q`p1ˆ20q`p0.67ˆ5q`p0ˆ20q`p0ˆ5q

100 “ 0.728. The value of
Confidence p ,Lq is p1ˆ25q`p1ˆ15q`p0.95ˆ10q`p1ˆ20q`p0.67ˆ5q`p0ˆ5q

80 “ 0.910, thus
higher than support, because is not activated in trace t6, hence the lower denominator.
Table 2 shows in detail the interestingness degree, support, and confidence of constraints
PRECEDENCEpd,aq and a �̋pab_⌃cq on the event log seen in Ex. 1.

Considering each activation independently to compute interestingness degree, support
and confidence, allows for higher resilience to noise in event logs. This is particularly
evident in t3, in which 19 occurrences of a, the activation, are preceded by d, thus fulfilling
the constraint. Only the first a leads to violation. Considering the whole trace as fulfilling
or not, as in [18,19], would lead to an interestingness degree of 0, instead of 0.95, thus
decreasing support and confidence too. Because the constraints returned by discovery
techniques are those that have a support and confidence above user-defined thresholds,
that could lead to a loss of information.

3.2 An automata approach to Reactive Constraint verification

Once an RCon “↵ �̋' is activated, its fulfilment relies on the verification of the LTLpf

formula ' at the instant of activation. As seen in Theorem 1 it is possible to separate a
LTLpf formula into sub-formulae, each containing either only past, only future, or no

Pre-print copy of the manuscript published by Springer
(available at link.springer.com)

temporal operators. Therefore its verification can be decoupled by splitting the trace in
two independent sub-traces: one from the beginning to the activator, with which the sole
past operators are verified, and one from the activator on, concerning only future operators.

Lemma 1. Given a pure past formula'
û
, a pure present formula'

ù
, a pure future formula

'
§
, a trace tP⌃˚

of length n and an instant i s.t. 1§ i§n, the following hold true:

t,i |ù'
û ” tr1,is,i |ù'

û; t,i |ù'
ù ” tri,is,i |ù'

ù; t,i |ù'
§ ” tri,ns,i |ù'

§
.

The lemma follows from definition of LTLpf semantics. For example, evaluating'û “⌃d
on t2 “ xf,e,d,c,b,a,g,h, iy from Ex. 1 at instant i “ 6 is equivalent to evaluating it on
t2r1:6s “xf,e,d,c,b,ay at i, because 'û concerns only the prefix of t2. Instead '§ “⌃c at i
concerns only the suffix, t2r6:9s“xa,g,h,iy.

Theorem 2 (Trace sub-valuation). Given a LTLpf formula ' , a trace tP⌃˚
of length

n and an instant i s.t. 1§ i§ n, we have that t,i |ù' if and only if tr1:is,i |ù'
û
,

tri:is,i |ù'
ù
, and tri:ns,i |ù'

§
for at least a p'û

,'
ù
,'

§qPS p'q.

The proof follows from Theorem 1 and Lemma 1. Consider, e.g., the RCon “ a ˝�
pab_⌃cq. It follows that '“ ab_⌃c and S p'q “ tpab,True,Trueq,pTrue,True,⌃cqu.
Applying Theorem 2 on t2 “ xf,e,d,c,b,a,g,h, iy from Ex. 1, we have that t2,6 |ù ' if
(i) xf,e,d,c,b,ay,6 |ùab or (ii) xa,g,h,iy,6 |ù⌃c, aside of True formulae which are trivially
satisfied. Because the first holds true, we conclude that ' is satisfied by t2p6q.

As seen in Section 2, a formula ' can be verified on a trace t by checking whether t is
accepted by automaton A'. Given a LTLpf formula ' and its temporal separation S p'q,
we thus introduce the notion of separated automata set, namely a set of triples of automata,
each verifying a triple of pure temporal formulae in S p'q.

Definition 9 (Separated automata set (sep.aut.set)). Given a LTLpf formula ' we

define as separated automata set (sep.aut.set) Aûù§ P 2AˆAˆA
the set of triples Aûù§ “

pAû
,A

ù
,A

§q P AˆAˆA such that A
û “ A'û , A

ù “ A'ù , and A
§ “ A'§ for every

p'û
,'

ù
,'

§qPS p'q. We denote as separation degree D the number of triples of A
ûù§

.

Considering the latest example A
ûù§ “

 `
Aab,ATrue,ATrue

˘
,pATrue,ATrue,A⌃cq

(
, the

separation degree is 2. Table 1 lists the separation degrees of some RCons of DECLARE.
In light of the above, we derive from Theorem 2 the following.

Theorem 3 (Trace sub-valuation through automata). Given a LTLpf formula ', its

sep.aut.set A
ûù§

, a trace tP⌃˚
of length n, and an instant i s.t. 1§ i§n, we have that

t,i |ù' if and only if tr1:is PL pAûq, tri:is PL pAùq and tri:ns PL pA§q for at least a

pAû
,A

ù
,A

§qPAûù§
.

In the example, the application of Theorem 3 entails that a �̋pab_⌃cq is interestingly
fulfilled by t2p6q if t2r1:6s “xf,e,d,c,b,ayPL

`
Aab

˘
or t2r6:9s “xa,g,h,iyPL pA⌃cq.

Past automata reversion. To the best of our knowledge, there is no available technique
to build automata that verify LTLpf formulae. We thus exploit Theorem 2 to rely on the
readily available techniques for LTLf , i.e., without past operators, as described in [2]. To
this extent, we rely on mirror images and reversed automata.

Pre-print copy of the manuscript published by Springer
(available at link.springer.com)

Table 3: Graphical representation of the separated automata set of a �̋pab_⌃cq

Aû Aù A§

s0 s1

s2

s3

xP⌃ztbu

b

b

xP⌃ztbu

b

xP⌃ztbu

b

xP⌃ztbu s0 xP⌃ s0 xP⌃

s0 xP⌃ s0 xP⌃ s0 s1

xP⌃ztcu

c
xP⌃

Lemma 2. Let tP⌃˚
be a trace of length n and tR its reverse. Given a pure past formula

'
û
, and its mirror image '

û
M

, we have that t,n |ù'
û

iff tR,1 |ù'
û
M
.

The proof follows from the semantics of future and past operators of LTLpf provided
in Section 2. For instance, verifying 'û “ ⌃d on t2 “ xf,e,d,c,b,a,g,h, iy from Ex. 1 at
instant i“9 is equivalent to verifying 'û

M “⌃d on t2R “xi,h,g,a,b,c,d,e,fy at i“1. Notice
that this holds for sub-traces too, thus verifying 'û on t2 at instant i“6 is equivalent to
verifying 'û

M over t2r1:6sR “xa,b,c,d,e,fy at i“1 in the light of Lemma 1.
It follows from Lemma 2 that any pure past formula can be seen as a pure future one on a
reversed trace. Therefore the automaton verifying the mirror image of 'û can be used for
verification on the reversed trace, as stated in the following.

Corollary 1. Let A'û
M

be the automaton verifying '
û
M

. Then t,n |ù'
û

iff tR PL
`
A'û

M

˘
.

Notice that 'û
M is a pure future formula, therefore A'û

M
can be built by applying the

technique of [2] for LTLf . Furthermore, it is possible to transform the obtained automaton
in order to read directly the original trace t thanks to the property of closure under reversion

of regular languages [13].

Definition 10 (Reversed automaton [13]). Given a trace tP⌃˚
, its reverse tR, and the

automaton APA, the reversed automaton
–›
A PA is an automaton such that A accepts t if

and only if
–›
A accepts tR, i.e., tPL pAq iff tR PL

´–›
A

¯
.

From Lemma 2 and Corollary 1 we derive the following.

Theorem 4 (Valuation through reversed automaton of mirror image). Let '
û

be a

pure past formula and '
û
M

its mirror image. Let A'û
M

PA be the automaton verifying '
û
M

.

Given a trace tP⌃˚
of length n, we have that: t,n |ù'

û
iff tPL

´–›
A'û

M

¯
.

Consider the RCon “ a ˝� pab _ ⌃cq and the pure past formula of its sep.aut.set
'

û “ ab. It is activated by t2p6q. Its mirror image is 'û
M “ lb. With automaton A'û

M
,

depicted in Fig. 1, we can verify 'û
M over trace t2r1:6sR “ xa,b,c,d,e,fy at i“ 1, thereby

verifying 'û over t2r1:6s as per Lemma 2. Thanks to Theorem 4, 'û
M can be verified on

t2r1:6s with the reversed automaton–›A'û
M

, depicted in the top-left corner of Table 3.
We remark that in this way the pure past formulae of sep.aut.sets can be verified by parsing
sub-traces from the beginning of the trace till the activator event.

Pre-print copy of the manuscript published by Springer
(available at link.springer.com)

Algorithm 1: Computing the interestingness degree of an RCon “↵ �̋' on
trace t, given the sep.aut.set Aûù§of '
1 O– empty bag ;
2 foreach event tpiq P t do

3 foreach Aû PA
ûù§

do perform transition tpiq on Aû;
4 if tpiq “↵ then // Activation triggered

5 J – empty set of pairs ; // J stores the replay-state of future automata for one activation

6 foreach pAû,Aù,A§q PA
ûù§

do

7 if Aû
is in an accepting state and Aù

accepts xtpiqy then

8 Take A§ “ p⌃,S§,�§,s§
0,S

§
F q and add ps§

0,A
§q to J

9 add J to O; // O collects replay-states for all activations

10 foreach J P O do

11 foreach ps§,A§q PJ do s§–�§ps§,tpiqq // Perform tpiq on A§
and save state ;

12 if |O|°0 then return
|tJ PO: at least a ps§,A§qPJ is s.t. s§PS§

F
u|

|O| else return 0 ;

4 The Janus algorithm

Algorithm 1 shows the pseudo-code of our on-line technique to compute the interestingness
degree ⇣p ,tq of a RCon with respect to a trace t. Its fundamental data structure is a
set of pairs, each associating an automaton to its current state, as the replay of the trace
proceeds. We call it Janus state and denote it as J .

More specifically, only future automata of sep.aut.sets are considered. The naı̈ve
approach would indeed parse trace t, and apply the check of Theorem 3 whenever is
activated. This is an impractical solution, because it requires the replay of prefix tr1:is and
suffix tri:ns on the respective automata at every instant of activation i. We save computation
time by keeping track of the past valuation state, so that at each activation it is already
known, thus improving on the sub-valuation of pure past formulae 'û. We rely on the fact
that automata preserve the history of replays in the reached state: if at instant i the current
state of Aû is si, then at i`1 it is known that si`1 “ �psi,tpi`1qq. To this extent, the
algorithm requires all past automata Aû to be already reversed as per Theorem 4.

The runtime of the algorithm will be explained considering as input: (i) t “ t1 “
xd, f, a, f, c, a, f, b, a, fy from Ex. 1, (ii) “ a ˝� pab _ ⌃cq, and (iii) the sep.aut.set!´

A
û
ab,A

ù
True

,A
§
True

¯
,
`
A

û
True

,A
ù
True

,A
§
⌃c

˘)
of ' , with past automaton A

û
ab already re-

versed as depicted in Table 3. Let i denote the current instant in the following.
At lines 1–2, a bag of Janus states O is initialised, to store the states of current replays

for the verification of pure future formulae. Every replay is triggered by the occurrence of
an activation, thus every Janus state refers to an activator. Thereupon, trace t is parsed one
event at a time starting with the left-first one, e.g., tp1q“d. We remark that no knowledge
is assumed on the subsequent events of the trace, as per the on-line setting. At line
3, past automata replay t performing each transition tpiq as it is read, i.e., not waiting for
the activation to occur. By contrast, future automata will begin with independent replays
at each occurrence of an activator. Therefore every A

û automaton starts a replay from
i“1. At line 4, the activator is captured, as, e.g., when i is equal to 3, 6, and 9, i.e., when
tpiq“a. Consequently at line 5 a new Janus state J is initialised to store information on
the new replay. At line 7 it is checked that, for every triple in the sep.aut.set, (i) A

û is in an

Pre-print copy of the manuscript published by Springer
(available at link.springer.com)

accepting state, and (ii) A
ù accepts the trace made of the current event. If this is the case

the replay on the future automaton of the triple, A§, can start. At line 8 the pair consisting
ofA§ and its initial state s§

0 is added toJ . In the example, the triple
´
A

û
ab,A

ù
True

,A
§
True

¯
at

i“3 and i“6 has Aû
ab not accepting the prefix tr1:is because tpi´1q‰b. On the contrary,

the replay of A§ can start at i “ 9. For what the triple
`
A

û
True

,A
ù
True

,A
§
⌃c

˘
is concerned,

A
§
⌃c always starts a new replay because Aû

True
and A

ù
True

accept any trace.
We remark that for Aù no state is retained because the scope of a pure present formula is
limited to a single event. Notice that because every triple pAû

,A
ù
,A

§qPAûù§ represents a
conjunctive formula, if Aû is not in an accepting state then the activation leads the entire
triple to violation, regardless of the replay on A

§.
The new Janus state J is added to O at line 9. In the example, at i “ 9, O “ `

s1,A
§
⌃c

˘(
,
 `
s0,A

§
⌃c

˘(
,
 `
s0,A

§
⌃c

˘
,ps0,A§

True
q
((

. At lines 10–11 all states in every
J PO are updated by executing the current transition on their respective future automata.
For example, upon the reading of tp5q“c,

 `
s0,A

§
⌃c

˘(
is updated to

 `
s1,A

§
⌃c

˘(
.

An event in a trace interestingly fulfils an RCon if, upon activation, at least a
triple pAû

, A
ù
, A

§q is such that Aû, Aù, and A
§ all accept the respective sub-traces,

as per Theorem 3. By construction, this holds true if at least a future automaton in
J is in its accepting state at the end of the replay. To measure the interestingness de-
gree of the RCon, we thus compute the ratio between the number of all such Janus
states and the cardinality of O at line 12. For instance, at i “ 10, O “ tJ1,J2,J3u “ `

s1,A
§
⌃c

˘(
,
 `
s0,A

§
⌃c

˘(
,
 `
s0A

§
⌃c

˘
,ps0,A§

True
q
((

and |O|“3. OnlyJ1 andJ3 contain
automata in accepting states, therefore ⇣p ,tq“ 2

3 “0.667.

Computational Cost. To compute the asymptotic computational cost, we consider the
worst case scenario, occurring when at each instant (i) is activated, and (ii) all past and
present automata are in an accepting state. In such a case, given an event log L, a trace t
of length t, an RCon “↵ ˝�' for which the sep.aut.set Aûù§ of ' is generated with
separation degree D, the cost of verifying on t is:

nÿ

j“1

pD`pn´jqDq“nD`D

nÿ

j“1

pn´jq“Dn

ˆ
1` pn´1q

2

˙
.

The cost is linear in the number of activations, as each one requires a single replay of the
trace for every automaton. For each activation only trace suffixes are replayed, owing to
our optimisation over past formulae, hence the 1{2 factor. For D!n, the upper-bound is
Opn2q, which is comparable to state-of-the-art techniques [6,19]. Because every trace of
L is parsed singularly, the cost is Op|L|q. Finally, denoting as m the maximum amount of
parameters of a template, the cost is Op|⌃|mq because constraints are verified for every
permutation of symbols in alphabet⌃. For standard DECLARE, e.g., m“2.

5 Evaluation

A proof-of-concept implementation of our technique has been developed for experimen-
tation. It is available for download at https://github.com/Oneiroe/Janus.

Pre-print copy of the manuscript published by Springer
(available at link.springer.com)

https://github.com/Oneiroe/Janus
https://github.com/Oneiroe/Janus

Table 4: Characteristics of declarative process mining approaches

Extendibility On-line Interestingness Granularity

Declare Maps Miner [18] X X Ad hoc for DECLARE Traces

Declare Miner 2 [19] ˆ ˆ Ad hoc for DECLARE Traces

MINERful [6] ˆ ˆ ˆ Events over log

MINERful Vacuity Checker [20] X X Vacuity Traces

Janus X X X Events over traces

We compare Janus to other declarative process mining techniques, highlighting specific
properties and scenarios through synthetic logs. Thereafter, we evaluate our tool against a
real-world event log and compare the output to a reference model.

5.1 State-of-the-art declarative process mining approaches

The following state-of-the-art declarative process discovery algorithms have been consid-
ered for comparison: (i) Declare Maps Miner (DMM) [18], the first declarative process
miner, based on the replay of traces on automata; (ii) Declare Miner 2 (DM2) [19], adopting
DECLARE-specific heuristics to improve on original DMM performance; (iii) MINER-
ful (Mf) [6], building a knowledge base of task co-occurrence statistics, so as to mine
DECLARE constraints via queries; (iv) MINERful Vacuity Checker (Mf-Vchk) [20], ex-
tending Mf to include semantical vacuity detection. Criteria for comparison reflect the
goals of our research. They are: (i) extendibility over custom templates beyond standard
DECLARE, (ii) capability of performing the analysis on-line, (iii) characterisation of
constraint interestingness, and (iv) granularity of support and confidence measures with
respect to the event log. Table 4 summarizes the outcome of our comparison.
Extendibility. DECLARE has been introduced as a language to be extended by users with
the addition of custom templates [23]. DMM allows indeed for the check of any LTLf

formula. On the other hand Mf and DM2 work only with the DECLARE standard template
set. Any new constraint outside this scope needs to be hard-coded into the framework.
Janus allows for the check of any LTLpf formula expressing an RCon.
On-line analysis. By design, only DMM and Mf-Vchk can be employed in on-line settings
like run-time monitoring, as well as Janus, whilst DM2 and Mf operate off-line.
Interestingness. The core rationale of interestingness is to distinguish whether a constraint
is not only satisfied but also activated in the trace. DMM and DM2 provide ad-hoc
solutions only for the DECLARE standard template set, because for each template the
activation condition is hard-coded. Mf checks only the satisfaction of constraints. Mf-
Vchk instead relies on a semantical vacuity detection technique independent from the
specific constraint or language. Nevertheless it provides misleading results with constraints
involving implications in the past such as PRECEDENCE. In Janus, RCons are such that
the activation is singled out in their formulation itself and its occurrence treated as a trigger
in their semantics, so as to overcome those issues by design and address interestingness.
Granularity. DMM and DM2 calculate the support as the percentage of fully compliant
traces. Similarly, Mf-Vchk calculates it as the percentage of traces that non-vacuously
satisfy the constraint. Mf calculates support as the percentage of activations leading to
constraint satisfaction over the entire event log, therefore the analysis is at the level of

Pre-print copy of the manuscript published by Springer
(available at link.springer.com)

Table 5: Results of experiments over synthetic logs for comparative evaluation

False positives Numerous activations in trace Partial satisfaction

Supp. Triggering tr.s Discarded tr.s Violating tr.s Supp. Supp.

Mf 1.000 1000 0 0 0.848 0.941

Mf-VChk 0.881 881 119 0 0.100 0.875

DMM/DMM2 0.231 231 769 0 0.100 0.875

Janus 0.231 231 769 0 0.100 0.979

single events. Janus support mediates between them as it is computed as the average of
interestingness degree values over the traces in the log.

5.2 Comparative evaluation over synthetic logs

Synthetic logs have been constructed to show the behaviour of mining techniques in
specific scenarios highlighting how the differences seen in Section 5.1 influence the
discovery outcome. Table 5 summarizes the results.
False positives. Columns 2-5 of Table 5 show the results of an experiment conducted on a
synthetic log of 1000 traces, simulating a model consisting only of PRECEDENCEpd,aq.
The event log, built with the MINERful log generator [4], has a high amount of non-
triggering traces for that constraint: 231 traces contain a and d, 650 only d, 119 neither
a nor d. The goal of this experiment is to show the distinction between interestingness
and non-vacuity. Mf has natively no vacuity nor interestingness detection mechanisms.
Both DMM and Janus recognise correctly the triggering traces, and discard the remaining
ones when computing support. As said, the vacuity detection approach of Mf-Vchk shows
instead misleading results with constraints involving a time-backward implication. In this
case, it recognises as non-vacuous those traces that contain d, with or without any a. From
a vacuity-detection perspective, it is logically correct because if d occurs, the constraint
is satisfied regardless of the occurrence of a. Nevertheless, it is misleading because the
activation of PRECEDENCEpd,aq is a, not d. Traces without a-events satisfy the constraint
without any occurrence of the activation, and should not be considered as interesting –
hence the name of the experiment, “False positives”. Janus prevents false positives thanks
to the semantics of Reactive Constraints.
Numerous activations in trace. Column 6 of Table 5 shows the support of
PRECEDENCEpd,aq on event log L “

 ̌̌
t
1
1,t

9
2

ˇ̌(
, with t1 “ xda ...ay and t2 “ xay. Trace

t1 satisfies the constraint and consists of a sequence of 50 a-events following a single d,
but its multiplicity in the log is 1. Trace t2 violates the constraint, and its multiplicity is
9. The goal is to show the misleading influence of the number of activations in a trace on
support calculation. DMM, DM2, Mf-Vchk, and Janus are not influenced by the number
of activations in t1 because they compute support as an average over whole traces. Mf is
instead highly influenced by t1, because it contains the majority of the constraint activa-
tions, despite the higher multiplicity of t2. We argue that the rate of interesting fulfilments
per trace, not the their total amount in the event log, should be considered. Janus follows
this rationale.
Partial satisfaction. Column 7 of Table 5 shows the support of PRECEDENCEpd,aq on
event log L “

 ̌̌
t
1
1,t

4
2,t

3
3

ˇ̌(
, with t1 “ xa,d,a,a,a,a,ay, t2 “ xd,a,ay, and t3 “ xd,ay.

Activations lead to fulfilment in all cases except the first event of t1. Slight violations are

Pre-print copy of the manuscript published by Springer
(available at link.springer.com)

(a) Mf (b) Mf-Vchk (c) DMM, DM2

Fig. 2: Comparison of support values between Janus and state-of-the-art algorithms

common in real-life logs, thus there is the risk of losing valuable information if entire
traces are discarded for that. The goal is to show how the discovery techniques behave in
such situations. Mf overcomes this issue owing to its support calculation at the granularity
level of events. DMM and Mf-Vchk instead discard completely those traces because of the
single violation. Janus assigns a lower interestingness degree to t1, but does not discard it.

With synthetic event logs we have shown that Janus is capable of discerning interesting
fulfilments, is resilient to noise, and balances the number of activations with the multiplicity
of traces for support calculation. Next we show insights on the application of Janus on a
real-world event log.

5.3 Evaluation on a real-life event log

Healthcare processes are known to be highly flexible [11], thus being suitable for declara-
tive process modelling approaches [23]. The real-life log referred to as Sepsis

3 has been
thus analysed. It reports the trajectories of patients showing symptoms of sepsis in a Dutch
hospital. The model mined by Janus with support threshold equal to 10% and confidence
threshold equal to 94% consists of the following constraints:

INITpER Registrationq ALT.PRECEDENCEpER Registration,ER Triageq ALT.PRECEDENCEpAdmission NC,Return ERq
ALT.PRECEDENCEpER Triage,ER Sepsis Triageq ALT.PRECEDENCEpER Triage,Return ERq PRECEDENCEpER Triage,Admission NCq
RESPONDEDEXISTENCEpIV Antibiotics,Lactic Acidq ALT.PRECEDENCEpAdmission IC,CRPq PRECEDENCEpER Triage,Admission ICq
RESPONDEDEXISTENCEpIV Liquid,IV Antibioticsq ALT.PRECEDENCEpLeucocytes,Release Aq ALT.RESPONSEpER Registration,ER Triageq
RESPONDEDEXISTENCEpIV Liquid,Lactic Acidq ALT.PRECEDENCEpER Triage,Release Aq ALT.RESPONSEpER Registration,Leucocytesq
PRECEDENCEpER Registration,CRPq ALT.PRECEDENCEpCRP,Return ERq ALT.PRECEDENCEpER Sepsis Triage,IV Antibioticsq
PRECEDENCEpER Registration,Leucocytesq ALT.PRECEDENCEpAdmission IC,Leucocytesq ALT.PRECEDENCEpLeucocytes,Return ERq
PRECEDENCEpER Registration,Admission ICq ALT.PRECEDENCEpCRP,Release Aq ALT.RESPONSEpER Triage,ER Sepsis Triageq
ALT.RESPONSEpER Registration,CRPq

We remark that all constraints comply with the normative process model reported in [21],
which was designed iteratively with the help of domain experts. To check conformance of
the mined model with the event log we have utilised the Declare Replayer plug-in [15],
yielding fitness equal to 98%.

Figure 2 compares the output of Janus with the one of other declarative process
mining techniques. Figure 2(a) shows that in absence of a dedicated mechanism, support
is a metric that is not sensitive to interestingness. Indeed Mf assigns a support of 1.0 to
several constraints to which Janus attributes a value ranging from 0.0 to 1.0, whereby

3
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460

Pre-print copy of the manuscript published by Springer
(available at link.springer.com)

https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460

the latter accounts for interestingness as shown throughout this paper. The semantical
vacuity detection of Mf-Vchk partially solves this issue, as it can be noticed in Fig. 2(b).
Still there are constraints assigned with a support of about 1.0 by Mf-Vchk against a
value spanning over the whole range from 0.0 to 1.0 as per Janus. As expected, they are
those constraints that have a time-backward component. For example, the support of
CHAINPRECEDENCEpLeucocytes,Release Cq on the log is 0.948 for Mf-Vchk, and 0.008
for Janus. However, other tasks than Leucocytes can immediately precede Release C as
per the reference model of [21]. The constraint is indeed rarely activated, i.e., Release C
occurs in 0.024% of the traces in the log, as opposed to Leucocytes, occurring in 0.964%
of the traces and thus causing the misleading result of Mf-Vchk. Figure 2(c) shows that the
DECLARE-tailored vacuity detection technique of DMM and DM2 prevents uninteresting
constraints to be returned. Nevertheless, the support computation based solely on trace
satisfaction of DMM and DM2 makes the assigned support be a lower bound for Janus.

The time taken by Janus to mine the event log amounted to 9s on a machine equipped
with an Intel Core i5-7300U CPU at 2.60GHz, quad-core, Ubuntu 17.10 operating system.
The timing is in line with existing approaches that tackle vacuity detection: 3s for DM2,
9s for Mf-Vchk, and 270s for DMM on the same machine.

6 Conclusion

In this paper, we have described Janus, an approach to model and discover Reactive
Constraints on-line from event logs. With the Janus approach users can single out activa-
tions in the constraint expressions, namely the triggering conditions. Thereby interesting
constraint fulfilments are discerned from the uninteresting ones by checking whether the
activation occurred. Experimental evidence on synthetic and real-life event logs confirms
its compatibility with previous DECLARE discovery techniques, yet improving on the
capability of identifying interestingly fulfilled constraints.
For our research outlook we aim at enriching RCons by allowing for activations expressed
as temporal logic formulae rather than propositional symbols, inspired by [3] and [17]. It
is in our plans to integrate the MONA tool [10] for the automatic generation of automata
for verification, as suggested in [27]. We will also study the application of Janus on run-
time monitoring and off-line discovery tasks. Furthermore, future work will include the
analysis of other declarative languages such as DCR graphs [11], and of multi-perspective
approaches encompassing time, resources, and data. To that extent, we will employ metrics
beyond support and confidence.
Acknowledgements. The work of Alessio Cecconi, Claudio Di Ciccio, and Jan Mendling
has been funded by the Austrian FFG grant 861213 (CitySPIN). Giuseppe De Giacomo has
been partially supported by the Sapienza project “Immersive Cognitive Environments”.

References

1. Adamo, J.: Data mining for association rules and sequential patterns - sequential and parallel
algorithms. Springer New York (2001)

2. De Giacomo, G., De Masellis, R., Montali, M.: Reasoning on LTL on Finite Traces: Insensitivity
to Infiniteness. In: AAAI. pp. 1027–1033 (2014)

Pre-print copy of the manuscript published by Springer
(available at link.springer.com)

3. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces.
In: IJCAI. pp. 854–860. Association for Computing Machinery (2013)

4. Di Ciccio, C., Bernardi, M.L., Cimitile, M., Maggi, F.M.: Generating event logs through the
simulation of Declare models. In: EOMAS. pp. 20–36. Springer (2015)

5. Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: Resolving inconsistencies and redun-
dancies in declarative process models. Information Systems 64, 425–446 (2017)

6. Di Ciccio, C., Mecella, M.: On the discovery of declarative control flows for artful processes.
ACM Transactions on Management Information Systems (TMIS) 5(4), 24 (2015)

7. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state
verification. In: ICSE. pp. 411–420. IEEE (1999)

8. Gabbay, D.: The declarative past and imperative future. In: Temporal logic in specification. pp.
409–448. Springer (1989)

9. Gastin, P., Oddoux, D.: LTL with past and two-way very-weak alternating automata. In: MFCS.
pp. 439–448. Springer (2003)

10. Henriksen, J.G., Jensen, J.L., Jørgensen, M.E., Klarlund, N., Paige, R., Rauhe, T., Sandholm,
A.: MONA: Monadic Second-Order Logic in practice. In: TACAS. pp. 89–110 (1995)

11. Hildebrandt, T.T., Mukkamala, R.R., Slaats, T.: Declarative modelling and safe distribution of
healthcare workflows. In: FHIES. pp. 39–56 (2011)

12. Hodkinson, I.M., Reynolds, M.: Separation-Past, Present, and Future. In: We Will Show
Them!(2). pp. 117–142 (2005)

13. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, languages, and
computation. Pearson/Addison Wesley, 3rd ed edn. (2007)

14. Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. International
Journal on Software Tools for Technology Transfer 4(2), 224–233 (2003)

15. de Leoni, M., Maggi, F.M., van der Aalst, W.M.P.: An alignment-based framework to check
the conformance of declarative process models and to preprocess event-log data. Information
Systems 47, 258 – 277 (2015)

16. Lichtenstein, O., Pnueli, A., Zuck, L.D.: The glory of the past. In: Logics of Programs. pp.
196–218 (1985)

17. Ly, L.T., Rinderle-Ma, S., Knuplesch, D., Dadam, P.: Monitoring business process compliance
using compliance rule graphs. In: OTM. pp. 82–99. Springer (2011)

18. Maggi, F.M., Bose, R.J.C., van der Aalst, W.M.: Efficient discovery of understandable declara-
tive process models from event logs. In: CAiSE. pp. 270–285. Springer (2012)

19. Maggi, F.M., Di Ciccio, C., Di Francescomarino, C., Kala, T.: Parallel algorithms for the
automated discovery of declarative process models. Information Systems (2018)

20. Maggi, F.M., Montali, M., Di Ciccio, C., Mendling, J.: Semantical Vacuity Detection in
Declarative Process Mining. In: BPM, vol. 9850, pp. 158–175. Springer (2016)

21. Mannhardt, F., Blinde, D.: Analyzing the trajectories of patients with sepsis using process
mining. RADAR+ EMISA 1859, 72–80 (2017)

22. Markey, N.: Past is for free: On the complexity of verifying linear temporal properties with past.
Electr. Notes Theor. Comput. Sci. 68(2), 87–104 (2002)

23. Pesic, M.: Constraint-based workflow management systems:shifting control to users (2008)
24. Ramakrishna, Y.S., Moser, L.E., Dillon, L.K., Melliar-Smith, P.M., Kutty, G.: An automata-

theoretic decision procedure for propositional temporal logic with Since and Until. Fundam.
Inform. 17(3), 271–282 (1992)

25. Reynolds, M.: The complexity of temporal logic over the reals. Annals of Pure and Applied
Logic 161(8), 1063–1096 (2010)

26. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In:
LICS. pp. 322–331. IEEE Computer Society (1986)

27. Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: Symbolic LTLf synthesis. In: IJCAI. pp.
1362–1369 (2017)

Pre-print copy of the manuscript published by Springer
(available at link.springer.com)

This document is a pre-print copy of the manuscript
(Cecconi et al. 2018)
published by Springer

(available at link.springer.com).

References

Cecconi, Alessio, Claudio Di Ciccio, Giuseppe De Giacomo, and Jan Mendling
(2018). “Interestingness of traces in declarative process mining: The Janus
LTLpf approach”. In: BPM. Lecture Notes in Computer Science. Springer.

BibTeX
@InProceedings{ Cecconi.etal/BPM2018:Janus,

author = {Cecconi, Alessio and Di Ciccio, Claudio and De Giacomo,
Giuseppe and Mendling, Jan},

title = {Interestingness of traces in declarative process mining:
The Janus {LTL}pf approach},

booktitle = {BPM},
year = {2018},
crossref = {BPM2018}

}
@Proceedings{ BPM2018,

title = {Business Process Management - 16th International
Conference, {BPM} 2018, Sydney, Australia, September 9-14,
2018, Proceedings},

year = {2018},
series = {Lecture Notes in Computer Science},
publisher = {Springer}

}

View publication statsView publication stats

http://link.springer.com/
https://www.researchgate.net/publication/325710800

	Interestingness of traces in declarative process mining: the Janus LTLpf approach
	Introduction
	Preliminaries
	The Janus approach
	Measuring the interesting fulfilments of a rf on a log
	An automata approach to rf verification
	Past automata reversion.

	The Janus algorithm
	Computational Cost.

	Evaluation
	State-of-the-art declarative process mining approaches
	Comparative evaluation over synthetic logs
	Evaluation on a real-life event log

	Conclusion

