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Abstract

We develop a general framework for agent abstraction based
on the situation calculus and the ConGolog agent program-
ming language. We assume that we have a high-level specifi-
cation and a low-level specification of the agent, both repre-
sented as basic action theories. A refinement mapping spec-
ifies how each high-level action is implemented by a low-
level ConGolog program and how each high-level fluent can
be translated into a low-level formula. We define a notion of
sound abstraction between such action theories in terms of
the existence of a suitable bisimulation between their respec-
tive models. Sound abstractions have many useful properties
that ensure that we can reason about the agent’s actions (e.g.,
executability, projection, and planning) at the abstract level,
and refine and concretely execute them at the low level. We
also characterize the notion of complete abstraction where all
actions (including exogenous ones) that the high level thinks
can happen can in fact occur at the low level.

1 Introduction
Intelligent agents often operate in complex domains and
have complex behaviors. Reasoning about such agents and
even describing their behavior can be difficult. One way to
cope with this is to use abstraction (Saitta and Zucker 2013).
In essence, this involves developing an abstract model of
the agent/domain that suppresses less important details. The
abstract model allows us to reason more easily about the
agent’s possible behaviors and to provide high-level expla-
nations of the agent’s behavior. To efficiently solve a com-
plex reasoning problem, e.g. planning, one may first try to
find a solution in the abstract model, and then use this ab-
stract solution as a template to guide the search for a solution
in the concrete model. Systems developed using abstractions
are typically more robust to change, as adjustments to more
detailed levels may leave the abstract levels unchanged.

In this paper, we develop a general framework for agent
abstraction based on the situation calculus (SitCalc) (Mc-
Carthy and Hayes 1969; Reiter 2001) and the ConGolog (De
Giacomo, Lespérance, and Levesque 2000) agent program-
ming language. We assume that one has a high-level/abstract
action theory, a low-level/concrete action theory, and a re-
finement mapping between the two. The mapping associates
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each high-level primitive action to a (possibly nondetermin-
istic) ConGolog program defined over the low-level action
theory that “implements it”. Moreover, it maps each high-
level fluent to a state formula in the low-level language that
characterizes the concrete conditions under which it holds.

In this setting, we define a notion of a high-level the-
ory being a sound abstraction of a low-level theory under
a given refinement mapping. The formalization involves the
existence of a suitable bisimulation relation (Milner 1971;
1989) between models of the low-level and high-level the-
ories. With a sound abstraction, whenever the high-level
theory entails that a sequence of actions is executable and
achieves a certain condition, then the low level must also en-
tail that there exist an executable refinement of the sequence
such that the “translated” condition holds afterwards. More-
over, whenever the low level thinks that a refinement of a
high-level action (perhaps involving exogenous actions) can
occur (i.e., its executability is satisfiable), then the high level
does also. Thus, sound abstractions can be used to perform
effectively several forms of reasoning about action, such as
planning, agent monitoring, and generating high-level ex-
planations of low-level behavior. We also provide a proof-
theoretic characterization that gives us the basis for auto-
matically verifying that we have a sound abstraction.

In addition, we define a dual notion of complete abstrac-
tion where whenever the low-level theory entails that some
refinement of a sequence of high-level actions is executable
and achieves a “translated” high-level condition, then the
high level also entails that the action sequence is executable
and the condition holds afterwards. Moreover, whenever the
high level thinks that an action can occur (i.e., its executabil-
ity is satisfiable), then there exists a refinement of the action
that the low level thinks can happen as well.

Many different approaches to abstraction have been pro-
posed in a variety of settings such as planning (Sacerdoti
1974), automated reasoning (Giunchiglia and Walsh 1992),
model checking (Clarke, Grumberg, and Long 1994), and
data integration (Lenzerini 2002). Most of these do not deal
with dynamic domains. Previous work on hierarchical plan-
ning generally makes major simplifying assumptions (Nau,
Ghallab, and Traverso 2016). In contrast, our approach deals
with agents represented in an expressive first-order frame-
work. We later discuss related work in more details.



2 Preliminaries
The situation calculus is a well known predicate logic lan-
guage for representing and reasoning about dynamically
changing worlds. Within the language, one can formulate
action theories that describe how the world changes as a re-
sult of actions (Reiter 2001). We assume that there is a finite
number of action types A. Moreover, we assume that the
terms of object sort are in fact a countably infinite set N of
standard names for which we have the unique name assump-
tion and domain closure. For simplicity, and w.l.o.g., we as-
sume that there are no functions other than constants and
no non-fluent predicates. As a result a basic action theory
(BAT)D is the union of the following disjoint sets: the foun-
dational, domain independent, (second-order, or SO) axioms
of the situation calculus (Σ); (first-order, or FO) precondi-
tion axioms stating when actions can be legally performed
(Dposs); (FO) successor state axioms (SSAs) describing how
fluents change between situations (Dssa); (FO) unique name
axioms for actions and (FO) domain closure on action types
(Dca); (SO) unique name axioms and domain closure for
object constants (Dcoa); and (FO) axioms describing the ini-
tial configuration of the world (DS0 ). A special predicate
Poss(a, s) is used to state that action a is executable in situ-
ation s; precondition axioms inDposs characterize this pred-
icate. The abbreviation Executable(s) means that every ac-
tion performed in reaching situation s was possible in the
situation in which it occurred. In turn, successor state ax-
ioms encode the causal laws of the world being modeled;
they replace the so-called effect axioms and provide a solu-
tion to the frame problem.

To represent and reason about complex actions or pro-
cesses obtained by suitably executing atomic actions, vari-
ous so-called high-level programming languages have been
defined. Here we concentrate on (a fragment of) ConGolog
that includes the following constructs:

δ ::= α | ϕ? | δ1; δ2 | δ1|δ2 | πx.δ | δ∗ | δ1‖δ2
Above, α is an action term, possibly with parameters, and ϕ
is a situation-suppressed formula, i.e., a formula with all sit-
uation arguments in fluents suppressed. We denote by ϕ[s]
the formula obtained from ϕ by restoring the situation ar-
gument s into all fluents in ϕ. Program δ1|δ2 allows for
the nondeterministic choice between programs δ1 and δ2,
while πx.δ executes program δ for some nondeterministic
choice of a legal binding for variable x (observe that such
a choice is, in general, unbounded). δ∗ performs δ zero or
more times. Program δ1‖δ2 expresses the concurrent execu-
tion (interpreted as interleaving) of programs δ1 and δ2.

Formally, the semantics of ConGolog is specified in terms
of single-step transitions, using the following two predi-
cates (De Giacomo, Lespérance, and Levesque 2000): (i)
Trans(δ, s, δ′, s′), which holds if one step of program δ in
situation s may lead to situation s′ with δ′ remaining to be
executed; and (ii)Final(δ, s), which holds if program δ may
legally terminate in situation s. The definitions of Trans
and Final we use are as in (De Giacomo, Lespérance, and
Pearce 2010), where the test construct ϕ? does not yield any
transition, but is final when satisfied. Predicate Do(δ, s, s′)
means that program δ, when executed starting in situation

s, has as a legal terminating situation s′, and is defined
as Do(δ, s, s′) .

= ∃δ′.T rans∗(δ, s, δ′, s′) ∧ Final(δ′, s′)
where Trans∗ denotes the reflexive transitive closure of
Trans. In the rest, we use C to denote the axioms defining
the ConGolog programming language.

3 Refinement Mappings
Suppose that we have a basic action theory Dl and an-
other basic action theory Dh. We would like to character-
ize whether Dh is a reasonable abstraction of Dl. Here, we
consider Dl as representing the low-level (or concrete)(LL)
action theory/agent and Dh the high-level (or abstract)(HL)
action theory/agent. We assume that Dh (resp. Dl ) involves
a finite set of primitive action types Ah (resp. Al ) and a fi-
nite set of primitive fluent predicates Fh (resp. Fl ). For sim-
plicity, we assume that Dh and Dl , share no domain specific
symbols except for the set of standard names for objects N .

We want to relate expressions in the language of Dh and
expressions in the language of Dl. We say that a function m
is a refinement mapping from Dh to Dl if and only if:

1. for every high-level primitive action type A in Ah ,
m(A(~x )) = δA(~x ), where δA(~x) is a ConGolog program
over the low-level theory Dl whose only free variables
are ~x, the parameters of the high-level action type; intu-
itively, δA(~x) represents how the high-level action A(~x)
can be implemented at the low level; since we use pro-
grams to specify the action sequences the agent may per-
form, we require that δA(~x) be situation-determined, i.e.,
the remaining program is always uniquely determined by
the situation (De Giacomo, Lespérance, and Muise 2012);

2. for every high-level primitive fluent F (~x) (situation-
suppressed) in Fh , m(F (~x )) = φF (~x ), where φF (~x) is
a situation-suppressed formula over the language of Dl ,
and the only free variables are ~x, the object parameters of
the high-level fluent; intuitively φF (~x) represents the low-
level condition under which F (~x) holds in a situation.
Note that we can map a fluent in the high-level theory to

a fluent in the low-level theory, i.e., m(Fh(~x)) = Fl(~x),
which effectively amounts to having the low-level fluent be
present in the high-level theory. Similarly, one can include
low-level actions in the high-level theory.
Example For our running example, we use a simple logistics
domain. There is a shipment with ID 123 that is initially at
a warehouse (W ), and needs to be delivered to a Cafe (Cf ),
along a network of roads shown in Figure 1 (Warehouse and
cafe images are from freedesignfile.com).
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Figure 1: Transport Logistics Example

High-Level BAT Deg
h At the high level, we abstract over

navigation and delivery procedure details. We have actions



that represent choices of major routes and delivering a
shipment. Deg

h includes the following precondition axioms
(throughout the paper, we assume that free variables are uni-
versally quantified from the outside):
Poss(takeRoute(sID , r, o, d), s) ≡ o 6= d ∧AtHL(sID , o, s)

∧CnRoute(r, o, d, s) ∧ (r = RtB ⊃ ¬Priority(sID , s))
Poss(deliver(sID), s) ≡ ∃l.Dest(sID , l, s) ∧AtHL(sID , l, s)

The action takeRoute(sID , r, o, d) can be performed to
take shipment with ID sID from origin location o to destina-
tion location d via route r (see Figure 1), and is executable
when the shipment is initially at o and route r connects o to
d; moreover, priority shipments cannot be sent by routeRtB
(note that we refer to route X in Figure 1 as RtX ). Action
deliver(sID) can be performed to deliver shipment sID and
is executable when sID is at its destination.

The high-level BAT also includes the following SSAs:
AtHL(sID , l, do(a, s)) ≡ ∃l′, r.a = takeRoute(sID , r, l′, l) ∨

AtHL(sID , l, s) ∧ ∀l′, r.a 6= takeRoute(sID , r, l, l′)

Delivered(sID , do(a, s)) ≡
a = deliver(sID) ∨Delivered(sID , s)

For the other fluents, we have SSAs specifying that they are
unaffected by any action.
Deg

h also contains the following initial state axioms:

Dest(123,Cf , S0), AtHL(123,W, S0),
CnRoute(RtA,W,L2, S0), CnRoute(RtB , L2,Cf , S0),
CnRoute(RtC , L2,Cf , S0)

Note that it is not known whether 123 is a priority shipment.
Low-Level BAT Deg

l At the low level, we model navigation
and delivery in a more detailed way. The agent has a more
detailed map with more locations and roads between them.
He also takes road closures into account. Performing deliv-
ery involves unloading the shipment and getting a signature.
The low-level BAT Deg

l includes the following action pre-
condition axioms:
Poss(takeRoad(sID , t, o, d), s) ≡ o 6= d ∧
AtLL(sID , o, s) ∧ CnRoad(t, o, d, s) ∧ ¬Closed(t, s) ∧
(d = L3 ⊃ ¬(BadWeather(s) ∨ Express(sID , s)))

Poss(unload(sID), s) ≡ ∃l.Dest(sID , l, s) ∧AtLL(sID , l, s)

Poss(getSignature(sID), s) ≡ Unloaded(sID , s)
Thus, the action takeRoad(sID , t, o, d), where the agent
takes shipment sID from origin location o to destination d
via road t, is executable provided that t connects o to d, sID
is at o, and t is not closed; moreover, a road to L3 cannot be
taken if the weather is bad or sID is an express shipment as
this would likely violate quality of service requirements.

The low-level BAT includes the following SSAs:
Unloaded(sID , do(a, s)) ≡

a = unload(sID) ∨ Unloaded(sID , s)
Signed(sID , do(a, s)) ≡

a = getSignature(sID) ∨ Signed(sID , s)

The SSA forAtLL is like the one forAtHL with takeRoute
replaced by takeRoad. For the other fluents, we have SSAs
specifying that they are unaffected by any actions. Note that
we could easily include exogenous actions for road closures
and change in weather, new shipment orders, etc.

Deg
l also contains the following initial state axioms:

¬BadWeather(S0), Closed(r, S0) ≡ r = Rde,
Express(123, S0), Dest(123,Cf , S0), AtLL(123,W, S0)

together with a complete specification of CnRoad and
CnRoute. We refer to road x in Figure 1 as Rdx.
Refinement Mapping meg We specify the relationship be-
tween the high-level and low-level BATs through the follow-
ing refinement mapping meg:

meg(takeRoute(sID , r, o, d)) =
(r = RtA ∧ CnRoute(RtA, o, d))?;
πt.takeRoad(sID , t, o, L1);πt′.takeRoad(sID , t′, L1, d) |
(r = RtB ∧ CnRoute(RtB , o, d))?;
πt.takeRoad(sID , t, o, L3);πt′.takeRoad(sID , t′, L3, d) |
(r = RtC ∧ CnRoute(RtC , o, d))?;
πt.takeRoad(sID , t, o, L4);πt′.takeRoad(sID , t′, L4, d)

meg(deliver(sID)) = unload(sID); getSignature(sID)

meg(Priority(sID)) = BadWeather ∨ Express(sID)

meg(Delivered(sID)) = Unloaded(sID) ∧ Signed(sID)

meg(AtHL(sID , loc)) = AtLL(sID , loc)

meg(CnRoute(r, o, d)) = CnRoute(r, o, d)

meg(Dest(sID , l)) = Dest(sID , l)

Thus, taking route RtA involves first taking a road from
the origin o to L1 and then taking another road from L1
to the destination d. For the other two routes, the refinement
mapping is similar except a different intermediate location
must be reached. Note that we could easily write programs
to specify refinements for more complex routes, e.g., that
take a sequence of roads from o to d going through interme-
diate locations belonging to a given set. We refine the high-
level fluent Priority(sID) to the condition where either the
weather is bad or the shipment is express.

4 m-Bisimulation
To relate high-level and low-level models/theories, we resort
to a suitable notion of bisimulation. Let Mh be a model of
the high-level BAT Dh, Ml a model of the low-level BAT
Dl, and m a refinement mapping from Dh to Dl.

We first define a local condition for the bisimulation. We
say that situation sh in Mh is m-isomorphic to situation sl
in Ml, written sh ∼Mh,Ml

m sl, if and only if

Mh, v[s/sh] |= F (~x, s) iff Ml, v[s/sl] |= m(F (~x))[s]
for every high-level primitive fluent F (~x) in Fh and
every variable assignment v (v[x/e] stands for the variable
assignment that is like v except that x is mapped to e).

A relation B ⊆ ∆Mh

S × ∆Ml

S (where ∆M
S stands for the

situation domain of M ) is an m-bisimulation relation be-
tween Mh and Ml if 〈sh, sl〉 ∈ B implies that:

1. sh ∼Mh,Ml
m sl, i.e., sh inMh ism-isomorphic to situation

sl in Ml;

2. for every high-level primitive action type A in Ah ,
if there exists s′h such that Mh, v[s/sh, s

′/s′h] |=
Poss(A(~x), s) ∧ s′ = do(A(~x), s), then there exists s′l
such that Ml, v[s/sl, s

′/s′l] |= Do(m(A(~x)), s, s′) and
〈s′h, s′l〉 ∈ B;



3. for every high-level primitive action type A in Ah ,
if there exists s′l such that Ml, v[s/sl, s

′/s′l] |=
Do(m(A(~x)), s, s′), then there exists s′h such that
Mh, v[s/sh, s

′/s′h] |= Poss(A(~x), s)∧ s′ = do(A(~x), s)
and 〈s′h, s′l〉 ∈ B.

We say that Mh is bisimilar to Ml relative to refinement
mapping m, written Mh ∼m Ml, if and only if there exist
an m-bisimulation relation B between Mh and Ml such that
〈SMh

0 , SMl
0 〉 ∈ B.

Given these definitions, we immediately get the follow-
ing results. First, we can show that m-isomorphic situations
satisfy the same high-level situation-suppressed formulas:

Lemma 1 If sh ∼Mh,Ml
m sl, then for any high-level

situation-suppressed formula φ, we have that:

Mh, v[s/sh] |= φ[s] if and only if Ml, v[s/sl] |= m(φ)[s].

Note that m(φ) stands for the result of substituting every
fluent F (~x) in situation-suppressed formula φ by m(F (~x)).

Given this, it is straightforward to show that in m-
bisimilar models, the same sequences of high-level actions
are executable, and that in the resulting situations, the same
high-level situation-suppressed formulas hold:

Theorem 2 IfMh ∼m Ml, then for any sequence of ground
high-level actions ~α and any high-level situation-suppressed
formula φ, we have that

Ml |= ∃s′Do(m(~α), S0, s
′) ∧m(φ)[s′] if and only if

Mh |= Executable(do(~α, S0)) ∧ φ[do(~α, S0)].

Note that m(α1, . . . , αn)
.
= m(α1); . . . ;m(αn) for n ≥ 1

and m(ε)
.
= nil.

5 Sound Abstraction
To ensure that the high-level theory is consistent with the
low-level theory and mapping m, we require that for every
model of the low-level theory, there is an m-bisimilar struc-
ture that is a model of the high-level theory.

We say that Dh is a sound abstraction of Dl relative to
refinement mapping m if and only if, for all models Ml of
Dl, there exists a model Mh of Dh such that Mh ∼m Ml.
Example Returning to our example of Sec. 3, it is straight-
forward to show that it involves a high-level theory Deg

h that
is a sound abstraction of the low-level theory Deg

l relative to
the mapping meg . We discuss how we prove this later.

Sound abstractions have many interesting and useful
properties. First, from the definition of sound abstraction and
Theorem 2, we immediately get the following result:

Corollary 3 Suppose that Dh is a sound abstraction
of Dl relative to mapping m. Then for any se-
quence of ground high-level actions ~α and for any
high-level situation-suppressed formula φ, if Dl ∪ C ∪
{∃s.Do(m(~α), S0, s) ∧ m(φ)[s]} is satisfiable, then Dh ∪
{Executable(do(~α, S0))∧φ[do(~α, S0)]} is also satisfiable.
In particular, ifDl∪C∪{∃s.Do(m(~α), S0, s)} is satisfiable,
then Dh ∪ {Executable(do(~α, S0))} is also satisfiable.

Thus if the low-level agent/theory thinks that a refinement
of ~α (perhaps involving exogenous actions) may occur (with
m(φ) holding afterwards), the high-level agent/theory also

thinks that ~α may occur (with φ holding afterwards). If such
a refinement actually occurs it will thus be consistent with
the high-level theory.

We can also show that if the high-level theory entails that
some sequence of high-level actions ~α is executable, and that
in the resulting situation, a situation-suppressed formula φ
holds, then the low-level theory must also entail that some
refinement of ~α is executable and that in the resulting situa-
tion m(φ) holds:
Theorem 4 Suppose that Dh is a sound abstraction of Dl

relative to mapping m. Then for any ground high-level ac-
tion sequence ~α and for any high-level situation-suppressed
formula φ, ifDh |= Executable(do(~α, S0))∧φ[do(~α, S0)],
then Dl ∪ C |= ∃s.Do(m(~α), S0, s) ∧m(φ)[s].

We can immediately relate the above result to planning.
In the situation calculus, the planning problem is usually de-
fined as follows (Reiter 2001):

Given a BAT D, and a situation-suppressed goal for-
mula φ, find a ground action sequence ~a such that
D |= Executable(do(~a, S0)) ∧ φ[do(~a, S0)].

Thus, Theorem 4 means that if we can find a plan
~α to achieve a goal φ at the high level, i.e, Dh |=
Executable(do(~α, S0)) ∧ φ[do(~α, S0)], then it follows that
there exists a refinement of ~α that achieves φ at the low
level, i.e., Dl ∪ C |= ∃s.Do(m(~α), S0, s) ∧m(φ)[s]. How-
ever, note that the refinement could in general be different
from model to model. But if, in addition, we have com-
plete information at the low level, i.e., a single model for
Dl, then, since we have standard names for objects and
actions, we can always obtain a plan to achieve the goal
φ by finding a refinement in this way, i.e., there exists a
ground low-level action sequence ~a such that Dl ∪ C |=
Do(m(~α), S0, do(~a, s))∧m(φ)[do(~a, s)]. The search space
of refinements of ~αwould typically be much smaller than the
space of all low-level action sequences, thus yielding impor-
tant efficiency benefits.

We can also show that if Dh is a sound abstraction of
Dl with respect to a mapping, then the different sequences
of low-level actions that are refinements of a given high-
level primitive action sequence all have the same effects
on the high-level fluents, and more generally on high-level
situation-suppressed formulas, i.e., from the high-level per-
spective they are deterministic:
Corollary 5 If Dh is a sound abstraction of Dl relative to
mapping m, then for any sequence of ground high-level ac-
tions ~α and for any high-level situation-suppressed formula
φ, we have that

Dl ∪ C |= ∀s∀s′.Do(m(~α), S0, s) ∧Do(m(~α), S0, s
′) ⊃

(m(φ)[s] ≡ m(φ)[s′])

An immediate consequence of the above is the following:
Corollary 6 If Dh is a sound abstraction of Dl relative to
mapping m, then for any sequence of ground high-level ac-
tions ~α and for any high-level situation-suppressed formula
φ, we have that

Dl ∪ C |= (∃s.Do(m(~α), S0, s) ∧m(φ)[s]) ⊃
(∀s.Do(m(~α), S0, s) ⊃ m(φ)[s])



It is also easy to show that if some refinement of the se-
quence of high-level actions ~αβ is executable, then there ex-
ists a refinement of β that is executable after executing any
refinement of ~α:
Theorem 7 If Dh is a sound abstraction of Dl relative to
mapping m, then for any sequence of ground high-level ac-
tions ~α and for any ground high-level action β, we have that
Dl ∪ C |= ∃s.Do(m(~αβ), S0, s) ⊃

(∀s.Do(m(~α), S0, s) ⊃ ∃s′.Do(m(β), s, s′))

Notice that this applies to all prefixes of ~α, so using Corol-
lary 6 as well, we immediately get that:
Corollary 8 Suppose that Dh is a sound abstraction of Dl

relative to mapping m. Then for any ground high-level ac-
tion sequence α1, . . . , αn, and for any high-level situation-
suppressed formula φ, then we have that:
Dl ∪ C |= (∃s.Do(m(α1, . . . , αn, S0, s) ∧m(φ)[s]) ⊃

((∀s.Do(m(α1, . . . , αn), S0, s) ⊃ m(φ)[s]) ∧
(∃s.Do(m(α1), S0, s)) ∧∧

2≤i≤n(∀s.Do(m(α1, . . . , αi−1), S0, s) ⊃
∃s′.Do(m(αi), s, s

′)))

These results mean that if a ground high-level action se-
quence achieves a high-level condition φ, we can choose re-
finements of the actions in the sequence independently and
be certain to obtain a refinement of the complete sequence
that achieves φ. We can exploit this in planning to gain even
more efficiency. If we can find a plan α1, . . . , αn to achieve
a goal φ at the high level, then there exist a refinement of
α1, . . . , αn that achieves φ at the low level, and we can ob-
tain it by finding refinements of the high-level actions αi for
i : 1 ≤ i ≤ n one by one, without ever having to back-
track. The search space would be exponentially smaller in
the length of the high-level plan n. If we have complete in-
formation at the low level, then we can always obtain a re-
fined plan to achieve φ in this way.
Example Returning to our running example,
we can show that the action sequence ~α =
[takeRoute(123, RtA,W,L2), takeRoute(123, RtC , L2,
Cf ), deliver(123)] is a valid high-level plan to achieve the
goal φg = Delivered(123) of having delivered shipment
123, i.e., Deg

h |= Executable(do(~α, S0)) ∧ φg[do(~α, S0)].
Since Deg

h is a sound abstraction of the low-level theory
Deg

l relative to the mapping meg , we know that we can
find a refinement of the high-level plan ~α that achieves
the refinement of the goal meg(φg) = Unloaded(123) ∧
Signed(123). In fact, we can show that Deg

l ∪ C |=
Do(meg(~α, S0, do(~a~b~c, S0)) ∧ meg(φg)[do(~a~b~c, S0)] for
~a = [takeRoad(123, Rda,W,L1), takeRoad(123, Rdb,

L1, L2)], ~b = [takeRoad(123, Rdf , L2, L4),
takeRoad(123, Rdg, L4,Cf )], and ~c = [unload(123),
getSignature(123)].

Now, let us define some low-level programs that charac-
terize the refinements of high-level action/action sequences:
any1hl

.
= |Ai∈Ah π~x.m(Ai(~x)) , do any HL primitive action,

anyseqhl
.
= any1hl∗ i.e., do any sequence of HL actions.

How does one verify that one has a sound abstraction?
The following yields a straightforward method for this:

Theorem 9 Dh is a sound abstraction of Dl relative to
mapping m iff

(a) Dl
S0
∪ Dl

ca ∪ Dl
coa |= m(φ), for all φ ∈ Dh

S0
,

(b) Dl ∪ C |= ∀s.Do(anyseqhl ,S0 , s) ⊃∧
Ai∈Ah ∀~x.(m(φPoss

Ai
(~x))[s] ≡ ∃s′Do(m(Ai(~x)), s, s

′)),

(c) Dl ∪ C |= ∀s.Do(anyseqhl, S0, s) ⊃∧
Ai∈Ah ∀~x, s′.(Do(m(Ai(~x)), s, s

′) ⊃∧
Fi∈Fh ∀~y(m(φssa

Fi,Ai
(~y, ~x))[s] ≡ m(Fi(~y))[s

′])),

where φPoss
Ai

(~x) is the right hand side (RHS) of the precon-
dition axiom for action Ai(~x), and φssaFi,Ai

(~y, ~x) is the RHS
of the successor state axiom for Fi instantiated with action
Ai(~x) where action terms have been eliminated using Dh

ca.

The above essentially gives us a “proof theoretic” character-
ization of sound abstraction. Conditions (a), (b), and (c) are
all properties that standard verification techniques can deal
with. The theorem also means that if Dh is a sound abstrac-
tion of Dl wrt m, then Dl must entail the mapped high-level
successor state axioms and entail that the mapped conditions
for a high-level action to be executable (from the precondi-
tion axioms of Dh) correctly capture the executability con-
ditions of their refinements (these conditions must hold after
any sequence of refinements of high-level actions, i.e., in any
situation s where Do(anyseqhl, S0, s) holds).
Example Returning to our running example, it is straight-
forward to show that it involves a high-level theory Deg

h that
is a sound abstraction of the low-level theory Deg

l relative
to the mapping meg . DS0

l entails the “translation” of all
the facts about the high-level fluents CnRoute, Dest and
AtHL that are in DS0

h . Moreover, Deg
l entails that the map-

ping of the preconditions of the high-level actions deliver
and takeRoute correctly capture the executability condi-
tions of their refinements.Deg

l also entails the mapped high-
level successor state axiom for fluent AtHL and action
takeRoute and similarly for Delivered and action deliver
(other actions have no effects). Thus,Deg

h is a sound abstrac-
tion of Deg

l relative to meg .

6 Complete Abstraction
When we have a sound abstraction Dh of a low-level the-
ory Dl wrt a mapping m, the high-level theory Dh’s con-
clusions are always sound wrt the more refined theory Dl,
but Dh may have less information than Dl regarding high-
level actions and conditions. Dh may consider it possible
that a high-level action sequence is executable (and achieves
a goal) when Dl knows it is not. The low-level theory may
know/entail that a refinement of a high-level action sequence
achieves a goal without the high level knowing/entailing it.
We can define a stronger notion of abstraction that ensures
that the high-level theory knows everything that the low-
level theory knows about high-level actions and conditions.

We say thatDh is a complete abstraction of Dl relative to
refinement mapping m if and only if, for all models Mh of
Dh, there exists a model Ml of Dl such that Ml ∼m Mh.

From the definition of complete abstraction and Theorem
2, we immediately get the following converses of Corollary
3 and Theorem 4:



Corollary 10 Suppose that Dh is a complete abstraction of
Dl relative tom. Then for any sequence of ground high-level
actions ~α and for any high-level situation-suppressed for-
mula φ, ifDh∪{Executable(do(~α, S0))∧φ[do(~α, S0)]} is
satisfiable, thenDl∪C∪{∃s.Do(m(~α), S0, s)∧m(φ)[s]} is
satisfiable. In particular, if Dh ∪ {Executable(do(~α, S0))}
is satisfiable, Dl ∪ C ∪ {∃s.Do(m(~α), S0, s)} is satisfiable.

Theorem 11 Suppose that Dh is a complete abstraction of
Dl relative to mapping m. Then for any ground high-level
action sequence ~α and any high-level situation-suppressed
formula φ, ifDl ∪C |= ∃s.Do(m(~α), S0, s)∧m(φ)[s], then
Dh |= Executable(do(~α, S0)) ∧ φ[do(~α, S0)].

Thus when we have a high-level theory Dh that is a com-
plete abstraction of a low-level theory Dl wrt a mapping
m, if Dl knows/entails that some refinement of a high-level
action sequence ~α achieves a high-level goal φ, then Dh

knows/entails that ~α achieves φ, i.e., we can find all high-
level plans to achieve high-level goals using Dh.

Note that with complete abstraction alone, we don’t get
Corollary 5, as Dl ∪ C may have models that are not m-
bisimilar to any model of Dh and where different refine-
ments of a high-level action yield different truth-values for
m(F ), for some high-level fluent F .

We also say that Dh is a sound and complete abstraction
of Dl relative to refinement mapping m if and only if Dh is
both a sound and a complete abstraction of Dl relative to m.
Example Returning to our running example, the high-
level theory does not know whether shipment 123 is high
priority, i.e., Deg

h 6|= Priority(123)[S0] and Deg
h 6|=

¬Priority(123)[S0], but the low-level theory knows that
it is, i.e., Deg

l |= meg(Priority(123))[S0]. Thus Deg
h

has a model where ¬Priority(123)[S0] holds that is
not meg-bisimilar to any model of Deg

l , and thus Deg
h

is a sound abstraction of Deg
l wrt meg , but not a

complete abstraction. For instance, the high-level the-
ory considers it possible that the shipment can be deliv-
ered by taking route A and then route B, i.e., Deg

h ∪
{Executable(do(~α, S0)) ∧ φg[do(~α, S0)]} is satisfiable for
~α = [takeRoute(123, RtA,W,L2), takeRoute(123, RtB ,
L2,Cf ), deliver(123)] and φg = Delivered(123). But
the low-level theory knows that ~α cannot be refined
to an executable low-level plan, i.e., Deg

l ∪ C |=
¬∃s.Do(meg(~α, S0, s)). If we add Priority(123)[S0] and
a complete specification of CnRoute to Deg

h , then it be-
comes a sound and complete abstraction of Deg

l wrt meg .
The plan ~α is now ruled out as Deg

h ∪ {Priority(123,
S0)} ∪ {Executable(do(~α, S0))} is not satisfiable.

The following results characterize complete abstractions:
Theorem 12 If Dh is a sound abstraction of Dl relative to
mapping m, then Dh is also a complete abstraction of Dl

wrt mapping m if and only if for every model Mh of Dh
S0
∪

Dh
ca ∪ Dh

coa, there exists a model Ml of Dl
S0
∪ Dl

ca ∪ Dl
coa

such that SMh
0 ∼Mh,Ml

m SMl
0 .

Theorem 13 Dh is a complete abstraction of Dl relative
to mapping m iff for every model Mh of Dh, there exists a
model Ml of Dl ∪ C such that SMh

0 ∼Mh,Ml
m SMl

0 and
Ml |= ∀s.Do(anyseqhl ,S0 , s) ⊃

∧
Ai∈Ah ∀~x.(m(φPoss

Ai
(~x))[s] ≡ ∃s′Do(m(Ai(~x)), s, s

′))
and Ml |= ∀s.Do(anyseqhl, S0, s) ⊃∧

Ai∈Ah ∀~x, s′.(Do(m(Ai(~x)), s, s
′) ⊃∧

Fi∈Fh ∀~y(m(φssa
Fi,Ai

(~y, ~x))[s] ≡ m(Fi(~y))[s
′])),

where φPoss
Ai

(~x) and φssaFi,Ai
(~y, ~x) are as in Theorem 9.

7 Monitoring and Explanation
A refinement mapping m from a high-level action the-
ory Dh to a low level action theory Dl tells us what the
refinements of high-level actions into executions of low-
level programs are. In some application contexts, one is
interested in tracking/monitoring what the low-level agent
is doing and describing it in abstract terms, e.g., to a
client or manager. If we have a ground low level situa-
tion term Sl such that Dl ∪ {Executable(Sl)} is satisfi-
able, and Dl ∪ {Do(m(~α), S0, Sl)} is satisfiable, then the
ground high level action sequence ~α is a possible way
of describing in abstract terms what has occurred in get-
ting to situation Sl. If Dh ∪ {Executable(do(~α, S0))} is
also satisfiable (it must be if Dh is a sound abstraction of
Dl wrt m), then one can also answer high level queries
about what may hold in the resulting situation, i.e., whether
Dh ∪ {Executable(do(~α, S0)) ∧ φ(do(~α, S0))} is satisfi-
able, and what must hold in such a resulting situation, i.e.,
whether Dh ∪ {Executable(do(~α, S0))} |= φ(do(~α, S0)).
One can also answer queries about what high level ac-
tion β the agent might perform next, i.e., whether Dh ∪
{Executable(do(~αβ, S0))} is satisfiable.

In general, there may be several distinct ground high level
action sequences ~α that match a ground low level situation
term Sl; even if we have complete information and a single
model Ml of Dl ∪ C, there may be several distinct ~α’s such
that Ml |= Do(m(~α), S0, Sl).1

In many contexts, this would be counterintuitive and we
would like to be able to map a sequence of low-level actions
performed by the low-level agent back into a unique abstract
high-level action sequence it refines, i.e., we would like to
define an inverse mapping function m−1. Let’s see how we
can do this. First, we introduce the abbreviation lpm(s, s′),
meaning that s′ is a largest prefix of s that can be produced
by executing a sequence of high-level actions:

lpm(s, s′)
.
= Do(anyseqhl, S0, s

′) ∧ s′ ≤ s ∧
∀s′′.(s′ < s′′ ≤ s ⊃ ¬Do(anyseqhl, S0, s

′′))

We can show that the relation lpm(s, s′) is actually a total
function:

Theorem 14 For any refinement mappingm fromDh toDl,
we have that:

1. Dl ∪ C |= ∀s.∃s′.lpm(s, s′),
2. Dl ∪ C |= ∀s∀s1∀s2.lpm(s, s1) ∧ lpm(s, s2) ⊃ s1 = s2.

Given this result, we can introduce the notation lpm(s) = s′

to stand for lpm(s, s′).

1For example, suppose that we have two high level actions A
and B with m(A) = (C | D) and m(B) = (D | E). Then
the low level situation do(D,S0) is a refinement of both A and B
(assuming all actions are always executable).



To be able to map a low-level action sequence back to a
unique high-level action sequence that produced it, we need
the following assumptions:

Assumption 1 For any distinct ground high-level action
terms α and α′ we have that:

(a) Dl ∪ C |= Do(m(α), s, s′) ⊃ ¬∃δ.Trans∗(m(α′), s, δ, s′)

(b) Dl ∪ C |= Do(m(α), s, s′) ⊃
¬∃a∃δ.T rans∗(m(α), s, δ, do(a, s′))

(c) Dl ∪ C |= Do(m(α), s, s′) ⊃ s < s′

Part (a) ensures that different high-level primitive actions
have disjoint sets of refinements; (b) ensures that once a re-
finement of a high-level primitive action is complete, it can-
not be extended further; and (c) ensures that a refinement of
a high-level primitive action will produce at least one low-
level action. Together, these three assumptions ensure that if
we have a low-level action sequence that can be produced by
executing some high-level action sequence, there is a unique
high-level action sequence that can produce it:

Theorem 15 Suppose that we have a refinement mapping
m from Dh to Dl and that Assumption 1, holds. Let Ml be
a model of Dl ∪ C. Then for any ground situation terms Ss

and Se such thatMl |= Do(anyseqhl , Ss, Se), there exists a
unique ground high-level action sequence ~α such thatMl |=
Do(m(~α), Ss, Se).

Since in any model Ml of Dl ∪ C, for any ground situa-
tion term S, there is a unique largest prefix of S that can
be produced by executing a sequence of high-level actions,
S′ = lpm(S), and for any such S′, there is a unique ground
high-level action sequence ~α that can produce it, we can
view ~α as the value of the inverse mapping m−1 for S in
Ml. For this, let us introduce the following notation:

m−1
Ml

(S) = ~α
.
=

Ml |= ∃s′.lpm(S) = s′ ∧Do(m(~α), S0, s
′)

where m is a refinement mapping from Dh to Dl and As-
sumption 1 holds, Ml is a model of Dl ∪ C, S is a ground
low-level situation term, and ~α is a ground high-level action
sequence.

Assumption 1 however does not ensure that any low-
level situation S can in fact be generated by executing a
refinement of some high-level action sequence; if it can-
not, than the inverse mapping will not return a complete
matching high-level action sequence (e.g., we might have
m−1Ml

(S) = ε). We can introduce an additional assumption
that rules this out:2

Assumption 2

Dl ∪ C |= ∀s.Executable(s) ⊃ ∃δ.Trans∗(anyseqhl , S0, δ, s)

2One might prefer a weaker version of Assumption 2. For in-
stance, one could write a program specifying the low level agent’s
possible behaviors and require that situations reachable by execut-
ing this program can be generated by executing a refinement of
some high-level action sequence. We discuss the use of programs
to specify possible agent behaviors in the conclusion.

With this additional assumption, we can show that for
any executable low level situation s, what remains after the
largest prefix that can be produced by executing a sequence
of high level actions, i.e, the actions in the interval between
s′ and s where lpm(s, s′), can be generated by some (not yet
complete) refinement of a high level primitive action:
Theorem 16 If m is a refinement mapping from Dh to Dl

and Assumption 2 holds, then we have that:

Dl ∪ C |= ∀s, s′.Executable(s) ∧ lpm(s, s′) ⊃
∃δ.Trans∗(any1hl , s′, δ, s)

Example Going back to the example of Section 3, as-
sume that we have complete information at the low
level and a single model Ml of Deg

l , and suppose that
the sequence of (executable) low-level actions ~a =
[takeRoad(123, Rda,W,L1), takeRoad(123, Rdb, L1,
L2)] has occurred. The inverse mapping al-
lows us to conclude that the high-level action
α = takeRoute(123, RtA,W,L2) has occurred, since
m−1ML

(do(~a, S0)) = α.3 Since Dh |= AtHL(123, L2,
do(α, S0)), we can also conclude that ship-
ment 123 is now at location L2. As well, since
Dh ∪ {Poss(takeRoute(123, RtB , L2,Cf ), do(α, S0))}
is satisfiable, we can conclude that high level action
takeRoute(123, RtB , L2,Cf ) might occur next. Anal-
ogously, we can also conclude that high level action
takeRoute(123, RtC , L2,Cf ) might occur next.

8 Discussion
In AI, (Giunchiglia and Walsh 1992) formalize abstraction
as syntactic mappings between formulas of a concrete and a
more abstract representation, while (Nayak and Levy 1995)
present a semantic theory of abstraction. These approaches
formalize abstraction of static logical theories, while our
work focuses on abstraction of dynamic domains. In plan-
ning, several notions of abstraction have been investigated.
These include precondition-elimination abstraction, first in-
troduced in context of ABSTRIPS (Sacerdoti 1974); Hier-
archical Task Networks (HTNs) (e.g. (Erol, Hendler, and
Nau 1996)), which abstract over a set of (non-primitive)
tasks; and macro operators (e.g. (Korf 1987)), which rep-
resent meta-actions built from a sequence of action steps.
(Aguas, Celorrio, and Jonsson 2016) proposed hierarchi-
cal finite state controllers for planning. Encodings of HTNs
in ConGolog with enhanced features like exogenous ac-
tions and online executions (Gabaldon 2002) and preferred
plans (Sohrabi and McIlraith 2008) have also been stud-
ied. (McIlraith and Fadel 2002) and (Baier and McIlraith
2006) instead, investigate planning with complex actions
(a form of macro actions) specified as Golog (Levesque et
al. 1997) programs. While these approaches focus on im-
proving the efficiency of planning, our work provides a
generic framework which can have applications in many

3If we do not have complete information at the low level,
m−1

M (~a) may be different for different modelsM ofDl. To do high
level tracking/monitoring in such cases, we need to consider all the
possible mappings or impose additional restrictions to ensure that
there is a unique mapping. We leave this problem for future work.



areas. Moreover, (Gabaldon 2002; Sohrabi and McIlraith
2008) use a single BAT, and (McIlraith and Fadel 2002;
Baier and McIlraith 2006) compile the abstracted actions
into a new BAT that contains both the original and abstracted
actions. Also, they only deal with deterministic complex ac-
tions and do not provide abstraction for fluents. Moreover,
our approach provides a refinement mapping (similar to that
of Global-As-View in data integration (Lenzerini 2002)) be-
tween an abstract BAT and a concrete BAT.

In this paper, we proposed a general framework for agent
abstraction based on the situation calculus and ConGolog.
For simplicity, we focused on a single layer of abstraction,
but the framework supports extending the hierarchy to more
levels. Our approach can also support the use of ConGolog
programs to specify the possible behaviors of the agent at
both the high and low level, as we can follow (De Giacomo
et al. 2016) and “compile” the program into the BAT D to
get a new BAT D′ whose executable situations are exactly
those that can be reached by executing the program. We have
also identified a set of BAT constraints that ensure that for
any low-level action sequence, there is a unique high-level
action sequence that it refines. This is very useful for pro-
viding high-level explanations of behavior.

In future work, we will explore how using different types
of mappings and BATs from various sources that yield
sound/complete abstractions can support system evolvabil-
ity. Moreover, we will investigate methodologies for design-
ing abstract agents/theories and refinement mappings wrt
given objectives, as well as automated synthesis techniques
to support this. We will also explore how agent abstraction
can be used in verification, where there is some related work
(Mo, Li, and Liu 2016; Belardinelli, Lomuscio, and Michal-
iszyn 2016). Extending our agent abstraction framework to
accommodate sensing and online executions is another di-
rection for future research.
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