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This work proposes a novel high-level paradigm, agent planning programs, for modeling 
agents behavior, which suitably mixes automated planning with agent-oriented program-
ming. Agent planning programs are finite-state programs, possibly containing loops, whose 
atomic instructions consist of a guard, a maintenance goal, and an achievement goal, which 
act as precondition-invariance-postcondition assertions in program specification. Such pro-
grams are to be executed in possibly nondeterministic planning domains and their exe-
cution requires generating plans that meet the goals specified in the atomic instructions, 
while respecting the program control flow. In this paper, we define the problem of auto-
matically synthesizing the required plans to execute an agent planning program, propose 
a solution technique based on model checking of two-player game structures, and use 
it to characterize the worst-case computational complexity of the problem as EXPTIME-
complete. Then, we consider the case of deterministic domains and propose a different 
technique to solve agent planning programs, which is based on iteratively solving classi-
cal planning problems and on exploiting goal preferences and plan adaptation methods. 
Finally, we study the effectiveness of this approach for deterministic domains through an 
experimental analysis on well-known planning domains.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

This work proposes a novel paradigm for programming intelligent agents and controllers in a task-oriented way that 
mixes automated planning with agent-oriented programming w.r.t. behavior specification.1 Generally speaking, we envision 
the designer providing a high-level model of the “space of deliberation” of the agent—called an agent planning program—that 
is meant to be “realized” into an executable program via automatic synthesis. Agent planning programs are finite-state 
programs, possibly containing loops, whose atomic instructions are classical precondition-invariance-postcondition declarative 
assertions. Such programs are to be executed in possibly nondeterministic domains. A “realization” of such programs in 
the domain of concern amounts, basically, to a collection of inter-related plans that meet the assertions in the atomic 
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instructions while respecting the program control flow in its totality (that is, a plan for an assertion should not preclude 
the realization of potential future instructions).

Technically, the dynamics of the world is described with a planning domain and a given initial state, as usually done 
in domain-independent planning [46] and reasoning about action [88]. On top of such (rooted) domain, an agent planning 
program is modeled as a finite transition system, typically including loops, in which states represent choice points and 
transitions specify possible objectives that the agent may decide to pursue. Such transitions constitute the high-level actions 
available to the agent, and are characterized by: (i) a guard, which poses executability preconditions; (ii) a maintenance goal, 
which specifies invariants that are guaranteed to hold for the course of actions to execute; and (iii) an achievement goal, 
which specifies the postcondition of the transition. In other words, those triples are a direct counterpart of the classical 
triple precondition-invariant-postcondition, used in program specification [38,42,55] and nowadays in “design-by-contract” 
or “code-by contract” development [74].

Intuitively, agent planning programs are meant to work as follows: at any point in time, based on the current state of 
the domain and that of the agent planning program, the agent decides, autonomously, which enabled program transition 
to pursue. A (synthesized) plan satisfying the assertions in the chosen transition is then executed, thus moving the domain 
and the program to their next states, from which a new transition will be “requested” by the agent, a new plan executed 
again, and so on. The agent planning program is said to be realized if an adequate plan can always be associated to the 
execution of transitions, according to the planning program control flow. Note that, although the planning program is a 
finite transition system, it may generate, due to loops, an infinite computation tree; in principle, one needs to synthesize 
plans for each of the infinitely many transitions of such a tree. A key point is that, in synthesizing a plan for a particular 
transition, one needs to take into account that the resulting state of the domain must not only satisfy the corresponding 
achievement goal assertion, but also must allow for the existence of plans for each possible next transition, and this must 
hold again after such plans, and so on.

By combining declarative and procedural approaches to behavior specification, together with automatic synthesis tech-
niques, the agent planning program approach has the potential to provide convenient and powerful specification of behavior 
in complex scenarios. For example, they can be used to encode knowledge-intensive business processes (processes reflect-
ing “preferred work practices” whose execution is controlled by contingent agent decision making, coupled with contextual 
data and knowledge production) [27,99],2 or even non-linear storylines behind characters’ actions in a video game [18,85]. 
Planning programs can also be a convenient model of an embedded system for a smart house controller [52] or a Holonic 
manufacturing system [50], in which the actual concrete manner of doing things may vary from setting to setting. Last, 
but not least, they can be used to specify the requirements for a web-service [72]. The assumption is that the agent (e.g., 
a human interacting with a business process, embedded system, or a game narrative generator) issues, step-by-step, goal 
requests within the given space of deliberation, which are to be fulfilled by appropriate plans computed by the solver.

In this paper, we study the above realizability (and associated synthesis) problem and provide the following contribu-
tions:

• A formal definition of the problem of realizing an agent planning program and its solution.
• A correct and terminating technique for synthesizing realizations, which resorts to automated synthesis for certain kinds 

of Linear-time Temporal Logic (LTL) specifications based on model checking game structures [80,82]. Interestingly, such 
a technique can be readily implemented using available tools for synthesis based on model checking of game structures, 
such as the well-known TLV [84], JTLV [83], or the more recent NuGaT [17], which we use for our experiments.

• A worst-case complexity characterization of the problem as EXPTIME-complete, where we use the above technique 
for establishing membership in EXPTIME. The EXPTIME-hardness comes from the EXPTIME-completeness of conditional 
planning with full observability in nondeterministic domains [90], which is a special case of our problem: a planning 
program formed by a single transition labelled with an achievement goal.

The output obtained from our general realization technique is akin to a sort of sophisticated form of universal plan [92], 
which is obviously a costly solution [48]. To deal with this, in the second part of the paper, we look for alternative com-
putational approaches based on exploiting state-of-the-art classical planning systems. In particular, we focus on the case of 
deterministic underlying domains, widely studied in automated planning, for which classical planning systems have shown 
excellent performance. The contributions for this case are the following:

• We show that the worst-case complexity of the problem remains EXPTIME-complete even for deterministic domains. In 
particular, for membership we can still use the general algorithm, while for the hardness we show a reduction from the 
service composition problem [76].

• We devise a technique for realizing planning programs that is based on classical planning tools, which involves itera-
tively constructing and synchronizing a set of plans. Importantly, the technique makes use of goal preferences and plan 
adaptation to considerably speed up plan synthesis and synchronization when realizing looping transitions.

2 In particular, in [27], an early version of agent planning programs was used for expressing behavioral routines for people with special needs in dedicated 
smart homes.
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• We develop and perform a thorough set of experiments to test our planning-based approach using benchmarks from 
planning competitions. In the experiments, we drop all transition guards (i.e., we set them to true). Note that realizing 
planning programs without guards does not represent a simplification in experimenting our algorithm, since it forces 
the algorithm to realize all outgoing transitions, even those that guards would disable. We consider both maintenance 
and achievement goals stated as conjunctions.

• We demonstrate, via experimental analysis, that our planning-based approach excels in domains in which the back-
tracking due to planning failures during the transitions realization is limited. In particular, this is the case for planning 
domains without deadends, where the failures are due to the given limits of the computational resources (CPU time 
or memory consumption limits), or to the incompleteness of the planner used. As expected, though, as the need for 
backtracking increases, the performance degrade, and the high worst-case complexity shows up.

Such experimental evaluation indicates that our iterated planning technique constitutes an effective baseline for handling 
agent planning programs in deterministic domains.

As mentioned, agent planning programs advocate a novel paradigm for “programming” complex task-oriented behav-
iors, by suitably mixing key ingredients of automated planning [46] and agent-oriented programming [66,67,87,97]. From 
the former, they inherit the ability to specify behaviors in a declarative manner, thus providing an abstract and powerful 
mechanism that caters for flexible behaviors from first principle, that is, without the need to specify detailed procedural 
information. As already accepted in the literature, declarative goals provide several other advantages, including decoupling 
plan execution and goal achievement, facilitating goal dynamics and plan failure handling, enabling reasoning about goal 
and plan interaction, and enhancing goal and plan communication [101]. From the latter, in turn, planning programs draw 
the ability to specify useful available “know-how” information, albeit at a high-level of abstraction. By doing so, it is possible 
to better focus on the relevant decisions—the “space of deliberation.” Concretely, this is achieved by encoding the tempo-
ral/procedural relations among the declarative goals of concern: planning programs restrict the options that will be available 
after the (current) goal is brought about.3

We note that research on integrating these two approaches has a certain tradition in AI. For example, [106] advocates the 
use of a high-level model for describing the behaviors of interest in embedded systems, which then need to be “compiled” 
on-the-fly by a suitable solver into a low-level executable code for a given plant. In [93] planning for temporal goals 
consisting of a mixture of declarative and procedural assertions are considered. Mixing planning and programs is one of the 
original motivations behind the Golog family of high-level programming languages [5,29,68], possibly the most prominent 
programming language proposals in reasoning about action. There has also been substantial effort in bringing deliberative 
planning into standard BDI-style agent architectures, e.g., [39,91,103]. In fact, the necessity of studying more systematically 
planning in combination with acting and programming has been recently thoroughly advocated in [46]. Our proposal of 
agent planning programs goes exactly in this direction, thus contributing to both agent programming and planning research 
areas.

The rest of the paper is structured as follows. In Section 2, we formally define agent planning programs and the cor-
responding realization problem. In Section 3, we ground such notions on a full fledged example. Then, in Section 4, we 
look into the general solution for realizing agent planning programs by resorting to LTL synthesis via model checking of 
two-player game structures. We show that our solution is sound and complete, and characterize the worst-case computa-
tional complexity as EXPTIME-complete. In Section 5, we focus on the case where the domain is deterministic. We prove 
EXPTIME-completeness also in this case, and we provide our planning based technique and analyze it from the point of 
view of its correctness and optimizability. After that, in Section 6, we report on a set of experiments that provides evidence 
of the effectiveness in practice of such technique. Finally, we discuss related work and draw conclusions in Sections 7 and 8, 
respectively. For the sake of readability, a concrete encoding of planning programs in SMV (the input language of TLV, JTLV
and NuGaT), as well as detailed proofs and additional experimental results, are given in appendices.

2. Agent planning programs

Agent Planning Programs are high-level representations of the behavior of agents acting in a domain. Essentially, they 
are transition systems, with states representing decision points, and transitions labelled by triples consisting of a guard, 
a maintenance goal and an achievement goal, over the domain. For instance, an agent planning program for a researcher’s 
everyday-life routine is depicted in Fig. 1b, under which the agent (i.e., the researcher) can decide to move between home 
(state v0), work (state v1), and the pub (state v2). So, at planning program state v1, the researcher may decide to go back 
home (transition to state v0) or instead go out to the pub (transition to state v1). Once at the pub, the agent can only 
return to her home, where the routine iterates again for the next day.

Informally, in order for an agent planning program to be executable, each labeling goal requires a plan to bring it about. 
Importantly, those plans ought to be “synchronized” so that the final world state generated by each plan is a suitable initial 

3 We point out that, from an agency perspective, this work focuses only on the means-end analysis aspect of agent practical reasoning [15]. There are 
many other important aspects of agency and agent programming that are not addressed by agent planning programs, including deliberation of goals, 
intentions and commitments, etc.
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state for the subsequent plans associated with the next goals. When this is the case, the planning program is realized. In 
general, however, computing a realization does not simply amount to matching program transitions with appropriate plans. 
The fact is that, as plans are executed, both the state of the planning program and that of the underlying domain evolve 
and, in general, the planning program may reach the same state in different domain states, so that there is no guarantee 
that a single plan would work in all such domain states. Thus, a more sophisticated solution concept is required.

Our framework consists of two basic components: (i) a planning domain, formalizing the environment that the agent acts 
in; and (ii) an agent planning program, providing a high-level representation of the agent’s space of deliberation.

Definition 1 (Planning domain). A planning domain is a tuple D = 〈P , A, τ 〉, where:

• P is a finite set of domain propositions; a state of the domain is a subset in 2P ;
• A is the finite set of domain actions; and
• τ ⊆ 2P × A × 2P is the transition relation; we freely interchange notations 〈s, a, s′〉 ∈ τ and s a−→ s′ in D. �

We say that an action a is executable in a state s, if there exists some state s′ such that s a−→ s′ in D. Notice that, in 
general, planning domains are nondeterministic, as their evolution is modeled by a transition relation. We next define what 

it means for a plan to achieve a goal in a planning domain D. A D-history h is a finite sequence s0 a1−→ s1 · · · s�−1 a�−→ s� , 

such that: (i) for each i ∈ {0, . . . , �}, si ∈ 2P ; and (ii) for each i ∈ {0, . . . , � − 1}, si ai+1−−→ si+1 in D. Intuitively, D-histories 
capture the possible evolutions of D from a state s0. The set of all possible D-histories is denoted by H. Given a sequence 

η = s0 a1−→ s1 · · · s�−1 a�−→ s� , we define the length of η, denoted |η|, as |η| = � + 1, if η is finite (e.g., if it is a history), and 

|η| = ∞, otherwise. Moreover, for 0 < k < |η| + 1, we denote the k-length finite prefix of η as η|k = s0 a1−→ · · · ak−1−−−→ sk−1 and 
its last state as end[η] = s� .

Given a planning domain D, a history-based plan (H-plan) for D is a partial function π : H 
→ A such that, given a 
D-history h, if π is defined on h, it returns an action a = π(h) executable in end[h]. Intuitively, H-plans can be seen as 
“non-Markovian policies”, i.e., functions that prescribe the action to execute next, given the current history (as opposed 
to the more commonly used “Markovian’ policies”, which prescribe actions based on the current state). A trajectory of an 

H-plan π (over D), also called a π -trajectory, from a state s0 ∈ 2P , is a sequence η = s0 a1−→ s1 a2−→ · · · such that: (i) for all 
0 < k < |η| + 1, η|k is a D-history; and (ii) for all 0 < k < |η|, ak = π(η|k). Observe that trajectories of H-plans can be either 
finite or infinite. A trajectory η is said to be complete (w.r.t. π ) if it is infinite or such that π(η) is undefined (thus η is 
finite and cannot be extended further, through π ). An H-plan is said to be a history-based terminating plan (HT-plan, for a 
domain D) if all of its complete trajectories are finite. Obviously, HT-plans induce only finite trajectories, which are in fact 
D-histories. The set of all HT-plans over D is denoted by HTD .

A D-history h = s0 a1−→ s1 · · · s�−1 a�−→ s� achieves a goal φ, i.e., a propositional formula over the propositions of D, if 
s� |= φ, where satisfaction is defined as usual in propositional logic. Similarly, h maintains a goal ψ if si |= ψ , for every 
i ∈ {0, . . . , � − 1}. Observe that maintaining a goal ψ requires the goal to remain true up to the second last state s�−1 of the 
history, while the goal ψ is allowed to become false in the last state s� (to make ψ remain true also in the last state we 
may simply require it to be not only maintained but also achieved). Such notions can be extended to HT-plans, as follows. 
We say that an HT-plan π achieves a goal φ from a state s, if all of its complete trajectories from s (which are histories) do 
so; also, we say that π maintains a goal ψ from s if all of its (complete or not) trajectories from s do so.

Next, we formally define agent planning programs as a network, constituted by the control flow of the program, of declar-
ative goal assertions, the atomic instructions. Each of these instructions consist of a (potential) agent request, under a certain 
guard (i.e., precondition), to achieve a given achievement goal (i.e., postcondition) while maintaining certain condition (i.e., 
invariance).

Definition 2 (Agent planning program). An agent planning program is a tuple P = 〈P , V , v0, δ〉, where:

• P is a finite set of domain propositions;
• V is the finite set of program states;
• v0 ∈ V is the program initial state of P ; and
• δ ⊆ V × 	(P ) × 	(P ) × 	(P ) × V is the transition relation of P , where 	(P ) stands for the set of all boolean formulas 

built from the set of propositions P . A transition 〈v, γ , ψ, φ, v ′〉 ∈ δ—also 〈v, 〈γ , ψ, φ〉, v ′〉 ∈ δ or v 
γ :ψ,φ−−−−→ v ′ in P for 

legibility—is used to denote that whenever the guard γ holds (in the domain), the agent planning program P may 
legally move from state v to state v ′ by “achieving φ while maintaining ψ .” �

The idea is that when the planning program and the domain are in states v and s (initially v0 and s0), respectively, 
the agent is allowed to pursue any enabled (i.e., whose guard holds true in s) planning program transition v 

γ :ψ,φ−−−−→ v ′
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in P . However, being declarative assertions, such transition are not directly executable and actual realizations are required 
for them. A realization, then, must provide a concrete HT-plan π that brings about the achievement goal φ while guaran-
teeing maintenance of ψ and, furthermore, be compatible with further realizations for subsequent transitions (i.e., atomic 
instructions) of the planning program. The latter requirement is central to the approach, as the choice points in the plan-
ning program are resolved by decisions made by the agent only at runtime. It should be noted that only in special cases we 
can realize planning programs by simply annotating transitions with plans. In general, the annotation should be done on 
the (infinite) computation tree generated by the planning program. Indeed, a transition in the planning program may be 
pursued (i.e., requested by the agent) at different moments in time, from different states of the domain, and so different 
plans may be required.

With this intuition at hand, we are now prepared to formalize the notion of planning program realization, thus providing 
semantics to agent planning programs. We base such notion on a suitable variant of the formal notion of simulation [75], 
under which, loosely speaking, transitions are matched by plans, rather than by single actions.

Definition 3 (Plan-based simulation). Let D = 〈P , A, τ 〉 be a planning domain and P = 〈P , V , v0, δ〉 an agent planning pro-
gram. A plan-based simulation relation, or PLAN-simulation relation, is a relation R ⊆ V × 2P such that 〈v, s〉 ∈ R implies that, 
for every transition v 

γ :ψ,φ−−−−→ v ′ in P such that s |= γ , there exists an HT-plan π such that:

1. π achieves φ and maintains ψ from s (in which case, plan π is said to realize the transition v 
γ :ψ,φ−−−−→ v ′); and

2. for all complete trajectories h of plan π from domain state s, it is the case that 〈v ′, end[h]〉 ∈ R (in which case plan π
is said to preserve R from 〈v, s〉 for v 

γ :ψ,φ−−−−→ v ′).

A P-state v ∈ V is said to be PLAN-simulated by a D-state s ∈ 2P , denoted v �PLAN s, if there exists a PLAN-simulation 
relation R such that 〈v, s〉 ∈ R . �

As for standard simulation, relation �PLAN is a PLAN-simulation relation itself and, in particular, the largest one (with 
respect to set inclusion)—it can be obtained by taking the union of all PLAN-simulation relations.

Definition 4 (Agent planning program realization). A realization of an agent planning program P in planning domain D from 
an initial D-state s0 ∈ 2P is a partial function � : 2P × δ 
→ HTD such that for some PLAN-simulation relation R , it is the 
case that:

• 〈v0, s0〉 ∈ R; and
• for all pairs 〈v, s〉 ∈ R and all transitions d = 〈v, 〈γ , ψ, φ〉, v ′〉 in P such that s |= γ , an HT-plan �(s, d) is defined, 

realizes transition d, and preserves R from 〈v, s〉 for d. �

That is, a realization � is a function that given a domain state s and a transition request v 
γ :ψ,φ−−−−→ v ′ , whose guard is 

satisfied in s, outputs an HT-plan π that achieves φ while maintaining ψ from s and guarantees that all potential future 
requests from v ′ after π ’s execution can also be fulfilled by plans prescribed by the realization function �.

Our first result states if the initial state of P is PLAN-simulated by the initial state of D then it is guaranteed that a 
realization exists (and obviously viceversa).

Theorem 1. There exists a realization � of an agent planning program P in a planning domain D from D-state s0 if and only if 
v0 �PLAN s0 .

Proof. (If Part) If v0 �PLAN s0, then for all pairs v �PLAN s and all transitions d = 〈v, 〈γ , ψ, φ〉, v ′〉 in P , there exists an 
HT-plan π that realizes d and preserves �PLAN from 〈v, s〉 for d. Thus, we define �(s, d) = π by taking �PLAN itself as the 
PLAN-simulation relation R .

(Only-If Part) Immediately follows from the definition of realization, which requires the existence of a PLAN-simulation 
R such that 〈v0, s0〉 ∈ R . Hence, �PLAN being the largest PLAN-simulation, we have that v0 �PLAN s0. �

A planning program P is said to be realizable in a planning domain D if there exists a realization of P in D from D’s 
initial state. When that happens, there exists a realization � such that all possible sequences of legal requests that the agent 
may issue starting from the initial configuration 〈v0, s0〉 can be fulfilled by HT-plans returned by �.

In the next sections, we will devise techniques to check whether an agent planning program P is realizable in a domain 
D and, if so, to actually build a corresponding realization function �. Before doing so we illustrate the above notions with 
an example.
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Fig. 1. Dynamic domain and agent planning program modeling a researcher’s everyday-life routine.

3. An example

In this section we illustrate the previous notions (and some of their subtleties) through a simple example on the 
everyday-life behavior of an academic. The researcher moves among four locations, namely: home, the academic depart-
ment building, the department parking lot, and a pub. To move from one place to another, the researcher can drive a car, 
take a bus, or just walk. Due to highways, traffic restrictions, and distances, not all alternatives are available from every loca-
tions (e.g., it is too far to walk to work and campus circulation is restricted to buses only). In Fig. 1a, all allowed movements 
in the relevant domain are depicted.

Besides the location of the researcher, the domain includes other features not shown in the figure. For instance, some 
amount of fuel is consumed each time the car changes location and, at any point in time, it may rain (proposition Rain). In 
our first, deterministic, version of the domain, though, we assume that it is never raining (i.e., Rain is always false) and the 
fuel in the car’s tank decreases by one level with each action drive, that is, from full to low and from low to empty, with each 
trip (via action drive). As expected, the car cannot be driven when the tank is empty. However, the tank can be brought 
to its full level by refueling (represented by action refuel). We shall later revisit this assumption in a non-deterministic 
variant of the example.

Let us formalize this planning domain D = 〈P , A, τ 〉, as follows:

• P = {Fuel(full),Fuel(low),Fuel(empty),
MyLoc(home),MyLoc(pub),MyLoc(dept),MyLoc(lot),
CarLoc(home),CarLoc(pub),CarLoc(lot),Driven,Rain}.

• A = Adrive ∪ Awalk ∪ AtakeBus ∪ {refuel}, where:
– Adrive = {drive(d) | d ∈ {home, pub, lot}};
– Awalk = {walk(d) | d ∈ {home, pub, lot, dept}}; and
– AtakeBus = {takeBus(d) | d ∈ {home, pub, lot, dept}}.

• τ = τdrive ∪ τrefuel ∪ τwalk ∪ τtakeBus , where:

– τdrive =
{
〈s,drive(l), s′〉 |
l ∈ {home,pub, lot},Fuel(empty) /∈ s,MyLoc(dept) /∈ s,

∃l′, x, y · l′ ∈ {home,pub, lot},
l′ �= l, (x, y) ∈ {(full, low), (low, empty)},
MyLoc(l′) ∈ s,CarLoc(l′) ∈ s,Fuel(x) ∈ s,

s′ = (s \ {MyLoc(l′),CarLoc(l′),Fuel(x)})∪
{MyLoc(l),CarLoc(l),Driven,Fuel(y)}

}
;

– τrefuel =
{
〈s,refuel, s′〉 |

MyLoc(l) ∈ s,CarLoc(l) ∈ s,

s′ = (s \ {Fuel(low),Fuel(empty),Driven}) ∪ {Fuel(full)}
}
; and

– τwalk and τtakeBus are the sets of D’s transitions modeling the effects of actions walk and takeBus on the researcher’s 
location, resp., as per Fig. 1a; additionally, both actions set Driven to false, to capture that the car has not been driven.

The intended meaning of the propositions in P is self-explanatory: Fuel(l) denotes the tank level; MyLoc(l) and CarLoc(l)
denote the location of the researcher and car, respectively; Driven states that the car has just been driven in the previous 
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Table 1
A realization function for the deterministic variant of the researcher’s everyday-life domain.

State Transition Plan

{MyLoc(home),CarLoc(home),Fuel(full)} 〈v0, v1〉 〈drive(lot),walk(dept)〉
{MyLoc(home),CarLoc(home),Fuel(full)} 〈v0, v2〉 〈takeBus(pub)〉
{MyLoc(home),CarLoc(lot),Fuel(low)} 〈v0, v1〉 〈takeBus(dept)〉
{MyLoc(home),CarLoc(lot),Fuel(low)} 〈v0, v2〉 〈takeBus(pub)〉
{MyLoc(dept),CarLoc(lot),Fuel(low)} 〈v1, v0〉 〈walk(lot),refuel,drive(home),refuel〉
{MyLoc(dept),CarLoc(lot),Fuel(low)} 〈v1, v2〉 〈walk(pub)〉
{MyLoc(pub),CarLoc(home),Fuel(full)} 〈v2, v0〉 〈takeBus(home)〉
{MyLoc(pub),CarLoc(lot),Fuel(low)} 〈v2, v0〉 〈takeBus(home)〉

action; and Rain states that it is raining. Also actions are self-describing. For instance, walk(dept) is the action of the 
researcher walking to the department building (note there is no action drive(dept), as driving in the campus is not allowed).

Executability and effects of actions are captured by the transition relation τ . For example, the set of transitions τdrive

represents the transitions between states s and s′ when the agent drives to destination location l. The action can only be 
executed when the car has fuel, and the agent and the car are co-located at l′ (different from destination l). After the 
execution of the action, both the agent and the car are located in l, the car has just been driven, and its tank level has 
decreased by one unit (see τrefuel).

Now imagine that the researcher wants to be able to go to work and, after work, maybe drop by the pub before heading 
back home. Sometimes, e.g., on weekends, she may want to go to the pub directly from home. For safety reasons, the re-
searcher does not want to drive after having been at the pub. Also, a very natural requirement is that the car never runs out 
of fuel. Such desired behavior can be captured by the agent planning program depicted in Fig. 1b. Each transition is labeled 
with a triple 〈γ , ψ, φ〉 encoding the required guard, maintenance and achievement goals, respectively γ , ψ and φ. We use 

the notation v 
γ :ψ+,φ−−−−−→ v ′ to denote v 

γ :ψ,(φ∧ψ)−−−−−−−→ v ′ , to abbreviate the common case where the maintenance goal needs to 
remain true also at the end. For instance, the maintenance goal (¬Fuel(empty) ∧ ¬Driven)+ annotating the guard-free tran-
sition from state v2 to state v0, requires that both the car does not run out of fuel and that the researcher avoids driving 
after having been at the pub. Notice that such requirements need to hold also when the achievement goal MyLoc(home) is 
fulfilled.

The question is: can the researcher carry out such a program, and if so, how? As an example of positive answer, consider 
Table 1, which describes a possible realization for this program. The first column represents the current state of the domain; 
the second one contains the requested program transition; and the third one represents the plan to be executed from the 
current domain state to realize the requested transition. For simplicity, the second column includes only the source and 
target state of a program transition, while the corresponding guards, maintenance and achievement goals are specified 
in Fig. 1. Lastly, the third column reports the corresponding HT-plan, as a sequence of actions given that the domain is 
deterministic.

Consider the first line in the table. If, from the current domain state, the researcher chooses to go to the department 
(transition 〈v0, v1〉), the corresponding plan consists in driving first to the parking lot and then walking to the department. 
In the domain state resulting from executing this plan (fifth row in the table), the researcher is at the department and 
the car is at the parking lot with a low fuel level. From this state, when the researcher chooses to go back home, the 
corresponding plan consists in walking to the parking lot, refueling the car, driving home and finally refueling the car again. 
Observe that the first refuel action is required to prevent the car from running out of fuel, whereas the second one is not 
strictly required (the researcher could execute it as the first action of any future plan that includes driving the car). Notice 
that the state resulting from executing this plan is the one we initially started from. Thus, if the researcher needs to go 
to work again, the very same plan executed before is still available. Interestingly, this realization example associates the 
transition v0 −→ v1 with two distinct plans (see third line of the table), depending on the current domain state.

Next consider a nondeterministic variant of this example, in which the fuel level and weather evolves nondeterministi-
cally. So, with each trip, the tank level may either stay the same, decrease from full to low or from low to empty, and the 
whether it is raining or not may change at every time-step (i.e., with every action performed). To model the new dynamics 
for fuel consumption, we replace τdrive for action drive(l) with:

{
〈s,drive(l), s′〉 |

l ∈ {home,pub, lot},Fuel(empty) /∈ s,MyLoc(dept) /∈ s,
∃l′, x, y · l′ ∈ {home,pub, lot},
l′ �= l, (x, y) ∈ {(full, full), (full, low), (low, low), (low, empty)},
MyLoc(l′) ∈ s,CarLoc(l′) ∈ s,Fuel(x) ∈ s,
s′ = (s \ {MyLoc(l′),CarLoc(l′),Fuel(x)})∪

{MyLoc(l),CarLoc(l),Driven,Fuel(y)}
}
;



G. De Giacomo et al. / Artificial Intelligence 231 (2016) 64–106 71
For this scenario, the realization needs to work no matter what the outcome of nondeterministic actions turns out to 
be. It can be seen that there exists a realization of the program for this variant that is similar to the one for the de-
terministic case, although the plans used are conditional. Observe also that, as a result of nondeterministic actions, the 
execution of plans may result in on of many states, instead of one only. For instance, take the plan in the first line of 
Table 1 and consider its execution from the corresponding domain state. As a result of the nondeterminism of drive, af-
ter executing the first action, the tank level can be either low or full. Consequently, after the plan is executed (walk is 
not affected by the fuel level), the domain can be in two possible states, i.e., either {MyLoc(dept), CarLoc(lot), Fuel(full)}
or {MyLoc(dept), CarLoc(lot), Fuel(low)}. Thus, in order to realize the planning program, a (HT-) plan must be defined for 
each of such states. For instance, to realize transition v1 −→ v0, we need to define a plan that is executable from each of 
the states above. In our case, it is easy to see that the plan defined in the fifth line of the table can be executed from 
either state, as the maintenance goal ¬Fuel(empty) (as well as executability of drive) is guaranteed by the execution of 
refuel as the second action of the plan, and then again immediately after drive. Finally, notice that when Rain is true, the 
program transition 〈v0, v2〉 is not executable, as ¬Rain is a guard for that transition, in fact simplifying the realization of 
the planning program.

An actual, more involved, example in the context of smart homes for disabled people is reported in [27], where an early 
version of agent planning programs is used.

4. General solution technique

In this section, we develop a general solution approach for realizing planning programs, based on the use of synthesis 
techniques via model checking of two-player game structures. Concretely, we show that checking the existence of a re-
alization of an agent planning program is equivalent to checking whether a strategy exists to force a certain Linear-time 
Temporal Logic (LTL) formula in a suitable two-player game structure. Moreover from such strategy it is possible to extract 
an actual realization for the original problem. The main results of this section are a soundness and completeness theorem 
for the proposed technique, and the characterization of the computational complexity of the problem as EXPTIME-complete.

4.1. LTL synthesis based on two-player game structures

Linear-time Temporal Logic (LTL) is a well-known logic used to specify dynamic or temporal properties of programs 
[81,102]. Formulas of LTL are built from a set Q of atomic propositions and are closed under the boolean operators, the 
unary temporal operators © (next), ♦ (eventually), and � (always), and the binary temporal operator U (until), which in fact 
can express both ♦ and � (as trueUφ and φUfalse, respectively). LTL formulas are interpreted over infinite sequences σ
of propositional interpretations for Q, i.e., σ ∈ (2Q)ω .4 The set of (true) propositions at position i is denoted by σ(i), that 
is, σ = σ(0), σ(1), . . .. Given an interpretation σ , a natural number i, and an LTL formula φ, we denote by σ , i |= φ the fact 
that φ holds in σ at position i. This is inductively defined as follows, for p ∈ Q a proposition, and φ, ψ LTL formulas:

σ , i |= p iff p ∈ σ(i);
σ , i |= φ ∨ ψ iff σ , i |= φ or σ , i |= ψ;
σ , i |= ¬φ iff σ , i �|= φ;
σ , i |= ©φ iff σ , i+1 |= φ;
σ , i |= φUψ iff there exists k ≥ i such that σ ,k |= ψ and σ , j |= φ, for all j, i ≤ j < k;
σ , i |= ♦φ iff there exists j ≥ i such that σ , j |= φ;
σ , i |= �φ iff for every j ≥ i we have σ , j |= φ.

An interpretation σ satisfies φ, written σ |= φ, if σ , 0 |= φ. Standard logical tasks such as satisfiability or validity are 
defined as usual, i.e., a formula φ is satisfiable if there exists an interpretation that satisfies it, while it is said to be valid if 
it is satisfied by every possible interpretation. Checking satisfiability or validity of LTL formulas is PSPACE-complete [102].

Satisfiability and validity of LTL (and more in general of temporal) formulas are typical in verification. Here we are 
interested in a different kind of logical task, namely reactive synthesis [82,102]. This can be described as follows. Assume Q
is partitioned into two sets X and Y of propositions, the former controlled by a module called environment, and the latter 
controlled by a module called system. Let the modules interact through the propositions in Q, and have their own internal 
structure which defines the way they can change proposition values, based on the current assignments. When running, the 
environment and the system define a compound dynamic system whose evolutions stem from their interaction and that can 
be described in terms of sequences of assignments to Q. Assume the environment is uncontrollable, that is, we have no way 
to change its internal structure, while the system is controllable, meaning that we can restrict its behavior. The problem 
then is: can we restrict the system behavior to control the values of Y so that no matter which values the environment assigns to the 
propositions in X , a desired LTL formula is satisfied?

Interestingly, LTL synthesis is in general decidable and in fact 2EXPTIME-complete [82], but practically efficient proce-
dures for it are still missing. For this reason, synthesis for special classes of LTL formulas has been investigated. Here we 

4 As standard, notation Sω is used to denote the set of infinite sequences of elements of S .
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focus on the class of so-called GR(1) LTL formulas studied in [11]. These include formulas that describe transition systems 
(those that describe the next state given the current one) and formulas like �φ, ♦φ, and �♦φ where φ is propositional. 
In particular, for agent planning programs, we will use those in the latter class, which require that φ is satisfied infinitely 
many times. For such GR(1) LTL formulas, we can efficiently reduce synthesis to model checking of a so-called “two-player 
game structure” [1,11,49,33].

A two-player game structure, 2GS for short, is a tuple G = 〈X , Y, I, ρe, ρs〉, where:

• X = {x1, . . . , xm} and Y = {y1, . . . , yn} are the disjoint finite sets of environment and system propositional variables, 
respectively. We define the set of game state variables as V .= X � Y (symbol � denotes disjoint union), and a game 
state as an interpretation of the variables in V . We represent propositional interpretations i : V 
→ {�, ⊥} as subsets 
W ⊆ V , adopting the convention that i(w) = true in W if and only if w ∈ W . Interpretations of X and Y variables are 
represented accordingly.

• I ⊆ V is the (unique) initial state of the game.
• ρe ⊆ 2X ×2Y ×2X is the environment transition relation, which relates a game state to its possible successor environment 

states, i.e., X -interpretations.
• ρs ⊆ 2X × 2Y × 2Y is the system transition relation, which relates a current game state to the possible successor system 

states, i.e., Y-interpretations.

Observe that an interpretation W ⊆ V is partitioned into two components X ⊆X and Y ⊆ Y . We often refer to a game state 
W as (X, Y ), under the convention that X and Y represent the corresponding total assignments to X and Y , respectively.

Intuitively, a 2GS captures the rules of a game where the environment and the system play as opponents. The game 
starts in the initial state I = (XI , Y I ), and the players alternate their moves, the environment moving first, by choosing 
their next state among those their transition relations enable. In details, when the current state of the game is W = (X, Y ), 
the environment chooses some X ′ ⊆ X such that ρe((X, Y ), X ′), and the system responds with some Y ′ ⊆ Y such that 
ρs((X ′, Y ), Y ′). Such moves lead the game to a new state W ′ = (X ′, Y ′) from which a new round is played, which in turn 
leads the game to a new state, and so on. We define the game successor relation as the relation ρ ⊆ (2X × 2Y ) × (2X × 2Y )

such that ρ(W , W ′) if and only if, for W = (X, Y ) and W ′ = (X ′, Y ′), ρe((X, Y ), X ′) and ρs((X ′, Y ), Y ′). An infinite sequence 
σ of legal moves starting from the initial state constitutes a play of the game, i.e., σ = W0W1 · · · such that ρ(W i, W i+1), 
for i ≥ 0. Without loss of generality, we make the assumption that ρ is serial, that is, for any finite sequence λ = W0 · · · Wn

such that, for 0 ≤ i < n, ρ(W i, W i+1) holds, there exists W ′ such that ρ(Wn, W ′). This corresponds to the intuition that 
each player can always reply to the opponent, which in turn yields that 2GSs always admit a play.

A 2GS defines the constraints that players must respect when playing, but does not define the goal of the game, or 
the winning condition, i.e., the condition ϕ that a player needs to achieve in order to win a play. For this, we consider LTL 
formulas, in particular GR(1) formulas, over propositions in V , and say that a play, which is an LTL interpretation over V , 
is winning for the system if it satisfies ϕ . Notice that a play captures only a possible evolution of the game, while we are 
interested in defining when the system can force the game to evolve along a play winning for itself, no matter how the 
environment moves. To this end we introduce the following notion. Given a 2GS with set of game variables V = X � Y , 
a strategy for the system is a partial function f : (2X )+ 
→ 2Y such that: (i) f (XI ) = Y I ; and (ii) for � ≥ 0, if f (X0 · · · X�) = Y�

is defined, with X0 = XI , then, for every X such that ρe((X�, Y�), X), it is the case that Y = f (X0 · · · X� X) is defined and 
ρs((X, Y�), Y ). Intuitively, a strategy represents the behavior that the system follows, after having observed a sequence of 
environment moves. Notice that, by the assumptions on ρ , a strategy for the system always exists. Furthermore, observe 
that the definition of strategy does not mention the system component explicitly. This is implicitly defined, at each step, by 
f on those plays where the system acts according to f , which are the only plays of interest to synthesis. Such plays are 
discussed next.

A play σ = (X0, Y0)(X1, Y1) · · · is said to be compliant with a strategy f if Yi = f (X0 · · · Xi), for all i ≥ 0. That is, plays com-
pliant with f capture the game evolutions where the system plays according to f . Obviously, given a sequence X0 X1 · · · of 
environment states from a play σ compliant with f , the system components of σ can be fully reconstructed by subsequent 
applications of f .

A strategy f is said to be winning for the system if for all plays σ = (X0, Y0)(X1, Y1) · · · compliant with f , it is the case 
that σ |= ϕ . When such a strategy exists, the game structure is said to be winning for the system, otherwise it is winning for 
the environment. As it turns out, when the system plays according to a winning strategy, all the plays that can stem from 
the game, and that correspond to different combinations of legal moves of the environment, are guaranteed to satisfy the 
winning condition. The synthesis problem is the problem of constructing, given a 2GS and a winning condition ϕ , a winning 
strategy for the system. The realizability problem is its decision version, i.e., the problem of checking whether such a strategy 
exists.

For our purposes, we focus on game winning conditions that belong to the class of so-called weak-fairness formulas, i.e., 
formulas of the form �♦φ, where φ is propositional, which in turn are in the GR(1) class. Specifically a 2GS together with 
this winning condition defines a so-called Büchi game [49], i.e., a game where the system wins if it can force visiting one 
of the states in an acceptance set F ⊆ 2X × 2Y infinitely often. In particular, we have F = {W ∈ 2X × 2Y | W |= φ}. For 
this class of games, we have the following result, based on the fixpoint computation of all states from which a play can be 
forced to achieve a state in F [49].
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Theorem 2. Given a 2GS G = 〈X , Y, I, ρe, ρs〉 and a winning condition ϕ = �♦φ , with φ propositional, the realizability and synthesis 
problems can be solved in time O (n(n + m)), where V = X ∪ Y , n = 2|V | is the number of states in G, and m = |ρe| + |ρs| is the 
number of transitions in G.

Proof. Direct consequence of the construction of the winning region in [49, Theorem 2.22]. �
4.2. Solving agent planning programs

We now show how to compute a realization of an agent planning program P in a dynamic domain D from an initial 
state s0, by reduction to synthesis for a 2GS with an LTL weak-fairness formula as winning condition. In the resulting 
game structure, the environment captures the joint evolution of the domain and the planning program, and the system 
represents an executor whose available moves are those enabled by the domain. The environment, besides keeping track of 
the current domain state, requests the next transition to be realized, while the system generates the actions to fulfill the 
request. Whenever a request is fulfilled, a flag is raised and a new transition is requested by the environment, after which 
the flag is reset. The winning condition for the system is to make the flag raise infinitely many times, that is, to guarantee 
that every time a transition is requested, it is eventually realized.

We start by building the 2GS G . We first specify the sets of environment and system propositions X and Y , then we 
describe the initial state I of the game structure, and finally we build the transition relations ρe and ρs . We assume that 
the planning domain D starts in the initial state s0.

Environment and system propositions We define the set of environment propositions X as the disjoint union of the following 
sets:

• XD = P , containing the propositions of the planning domain D;
• XV = V , containing the states of the planning program P ;
• Xr = {reqv,v ′

γ :ψ,φ | 〈v, 〈γ , ψ, φ〉, v ′〉 ∈ δ}, containing one proposition per program transition, with reqv,v ′
γ :ψ,φ stating that P ’s 

transition v 
γ :ψ,φ−−−−→ v ′ is currently requested.

• Xlr = {reqv,v
α:�,� | v ∈ V , α = ∧

〈v,〈γ ,ψ,φ〉,v ′〉∈δ ¬γ }, containing one dummy looping request proposition per program state 
v that can only be requested (i.e., whose guard is true) when no other transition request from v can (i.e., all their 
guards are false).

Notice that, although the same syntactic symbols are used, the states of P are interpreted as propositions in the game 
structure.

The set of controlled propositions is defined as Y = YA �{wait, init, last, violated}, where YA = A. Similarly as above, each 
action a ∈ YA ∪ {wait} is interpreted as a proposition in the game structure denoting the action execution. Distinguished 
proposition wait stands for a no-op action. Proposition init is used to mark the initial state, last is a special proposition 
stating that the last action performed has completed the HT-plan under execution, and violated represents the fact that 
some maintenance goal violation has occurred, either in the current or in some past state.

The following syntactic shortcuts will be useful in the following:

• for every D-state s ∈ 2P we define a propositional formula ςs = ∧n
i=1 li , where li = pi , if pi ∈ s, and li = ¬pi , otherwise. 

That is, ςs states the fact that D is in state s;
• for every P-state v ∈ V we define a propositional formula ςv = v ∧ ∧

v ′∈V ,v ′ �=v ¬v ′ . That is, ςv states that P is in state 
v; and

• for every program state v ∈ V , we define a propositional formula reqv = ∨
〈v,〈γ ,ψ,φ〉,v ′〉∈δ reqv,v ′

γ :ψ,φ . That is, reqv states 
that (at least) one transition among those available in the state v of the planning program is currently requested.

Initial state The initial (dummy) state is simply defined as I = {init}, i.e., XI = ∅ and Y I = {init, last}. Notice that neither the 
agent planning program nor the domain are in their initial state. However, as it will be clear shortly, this configuration is 
achieved after the first game transition occurs.

Environment transition relation We describe the transition relations ρe and ρs declaratively, using simple LTL formulas of the 
form �ϕe and �ϕs , respectively, where ϕe and ϕs refer only to the current and the next state (the only temporal operator 
allowed in these formulas is ©). We adopt the convention that a pair 〈W , W ′〉, with W ⊆ V and W ′ ⊆ X (respectively, 
W ′ ⊆ Y), is in the transition relation of the environment (resp., of the system) if and only if, for some sequence σ starting 
with the prefix W , W ′ , i.e., σ = W W ′ · · · , it is the case that σ satisfies ϕe (resp., ϕs). For instance, if ϕe = p ∧ ¬©p is the 
formula defining ρe , then 〈{p}, ∅〉 ∈ ρe , as σ |= ϕe for any sequence σ = {p}∅ · · · , while 〈{p}, {p}〉 /∈ ρe , as for no sequence 
σ = {p}{p} · · · , it is the case that σ |= ϕe .
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The transition relation ρe is captured by the formula ϕe = transD ∧ transP , where transD and transP capture the tran-
sition relations of the domain and the planning program, respectively. In words, ϕe encodes the synchronous execution of 
the domain and the planning program, taking into account, when needed, the value of the auxiliary variables init and last.

Technically, transD is obtained as a conjunction of the following formulas:

E1 init → ©ςs0 , encoding that the domain is in its initial state, after the initial (dummy) move.
E2

∧
s∈2P (ςs ∧ wait → ©ςs), expressing that the domain remains still on action wait.

E3
∧

s∈2P ,a∈YA

(
ςs ∧ a → ©∨

〈s,a,s′〉∈τ ςs′
)
, expressing that if the domain is in state s, action a is to be executed next 

(which can happen only if the current game state is not I), then all possible successor states of s reachable through τ
by executing a can occur next (we assume that an empty set of disjuncts equals false).

Notice that we use the formulas above to encode transitions only for simplicity. In practice, it is not needed to list all 
of them explicitly, but a compact representation can be used. An example of this appears in Section Appendix A, where we 
report the encoding in the concrete language SMV used (in slightly different variants) by the systems TLV, JTLV and NuGaT.

As to transP , it is the conjunction of the following formulas:

E4 init → ©v0, which encodes that the planning program is initially in its initial state.
E5

∨
v∈XV

©[v ∧ ∧
v ′∈XV \{v} ¬v ′], which encodes that the planning program can move to exactly one of its states.

E6
∧

v∈XV
©[v → reqv ], which encodes that at least one transition available in the state the planning program moves to 

must be requested next.

E7 last → ∧
〈v,〈γ ,ψ,φ〉,v ′〉∈δ ©[reqv,v ′

γ :ψ,φ → γ ], which expresses that a new transition v 
γ :ψ,φ−−−−→ v ′ can be requested only if, at 

the time of issuing the request (i.e., after last holds), guard γ is satisfied.
E8

∧
req,req′∈Xr ,req�=req′ ©[req → ¬ req′], that is, at most one program transition can be requested at a time.

E9
∧

〈v,〈γ ,ψ,φ〉,v ′〉∈δ[reqv,v ′
γ :ψ,φ ∧ last → ©v ′], capturing that if transition v 

γ :ψ,φ−−−−→ v ′ is currently requested and the last action 
performed has completed the current HT-plan, then the planning program moves to v ′ .

E10
∧

v∈XV
[(v ∧ ¬ last) → ©v], which expressing that the program remains still if the current HT-plan has not been com-

pleted.
E11

∧
req∈Xr

[(req∧¬ last) → © req], capturing that the agent remains requesting the same transition if the current HT-plan 
has not been completed.

Notice that the environment can always make a move. In particular, when the game represents a program state v for 
which no actual transition can be requested in the current domain state—all guards are false—the environment can play the 
dummy transition request included in set Xlr for state v . This, together with the fact that every executable action yields at 
least one next domain state, guarantees that ρe is serial, that is, every state has a successor. Observe also that the last two 
formulas of transD and the last three formulas for transP trivially evaluate to true in the initial game state I—they do not 
constrain the first move of the environment.

System transition relation We now build ϕs , the formula that captures system player’s transition relation ρs , i.e., the capa-
bilities of the system. In other words, formula ϕs shall capture when actions can be executed and when the HT-plan under 
execution can be declared to be completed (via proposition last). The system also keeps track of maintenance goal violations 
(via proposition violated). The formula ϕs is the conjunction of the following subformulas:

S1 ϕinit = ©¬ init, which states that init holds only in the initial state.
S2 ϕact = ∨

a∈YA∪{wait} ©[a ∧ ∧
a′∈YA ,a′ �=a ¬a′], that is, exactly one domain action, or no-op wait action, is executed at 

each step.
S3 ϕpre = ∧

a∈YA
©[a → ∨

〈s,a,s′〉∈τ ςs], which requires that domain action a can be executed only if the domain is in a 
state s where the action is executable, i.e., its precondition is fulfilled.

S4 ϕwait = ©[wait ↔ (last ∨ 
∧

〈s,a,s′〉∈τ ¬ςs)], which requires that the no-op action wait is executed if and only if last holds 
or no domain action can be performed (i.e., the precondition of every action is false).

S5 ϕlast = ∧
〈v,〈γ ,ψ,φ〉,v ′〉∈δ ©[(reqv,v ′

γ :ψ,φ ∧ last) → (φ ∧ ¬ violated)], expressing that an HT-plan can be declared completed 
only if the achievement goal φ of the transition currently requested is indeed achieved and no violation of a mainte-
nance goal has (ever) occurred.

S6 ϕmaint = ©[∧
〈v,〈γ ,ψ,φ〉,v ′〉∈δ reqv,v ′

γ :ψ,φ ∧¬ψ ∧¬ last → violated
]∧[¬ violated∧©(last ∨ 

∧
〈v,〈γ ,ψ,φ〉,v ′〉∈δ(reqv,v ′

γ :ψ,φ →ψ))) →
©¬ violated

]
, expressing that a violation occurs if and only if the maintenance goal ψ of the requested transition is not 

satisfied. Note that non-satisfaction of the maintenance formula in the final step of a plan’s execution (i.e., when last
holds) is not considered a violation (refer to definition of a plan maintaining a goal in page 67).

S7 ϕviolated = (violated → ©violated), which expresses that violations, once occurred, are recorded forever.
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The behavior of the resulting 2GS can be summarized as follows. The environment initially sets the agent planning program 
and the domain in their respective initial states, and nondeterministically picks a program transition to be realized (E1, 
E4–E8). At every step, the system can reply to the environment by either following a plan to realize the current transition, 
thus choosing a domain action whose precondition holds in the current domain state, or by announcing the end of the 
current plan, that is the realization of the transition, by setting special proposition last to true and selecting special action 
wait (S1–S5). In the former case, the environment replies by simply executing the action, thus progressing the domain to 
one of its possible successor states (given the current state and the action chosen by the system) and keeping the planning 
program in its current state, with same transition request (E3, E10, E11). If, instead, a transition realization is announced, 
i.e., the last action of the plan has been executed (proposition last), then the domain remains still (“waits”), while the agent 
planning program is progressed, according to the current transition requested, to the successor state, and a new transition, 
outgoing from the new state, is selected for realization (E2, E9). Notice that in order for the system to set last true, the 
achievement goal must be fulfilled (S5). Also, when selecting a domain action, the system may choose one that violates 
the maintenance goal of the requested program transition. In this case, as soon as the violation occurs, proposition violated
becomes true and remains so forever (S6, S7). Finally, observe that proposition last can be set true by the system only if no 
violation has occurred (S5). As a result, the system can declare a transition realized only if the corresponding achievement 
goal has been actually achieved and its maintenance goal has not been violated.

We note that because the system can always play wait when no domain action is executable, analogously to ρe also the 
transition relation ρs is serial—there is always a next available system move. This implies that the game successor relation 
ρ—built from ρe and ρs—is in turn serial, thus every game state has at least one successor.

Once the 2GS is defined, we can use a weak-fairness formula to encode the synthesis goal. Formally, we have:

ϕgoal = �♦ last .

It can be seen that, as a consequence of the constraints implied by ϕlast , ϕmaint, and ϕviolated, ϕgoal is satisfied by a play if 
and only if the achievement goal of every request is eventually satisfied and no maintenance requirement is ever violated. 
Indeed, the current program transition is eventually realized if and only if last is eventually set to true. When this happens, 
a new transition request is issued, which requires last to eventually hold again, after which a new program transition will 
be requested, and so on and so forth.

In Appendix A we present an actual encoding, obtained by following the construction above, of the nondeterministic 
variant of the example presented in Section 3.

The following result shows correctness of the above construction, by linking the existence of a winning strategy for the 
system in the 2GS defined above with the existence of a realization of the agent planning program.

Theorem 3 (Soundness & completeness). There exists a realization of an agent planning program P in a planning domain D from a 
state s0 if and only if, for the 2GS G and the winning condition ϕgoal defined above, there exists a strategy that is winning for the system.

Proof. The proof consists in showing how from a strategy for the 2GS that is winning for the system, one can derive a 
realization for the agent planning program and, viceversa, how from a realization of the agent planning program, one can 
derive a winning strategy for the game. See Appendix B for full details. �

That is, computing a winning strategy for the synthesis problem defined by the 2GS and the winning condition above is 
equivalent to realizing the planning program P in D.

Next we analyze the worst-case computational complexity of the problem. By Theorem 2, we have that a winning 
strategy for ϕgoal in G can be computed in time O (n(n + m)), with n the number of states in G and m = |ρe| + |ρs|. Since 
|ρe|, |ρs| ≤ n2, we get a polynomial bound O (n3). However, n ≤ 2|V | , thus checking the existence of a solution (and actually 
constructing it) can be done in time O (23|V |). Considering the definition of ρe (conjuncts E6 and E9 of transP ) and ρs , the 
number of states n is O (2|P | · |δ| · |A|), as |Xr | = |δ|. In other words, our technique is exponential in the number of domain 
propositions, while polynomial in the size of the planning program and number of domain actions.

For the lower bound, we observe that checking the existence of a conditional plan for an achievement goal in a nonde-
terministic planning domain with full observability is EXPTIME-hard [69,90]. Such a form of planning is a special case of 
our problem, where we have a planning program consisting of a single transition labelled with an achievement goal only. 
Hence, the technique presented here is giving us a tight complexity characterization for solving agent planning problems.

Theorem 4 (Complexity). Checking whether an agent planning program is realizable in a planning domain from a given initial state is 
EXPTIME-complete.

Proof. Direct consequence of the discussion above. �
Interestingly, in spite of the additional sophistication of agent planning programs, the complexity of realizing them is 

essentially the same as that of conditional planning (with full observability). In other words, at least from the worst-case 



76 G. De Giacomo et al. / Artificial Intelligence 231 (2016) 64–106
complexity point of view, realizing agent planning programs does not require any additional computational effort with 
respect to conditional planning.

Finally, we observe that the kind of solution based on the above technique shares several commonalities with the notion 
of universal plan [92], in the sense that from every configuration (of planning program state and domain state) a way to 
fulfill the winning condition by winning the game is provided. Obviously, the class of winning conditions considered here is 
not reachability (of a state satisfying the goal, as for universal plans), but a more sophisticated one expressing the ability to 
reach infinitely often a state where last holds. It should be clear, however, that such a solution shares the same criticality of 
universal plans, including its practical cost (see also [48]).

5. Planning programs in deterministic domains

In this section, we focus on the notable case in which the agent acts in a deterministic domain. A deterministic planning

domain [46] is a special case of planning domain D = 〈P , A, τ 〉, where the transition relation τ is a function τ : 2P × A 
→ 2P . 
We call this case the “deterministic case” and for it we develop an alternative realization technique deeply rooted in the 
planning technology which consists of suitable calls to a classical planner, careful iterated till the entire planning program 
is realized. This iterative method is similar to the one implemented in planner NDP to solve non-deterministic planning 
problems [64], which constructs policies by iterative calls to a classical planner. However, we use some specific planning 
techniques that are not present in NDP. The kind of solution that our realization algorithm for deterministic domains devises 
has not the “universal plan” nature of the general procedure presented above, and empirically proves to be quite effective 
especially for agent planning programs over planning domains that have limited or no deadends in the search space, as 
shown later.

Before going on, we characterize the computational complexity of the deterministic case. Obviously, the general EXPTIME 
technique shown above applies to the deterministic case as well so this gives us an EXPTIME upper-bound. However the 
reduction from conditional planning with full observability that we use for the lower bound only gives us a PSPACE-hardness 
lower-bound for deterministic domains. So the question is: is the problem EXPTIME-hard even in the deterministic case or does it 
admit a PSPACE algorithm?

We answer this question by showing the EXPTIME-hardness also in the deterministic case. To do so we resort to a 
reduction from the composition problem of deterministic agent behaviors, which is known to be EXPTIME-complete [35,76].

Theorem 5. Checking whether an agent planning program is realizable in a deterministic planning domain is EXPTIME-complete.

Proof. It can be shown that composition of deterministic agent behaviors can be polynomially encoded into realization of 
agent planning programs. Details are in Appendix B. �

Next we detail the specific planning-based technique that we propose to handle the deterministic case.

5.1. Realizing planning programs for the deterministic case

In the rest of this section, for technical convenience, an action is represented as a triple 〈Pre, Eff +, Eff −〉 where Pre
is a set of propositions representing the action preconditions, and Eff +/− is a set of propositions representing the action 
positive/negative effects. Like in classical planning [46], under the closed world assumption, a state is specified by a set of 
propositions, an action a = 〈Pre, Eff +, Eff −〉 is said to be executable in a domain state s if Pre ⊆ s, and the domain state s′
obtained by executing a in state s is s \ Eff − ∪ Eff + . The domain transition function τ is (implicitly) defined by the execution 
of the domain actions from all the possible domain states.

Observe that, because in a deterministic planning domain the execution of an HT-plan produces only a single history, 
an HT-plan can be simply represented as a sequence π of actions: the corresponding HT-plan function can be obtained 
by associating each action a of π with the sequence of states obtained by executing, from the initial state of the domain, 
all the actions that precede a in π . Thus, since in this section we deal with deterministic domains only, for simplicity we 
represent HT-plans in this form.

A state s of D is said to be reachable from an initial state s0 if there exists a plan π such that s is the final state obtained 
by executing π from s0. In the following, for a domain D, we use S ⊆ 2P to denote the set of all states of a domain that 
are reachable from an initial state s0. Further, π(s) denotes the sequence of states obtained by executing π from state s and 
last(π(s)) denotes the final state of such sequence.

We address the problem of effectively constructing planning program realizations for deterministic domains by exploiting 
plan generation techniques for planning problems with preferred end-states (shortly, PESs) and tabu end-states (TESs). A PES 
is a desired end state for a plan realizing a planning program transition, while a TES is a forbidden plan end state. As will 
be described, PESs and TESs are generated by the proposed iterative algorithm for realizing agent planning programs, and 
they are important to guarantee its correctness and efficiency.
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Algorithm: RealizePlanProg(P, D, s0)

Input: a planning program P = 〈P , V , v0, δ〉, a deterministic planning domain D = 〈P , A, τ 〉, and an initial state s0;
Output: a realization of P in D from s0 (Function �), or failure.

1. ∀s,d · �(s,d) ← noPlan;
2. States(v0) ← {s0}; ∀v �= v0 · States(v) ← ∅;
3. ∀v · Tabu(v) ← ∅;
4. Open ← {〈s0, v0〉};
5. while Open is not empty do
6. extract an open pair 〈s, v〉 ∈ Open;
7. π ← noPlan;
8. foreach program transition d = 〈v, 〈γ ,ψ,φ〉, v ′〉 ∈ δ do
9. if �(s,d) = noPlan and s |= γ then
10. π ← Plan(s, A, ψ,φ, States(v ′),Tabu(v ′));
11. if π is failure then break;
12. else
13. �(s,d) ← π ;
14. if last(π(s)) /∈ States(v ′) then
15. add 〈last(π(s)), v ′〉 to Open;
16. add last(π(s)) to States(v ′);
17. add 〈s,d〉 to Source(last(π(s)), v ′);
18. if π is failure then
19. if 〈s, v〉 = 〈s0, v0〉 then return failure;
20. else
21. add s to Tabu(v);
22. remove s from States(v);
23. foreach 〈s′′,d′′〉 s.t. d′′ is a P transition from v ′′ to v and 〈s′′,d′′〉 ∈ Source(s, v) do
24. �(s′′,d′′) ← noPlan;
25. Open = Frontier(�,τ , s0, v0);
26. return �.

Fig. 2. Algorithm for realizing a planning program P in a deterministic planning domain D from state s0.

Definition 5. A planning problem with PESs and TESs is a tuple 〈D, s0, ψ, φ, S P , ST 〉 where D = 〈P , A, τ 〉 is a deterministic 
planning domain, s0 is the initial state, ψ ∈ 	(P ) is a maintenance goal, φ ∈ 	(P ) is an achievement goal; S P ⊆ 2P is a set 
of PESs; and, finally, ST ⊆ 2P is a set of TESs. �

Given a planning problem � = 〈D, s0, ψ, φ, S P , ST 〉 with PESs and TESs, an executable plan π for D, and state s′ =
last(π(s0)), we say that π is valid for � iff π maintains ψ , s′ |= φ and s′ /∈ ST . Moreover, given two valid plans π1 and π2
for �, we say that π1 is preferred to π2 iff last(π1(s0)) ∈ S P and last(π2(s0))/∈S P .

Fig. 2 shows the pseudo-code of RealizePlanProg, an algorithm for building planning program realizations. Starting from 
an open configuration (called open pair in the algorithm) 〈s, v〉, where s is a domain state and v is a planning program 
state (initially s = s0 and v = v0), for each transition d outgoing from v such that the guard of d holds in s, RealizePlanProg
constructs a plan π realizing d from s. Then, the algorithm progresses the states of D and P (according to π(s) and d, 
respectively), possibly generating a new open pair 〈s′, v ′〉 to process similarly. For each generated pair 〈s, v〉 and transition 
d = 〈v, 〈γ , ψ, φ〉, v ′〉 such that s |= γ , function �(s, d) associates with s a plan constructed to achieve φ from s while 
maintaining ψ . If the algorithm generates an open pair 〈s, v〉 such that for some transition outgoing from v no realizing 
plan can be computed from s, backtracking is required, i.e., the plans generating 〈s, v〉 need to be removed from �. The 
algorithm terminates when no more open pairs are left, or it is the case that no realization can be found, i.e., for at least 
a transition d = 〈v0, 〈γ , ψ, φ〉, v〉 outgoing from the initial planning program state v0, and such that γ holds in the initial 
domain state s0, there exists no plan π constructed from s0 such that π maintains ψ , last(π(s0)) |= φ and last(π(s0)) is in 
the set of domain states from which a transition outgoing from v can be realized.

The specification of function � under construction implicitly defines the set of open pairs, also called the realization
frontier, which is denoted in the algorithm as Open. This set is obtained by considering all possible planning program 
executions, starting from 〈s0, v0〉, using � to realize the transitions, and putting in the set all those pairs 〈s, v〉 such that 
for some transition d from v , the guard of d holds in s and �(s, d) is currently undefined. Essentially, this corresponds to 
a straightforward visit of the planning program graph from v0 and s0 using the current (partially defined) �. The frontier 
of this visit is the set of pairs 〈s, v〉, of domain and planning program state, such that there is a transition d outgoing from 
v whose guard holds in s, but for which there is no plan achieving and maintaining the corresponding goal, i.e., �(s, d) is 
undefined. Such a frontier is denoted by Frontier(�, τ , s0, v0) and defines the open pairs for the current � stored in Open.

For example, assume that the current specification of � is defined by the first two lines of Table 1. Then, the realization 
frontier is the set of open pairs

{〈{MyLoc(dept),CarLoc(lot),Fuel(low)}, v1〉, 〈{MyLoc(pub),CarLoc(home),Fuel(full)}, v2〉
}
.

The former pair, for instance, is reached by executing the first plan in Table 1 that realizes transition 〈v0, 〈∅, ¬Fuel(empty),
MyLoc(dept)〉, v1〉 from the initial state s0 = {MyLoc(home), CarLoc(home), Fuel(full)}, and it is in the frontier because (a) the 
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transition has no guard (hence, it needs to be realized) and (b) the current specification of � is still undefined for the 
domain state {MyLoc(dept), CarLoc(lot), Fuel(low)} and transitions 〈v1, 〈�, ¬Fuel(empty), MyLoc(home) ∧ ¬Fuel(empty)〉, v0〉
and 〈v1, 〈�, ¬Fuel(empty), MyLoc(pub) ∧ ¬Fuel(empty)〉, v2〉.

Algorithm RealizePlanProg maintains three auxiliary functions States : V → 2S , Tabu : V → 2S and Source: S × V → 2S×δ . 
Intuitively, States(v) records all domain states reached when P is in v , for some P execution, according to the current �; 
Tabu(v) indicates the states of D that are forbidden when v is reached; and Source associates each open pair 〈s′, v ′〉 with 
those pairs 〈s, d〉 such that d is a program transition from v to v ′ and, for π = �(s, d), last(π(s)) = s′ . Essentially, function 
Source says how an open pair was generated by the current �.

Initially (lines 1–4), Function � is completely undefined (through the special value noPlan), States(v) = ∅ for every 
v �= v0, States(v0) = {s0}, Tabu(v) = ∅ for every v , and Open = 〈s0, v0〉. At each iteration of the external loop (lines 5–25), 
an arbitrary open pair 〈s, v〉 is extracted from Open and processed by:

(i) computing, for each transition d = 〈v, 〈γ , ψ, φ〉, v ′〉 such that s |= γ and �(s, d) = noPlan (i.e., d has not been pro-
cessed for s yet), a plan π that maintains ψ , achieves φ from s with an acceptable end state, i.e., last(π(s0)) /∈ Tabu(v ′)
(lines 8–10);

(ii) appropriately updating �, Open, and the auxiliary functions (lines 11–25).

When Open becomes empty, the external loop terminates and the algorithm returns � (line 26).
Task (i) is accomplished by executing function Plan, which computes a plan for the planning problem with PESs and TESs 

〈D, s, ψ, φ, States(v ′), Tabu(v ′)〉. Intuitively, the domain states in States(v ′) are used as preferred end states to minimize the 
number of generated open pairs, while the domain states in Tabu(v ′) are used as tabu end states to prevent next iterations 
from generating unrealizable open pairs. Details about how to achieve this behavior in Plan are given in Section 5.2.

For task (ii), assume that 〈s, v〉 is an open pair, and d is a program transition from program state v to program 
state v ′ , whose guard holds in s. If a plan π realizing d from s is found, then the algorithm updates �(s, d), States(v ′)
and Source(s′, v ′) as follows: function � is updated by setting �(s, d) to π ; if s′ = last(π(s)) is not already in States(v ′), 
the set of open pairs is extended with 〈s′, v ′〉; state s′ is added to States(v ′); and 〈s, d〉 is added to Source(s′, v ′) (lines 
13–17). If for some program transition d outgoing from v such that its guard holds in s, procedure Plan is unable to find 
a plan achieving/maintaining the goals of d from s, then open pair 〈s, v〉 cannot be realized. In the special case s = s0 and 
v = v0, no realization of P can be built, and hence RealizePlanProg terminates returning failure (lines 18–19). Otherwise 
(s �=s0 or v �=v0), backtracking is performed on � (lines 21–25): s is added to Tabu(v); s is removed from States(v), as 
clearly no longer preferred; for all pairs 〈s′′, v ′′〉 ∈ Source(s, v), �(s′′, d′′) is set undefined (�(s′′, d′′) becomes noPlan), 
as the corresponding plans need to be recomputed in order to avoid generating the configuration 〈s, v〉; and, finally, 
Frontier(�, τ , s0, v0) defines the new set of open pairs (Open).

Interestingly, RealizePlanProg is parametric with respect to the specific planning procedure used to implement Plan, thus 
allowing us to generate different version of our algorithm based on different planning approaches and heuristics.

The following results demonstrate the fundamental properties of RealizePlanProg.

Lemma 1. Algorithm RealizePlanProg terminates provided that subroutine Plan terminates.

Theorem 6 (Soundness). The function computed by Algorithm RealizePlanProg is a realization of the input agent planning programP , 
deterministic planning domain D and initial domain state s0 , provided that subroutine Plan is sound to solve planning problems with 
achievement and maintenance goals.

Theorem 7 (Completeness). Assume that subroutine Plan is complete. Algorithm RealizePlanProg returns a realization of the input 
planning program P , if it exists; otherwise it returns failure.

Proofs for all three claims can be found in Appendix B.

5.2. Encoding preferred and tabu end-states into actions with costs

A planning problem with PESs and TESs can be expressed in pddl3 [43]. In particular, a TES s can be specified by an 
“at end” constraint (an additional goal formula constraining the goal state) imposing that the disjunction of the negation 
of the propositions that are true in s and the propositions that are false in s hold at the end of the plan. (Under the closed 
world assumption, a proposition p is true in s if p ∈ s, while it is false in s if p /∈ s, assuming s formalized as a set of 
propositions.) Similarly, a PES s can be specified by a preferred goal (also called soft goals) imposing that the conjunction of 
the propositions that are true in s and the negation of the propositions that are false in s preferably holds at the end of the 
plan.

A planning problem with soft goals and constraints can be translated into a classical planning problem with action costs, 
that can be solved by classical planners supporting real-valued fluents [43]. Keyder and Geffner [62] show that classical 
planners can solve the problems obtained by their translation scheme for compiling soft goals away more quickly than what 
it takes to solve the original problems with soft goals.
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In this section, we propose a scheme to transform a problem with PESs and TESs into a problem with action costs, that is 
much simpler than the one proposed in [43], as it considers only a special case of the planning problem with soft goals and 
constraints studied in [43]. Concerning the compilation of PESs, our scheme also differs from the one by Keyder and Geffner 
both in its purpose and compilation technique. Our compilation is designed for the particular context in which it is used 
(realizing program transitions involved in a loop) and the type of soft goals that are relevant in this context (preferred end 
states). We do not propose a method that provides a general translating scheme for compiling soft goals away, as in [62]. 
Instead, our scheme constructs a planning problem �′ with action costs from a planning problem � with PESs so that, if a 
planner finds a solution plan of �′ with the lowest cost, such a plan can be easily transformed into a solution plan of �
ending in one of the PESs of �. Moreover, in our context any valid plan can satisfy at most one preference, and our scheme 
compiles also TESs, while the compilation scheme described in [62] handles only soft goals.

Definition 6. A planning problem with action costs is a tuple 〈D, s0, ψ, φ, c〉 where D = 〈P , A, τ 〉 is a deterministic planning 
domain, s0 is the initial state, ψ ∈ 	(P ) is a maintenance goal, φ ∈ 	(P ) is an achievement goal; and c : A 
→R is an action 
cost function. �

A planning problem with PESs and TESs � = 〈D, s0, γ , ψ, φ, S P , ST 〉 where D = 〈P , A, τ 〉 can be translated into a plan-
ning problem with action costs �′ = 〈D′, s′

0, ψ, φ′, c〉 such that5:

• D′ = 〈P ′, A′, τ ′〉;
• P ′ = P ∪ P M ∪ P T ;
• A′ = A+ ∪ A P ∪ AT ;
• τ ′ is implicitly defined by the preconditions/effects of the actions in A′;
• s′

0 = s0 ∪ {normal-mode};
• φ′ = φ ∧ check-pref ∧ ∧

pt∈P T

pt ;

• c(o) =
{

1 if o = Ignore-pref,

0 otherwise;

where

• P M = {normal-mode, end-mode, check-pref};
• P T = {not-tabu(s) | s ∈ ST };
• A+ = {〈Pre ∪ {normal-mode}, Eff +, Eff −〉 | 〈Pre, Eff +, Eff −〉 ∈ A};
• A P = Ignore-pref ∪ {Sat-pref(s) | s ∈ S P }, where Ignore-pref is the action 〈{normal-mode}, {end-mode,

check-pref}, {normal-mode} 〉 and Sat-pref(s) is the same as Ignore-pref but with the additional set of pre-
conditions {p | p ∈ s} ∪ {¬p | p ∈ P ∧ p /∈ s };

• AT = {a | a ∈ Act-tabu(s) ∧ s ∈ ST }, where Act-tabu(s) is the set of actions { 〈 {end-mode, ¬p}, {not-tabu(s)}, ∅〉 |
p ∈ P ∧ p ∈ s } ∪ { 〈 {end-mode, p}, {not-tabu(s)}, ∅〉 | p ∈ P ∧ p /∈ s}.

It is easy to see that the structure of any plan for the translated problem is 〈πA+ , a, πT 〉, πA+ and πT are two (possi-
bly empty) sub-plans of actions in A+ and AT , respectively, and a ∈ A P . The (possible) presence of action Sat-pref(s), 
for some s in the plan, indicates that last(πA+ ) is the preferred domain state s. The (required) presence of an action of 
Act-tabu(s) in πT , for some tabu state s, indicate that the end state generated by subplan πA+ is different from s ∈ ST . 
Note that since the conjunction goal formula φ′ contains a conjunct not-tabu(s) for each tabu state s ∈ ST , subplan πT

must contain an action of AT for each s ∈ ST .
The cost of a plan π is the sum of the cost of the actions executed in π . Since there can be at most one occurrence of 

action Ignore-pref in any valid plan, by definition of cost function c, the cost of every valid plan is either 0 or 1. The 
plans with cost equal to 0 are the best plans.

Theorem 8 (Plan validity and equivalence). Let � be a solvable planning problem with PESs and TESs, and �′ a planning problem with 
action costs derived from � by the translating scheme defined above. Then, (1) there exists a valid plan π ′ for �′; and (2) for every plan 
π ′ solving �′ , the plan obtained by removing the actions in AT ∪ A P from π ′ and precondition normal-mode from every action in 
π ′ is a valid plan for �.

Proof. See Appendix B. �

5 For the sake of simplicity, in the compilation we use actions with negative preconditions. They can be easily translated into actions with only positive 
preconditions [63], although ruling out them can make the specification of the world state considerably larger.
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Theorem 9 (Plan preference). Let � be a planning problem with PESs and TESs that has a solution plan ending in a PES, and �′
a planning problem with action costs obtained from � by our translating scheme presented above. Then, (1) there exists a plan π ′
solving �′ such that c(π ′) = 0, and (2) for every plan π ′ solving �′ such that c(π ′) = 0, the plan obtained by removing the actions in 
AT ∪ A P from π ′ and precondition normal-mode from every action in π ′ is a valid plan solving � and ending in a PES of �.

Proof. See Appendix B. �
Finally, note that there is a difference between the classical definition of planning problems with action costs and ours. 

In our context, the achievement goal is an arbitrary boolean formula, instead of a conjunction of atomic propositions, and 
our definition also includes the maintenance goal. Maintenance goals can be compiled away as described in the next section. 
The formula representing the problem achievement goal can be compiled away into action preconditions (the goal formula 
of the compiled problem is a conjunction of propositions) [63]. Specifically, first the goal formula is transformed into a DNF 
formula. Then, for every disjunct δ of the (DNF) achievement goal formula, the set of actions is augmented by an action 
with a dummy effect and the set of conjuncts of δ as the precondition set of the action. The dummy effect is a conjunct of 
the new problem goal formula and the original goal formula is removed.

5.3. Encoding maintenance goals into action preconditions

It is known that planning problems with maintenance goals can be translated into propositional planning problems 
[6,19,40,43]. A very simple translation for the planning problem associated with a program transition having a maintenance 
goal consists in adding the maintenance goal formula of the transition to the precondition formula of every domain action. 
The negative side of such a translation is that many planners transform the precondition and goal formulas into disjunctive 
normal form before planning, and thus the transformation of the formulas obtained by ruling out maintenance goals may 
blow up. Investigating efficient encodings of maintenance goals is out of the scope of this paper. For our experimental 
analysis, we considered only planning programs with goal formulas stated as conjunctions, which can be normalized without 
a blowup of the resulting compiled problem.

It is important to note that the end D-state last(π) of any plan π realizing an incoming transition of a P-state v is 
the initial D-state of any plan realizing a transition outgoing from v . If the computation of π ignored the interdependency 
between π and the plans realizing the outgoing transitions of v , it could happen that the maintenance goal formula of 
an outgoing transition is not satisfied in last(π). In this case, the planning problem derived to realize such an outgoing 
transition would be unsolvable, and therefore algorithm RealizePlanProg would backtrack. In order to reduce the amount 
of these backtracks the original achieving goals of the program transitions incoming to a P-state v can be augmented 
as follows. Let {〈v, 〈γi, ψi, φi〉, vi〉 | 1 ≤ i ≤ m} be the set of outgoing transitions of v , where γi , ψi and φi are the guard, 
maintenance goal, and achieving goal formula, respectively. Every incoming transition 〈v ′, 〈γ , ψ, φ〉, v〉 of v is changed to

〈v ′, 〈γ ,ψ,φ ∧
i=m∧
i=1

γi → ψi〉, v〉.

As we will see in Section 6.4, indeed such a transformation can reduce significantly the amount of backtracking of 
RealizePlanProg, and hence considerably improve the performance of RealizePlanProg.

5.4. Enhancing the program realization by plan adaptation

Planning programs may represent routines that include cycles to carry on in the domain. In this case, computing the 
realization requires to reach at least one goal situation more than once. Assume that at the i-th iteration of the loop 5–25 
of RealizePlanProg a transition is processed by invoking subroutine Plan with problem �i , and, subsequently, at the j-th 
iteration ( j > i) such a transition is processed again by invoking Plan with problem � j . In order to solve � j , subroutine 
Plan could re-use and modify the plan previously computed for �i , instead of planning from scratch.

From a theoretical point of view, in the worst case, adapting an existing plan is not more efficient than a complete re-
generation of the plan from scratch [77]. However, in practice, plan adaptation can be much more efficient than generating, 
when few changes of the existing plan are necessary to adapt it. In the context of the planning program realization, the 
achievement and maintenance goals of problems �i and � j are the same (i.e., the achievement and maintenance goal for-
mulas associated with the transition processed both at the i-th and j-th iteration), and hence adapting the plan previously 
computed for �i can be extremely promising when solving � j .

In principle, a transition in a cycle can be processed by RealizePlanProg more than twice, and hence the number of pre-
viously computed plans that can be re-used for realizing such a transition may be greater than one. Assume that transition 
d = 〈v, 〈γ , ψ, φ〉, v ′〉 has been already realized n > 1 times. Let �k be the planning problem associated to the k-th real-
ization of d with initial state sk (k ∈ {1, . . . , n}), and πk the solution plan computed for �k so that �(sk, d) = πk . Suppose 
now that, at the current iteration of loop 5–25 of RealizePlanProg, transition d is processed again with an open pair 〈s′, v〉
and planning problem �′ . The differences between every �k and �′ concern their initial states and sets of PESs and TESs. 
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Algorithm: BestPlan(s, d)

Input: a domain state s, and a program transition d from v to v ′ involved in a planning program cycle;
Output: a (possibly empty) plan.

1. best ← ∞; bestplan ← ∅;
2. foreach sv ∈ States(v) do
3. if �(sv ,d) �= noPlan do
4. n ← |RelaxedPlan(s, sv )|;
5. if n < best then
6. best ← n;
7. bestplan ← �(sv ,d);
8. return bestplan.

Fig. 3. Algorithm for selecting the best plan to re-use for processing a transition d in a planning program cycle. RelaxedPlan is a plan reaching sv from s
constructed using the domain action without their negative effects.

However, for k = 1 . . .n, last(πk) is still in States(v ′), and hence it is a PES of �′ . (If last(πk) were not in States(v ′), then 
�(sk, d) would not be πk .) In this case, a plan π ′ solving �′ may be constructed as a sequence of two subplans: a subplan 
reaching sk from s′ (if exists), followed by πk for some k ∈ {1, . . . , n}. The expected cost required to adapt plan πk to solve 
�′ can be estimated as the number of actions in the relaxed plan constructed to achieve states sk from s′ [45,57]. The plan 
is relaxed, as it is constructed by ignoring the domain actions’ negative effects.

Fig. 3 shows an algorithm, called BestPlan, for selecting the best plan to re-use for a doman state s and a transition d
from v to v ′ involved in a cycle. For each state sv in States(v) such that a plan π realizing d from sv has been already 
computed, BestPlan generates a relaxed plan πR to reach sv from s (lines 2–4); and, finally, BestPlan returns the plan with 
the expected lowest adaptation cost (lines 5–8). The selected best plan can then be re-used by algorithm RealizePlanProg
invoking a different version of subroutine Plan, that we call AdaptPlan, with additional input the plan πbest returned by 
BestPlan(s, d). If πbest is equal to ∅, AdaptPlan plans from scratch; otherwise, it adapts πbest to a valid plan that realizes 
transition d from domain state s with a preferred end state in States(v ′).

6. Experimental results

We present here the results of an experimental study with the following main goals:

• analyzing the effectiveness and the efficiency of our approach to realizing agent planning programs in deterministic 
domains;

• evaluating the usefulness of PESs for the performance of RealizePlanProg;
• evaluating the performance of RealizePlanProg using different incorporated planners that support pddl3 preferences for 

representing PESs, or that can solve the planning problem with action costs obtained by compiling them away;
• evaluating our compilation of maintenance goals in the planning problems, and the usefulness of using plan adaptation 

techniques for realizing the planning program transitions.

In this experimental study, we focus on achievement and maintenance goals that are conjunctive. Moreover, we set all the 
transition guards to true. Note that realizing planning programs with all guards set to true does not represent a simpli-
fication in experimenting our algorithm, since it forces the algorithm to realize all outgoing transitions, even those that 
guards would rule out. In other words, by considering only planning programs without guards in our experiments, we are 
not restricting the analysis to planning programs that are computationally easier (than those with guards) to solve for our 
technique.

6.1. Experimental settings

Algorithm RealizePlanProg has been tested using three well-known incorporated planners: Hplan-P [6], LAMA [89], and 
LPG [45]. In the following, before describing the used benchmark domains and problems, we give a very brief description 
of each of them. More detailed information is available from the relative referred papers. In the rest of the paper, notation 
RealizePlanProg[x] denotes RealizePlanProg incorporating planner x.

Hplan-P [6] is a heuristic search planner built on top of the TLPlan system [3]. Hplan-P handles pddl3 constraints 
and preferences by transforming these into parameterized finite state automata. Essentially, it uses an incremental best-
first search planning algorithm, guided by a prioritized sequence of heuristics, which combines estimates of the cost 
of reaching the goals, the cost of satisfying preferences, and different estimates of the final plan metric value. With 
RealizePlanProg[Hplan-P], a planning problem with PESs and TESs is encoded into a pddl3 problem as described at the 
beginning of section 5.2, except that the disjunction representing the TESs is part of the Hplan-P’s problem goal formula 
instead of a PDDL3 at end constraint.

LAMA [89] translates the pddl problem specification into the multi-valued state variable representation “SAS+” [4] and 
searches for a plan in the space of the world states using a heuristic derived from the causal graph [53], a particular 
graph representing the causal dependencies of SAS+ variables. Its core feature is the use of a pseudo-heuristic derived 
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from landmarks, propositions that for every solution of a planning task must be true in some state reached by the solution. 
Moreover, a weighted A� search is used with iteratively decreasing weights, so that the planner continues to search for plans 
of better quality. While LAMA does not support reasoning over pddl3 preferences and constraints, it supports planning with 
action costs through the usage of real-valued fluents. With RealizePlanProg[LAMA], planning problems with PESs and TESs 
are encoded by using the translation scheme described in Section 5.2, plus the real-valued fluent “cost”: the initial state of 
each problem assigns value zero to cost; the problem metric function requires to minimize the value of cost; and, finally, 
each action of the translated problem with cost equal to 1 is encoded with the additional pddl effect “(increase (cost) 
1)” increasing the value of fluent cost by 1 unit.

LPG [45] is based on a stochastic local search procedure that explores a space of partial plans represented through linear 
action graphs (shortly, LA-graphs) [45], which are variants of the very well-known planning graph [12]. The search steps 
are certain graph modifications transforming a LA-graph into another one. LPG’s search algorithm selects the successor 
LA-graph according to a heuristic evaluation function and a “noise parameter”. The heuristic function estimates the number 
of additional search steps required to find a solution from the graphs obtained by applying the possible modifications. The 
noise parameter introduces some randomization in the choice of the successor, which is useful to escape from search states 
corresponding to local minima. When a solution is found, the LA-graph is modified by applying some graph modifications 
that improve the quality of the represented plan according to the problem plan metric, and the search is restarted to reach 
a new solution from the resulting LA-graph. LPG is the only planner considered in our experimental analysis that supports 
plan adaptation, as its initial search state can be either an empty LA-graph (in planning from scratch) or the LA-graph 
representing an input plan (in plan adaptation). The encoding of PESs and TESs used with RealizePlanProg[LPG] is the same 
as in RealizePlanProg[LAMA].

In our experimental analysis, we have also considered the realization of planning programs using NuGaT, an optimized 
game solver built on top of NuSMV [21], as a baseline for evaluating the performance of RealizePlanProg. It should be 
clear that since NuGaT is a solver more general than RealizePlanProg, it is expected that it performs worse than our 
proposed approach for deterministic domains. Nevertheless, we believe it is a useful baseline for evaluating the performance 
of RealizePlanProg.

In the experiments, planning programs are constructed over 8 benchmark domains and with 6 different program 
structures defined by the planning program transition relation δ. Seven of the chosen domains were also used in past in-
ternational planning competitions (IPCs) [2,43,54,56,59,70,71]. They are: Logistics (IPC-1), Blocksworld (IPC-2 typed 
version), Zenotravel (IPC-3 typed STRIPS version), Pipesworld (IPC-4 propositional “no-tankage” version), Storage
(IPC-5 propositional version), Elevators (IPC-6 sequential satisficing version without real-valued fluents), and Barman
(IPC-7 sequential satisficing track version without real-valued fluents). All these planning domains have no deadend in their 
state space. To study the behavior of our approach for planning domains with deadends, we also designed and used an 
additional “directed” version of Logistics that will be described when we present the results of this experiment. The 
considered planning program structures are: a single cycle with only achievement goals (shortly, 1C), a single cycle with 
both achievement and maintenance goals (shortly, 1C+M), multiple binary cycles in sequence (MC), a random sparse directed 
graph (RS), and a complete directed graph (CG). Moreover, we consider a variant of 1C with one cycle and one external 
node connected to the cycle by a single edge (shortly 1E1C). More formally, these structures are defined as follows.

• 1C[n]: δ = {〈vi, Gi, v((i mod n)+1)〉 | vi ∈ V , 1 ≤ i ≤ n};
• 1E1C[n]: δ = 〈v1, G1, v2〉 ∪ {〈vi+1, Gi, v((i mod (n−1))+2)〉 | vi ∈ V , 1 ≤ i < n};
• 1C+M[n]: δ = {〈vi, 〈Gi, Mi〉, v(i mod n)+1)〉 | vi ∈ V , 1 ≤ i ≤ n};
• MC[n]: δ = {〈vi, Gi, vi+1〉, 〈vi+1, Gi+n−1, vi〉 | vi ∈ V , 1 ≤ i < n};
• RS[n]: δ = {〈vi, Gi, wi〉 | (vi, wi) ∈ ERand, 1 ≤ i ≤ |ERand| = �n · log2n�};
• CG[n]: δ = {〈vi, Gi·n+ j, v j〉, 〈v j, G j·n+i, vi〉 | vi, v j ∈ V , 1 ≤ i ≤ n, 1 ≤ j ≤ n, i �= j};

where V is the set of program states, n = |V |, ERand is a set of �n · log2 n� randomly selected pairs of program states, Mi

denotes the i-th set of maintenance goals, and Gx denotes the x-th set of (randomly generated) achievement goals. Unless 
differently specified, the sets of achievement goals were obtained by using the existing problem generators. Maintenance 
goals were hand coded because there exists no automatic generator for them, and developing a tool to generate them which 
guarantees that the obtained problems are solvable is not trivial. Overall, we constructed 1223 planning programs with a 
randomly generated initial state and |δ| problem goal sets. Specifically, we constructed the following five benchmarks:

SM6. For Blocksworld, 80 planning programs with the domain size ranging from small to middle-size (the domain 
involves from 2 to 21 blocks) and program transition relation yielding structures 1C[6], MC[4], RS[4], and CG[3] 
(|δ| = 6);

SM50. For each considered domain, 80 planning programs with the domain size ranging from small to middle-size (the 
domain involves from 3 to 30 objects) and program transition relation yielding structures 1C[50], MC[26], RS[14], 
and CG[8] (|δ| ≈ 50);

SM+M50. For domains Logistics and Storage, 40 planning programs obtained by the programs of benchmark SM50 by 
adding maintenance goals to the program transitions;
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Fig. 4. CPU time of RealizePlanProg using LPG, LAMA, Hplan-P and NuGaT for planning programs with domain Blocksworld and δ equal to 1C[6], MC[4],
RS[4] and CG[3] (s.t. |δ| = 6). The x-axis refers to the number of blocks in the planning domain.

ML2−12. For domains Blocksworld and Zenotravel, 33 planning programs with the domain size ranging from middle-
size to large (the domain involves from 40 to 76 objects) and program transition relation yielding structures
CG[2-4] (|δ| ranges from 2 to 12);

S5−100. For each considered domain, 67 planning programs with the same small domain size (the number of domain 
objects ranges from 2 to 18) and program transition relation yielding structures 1C[5-100], MC[4-51], RS[3-23], 
and CG[3-11] (|δ| ranges from about 5 to 100).

The considered evaluation criteria are the CPU time used to realize the planning program and the program realization 
size (number of generated plans in the computed realization). The latter measures the quality of the realization: the lower 
the program realization size is, the simpler and, we believe, more desirable the realization is. An alternative criterion for 
measuring the realization quality can be the amount of resources used or produced by the plans forming the program 
realization (e.g., fuel, money, time, space, etc.). However, in the analysis we did not consider this, since the paper is focused 
on planning programs where the domain states are sets of propositions, which are unsuitable to effectively encode amounts 
of resources.

The tests were conducted on an Intel Xeon(tm) 3 GHz machine, with 2 Gbytes of RAM. Unless otherwise indicated, the 
CPU-time limit used by RealizePlanProg to realize planning programs was 1000 seconds. The termination of the incorporated 
planner was forced after 60 seconds or when two different solution plans (with increasing quality) were computed. Note 
that in this latter case, the second plan necessarily achieves a PES. Moreover, the second plan computed by every planner 
incorporated into RealizePlanProg is an optimal solution (in terms of satisfied PESs). This is because (i) Hplan-P maximizes 
the number of achieved PESs and at most one PES can be reached; (ii) LAMA and LPG minimize the total cost of the plan 
solving the problem obtained by compiling PESs and TESs away, and, by construction of the compiled problems, at most 
one action with positive cost can be executed in a valid plan (the cost of every other action is equal to zero).

6.2. Performance of RealizePlanProg with different planners

In this section, we experimentally evaluate the performance of RealizePlanProg with planners Hplan-P, LAMA and LPG
using benchmarks SM6, SM50 and S5−100.

Fig. 4 shows the CPU time of RealizePlanProg and NuGaT (our baseline) for domain Blocksworld in benchmark SM6. 
As expected, the gap between the performance of RealizePlanProg using any incorporated planner and NuGaT is huge, since
NuGaT can realize Blocksworld planning program with only very few blocks within the CPU-time threshold. We think 
that the (not surprising) poor performance of NuGaT is merely due to the lack of heuristic-based search techniques (for 
plan construction) in this general purpose reasoning system.

Moreover, the results in Fig. 4 indicate that RealizePlanProg using either LAMA or LPG realizes all the planning programs, 
while using Hplan-P it realizes only the planning programs with small domain instances. For these planning programs, the 
CPU times of RealizePlanProg using LPG, LAMA and Hplan-P are similar, but for planning programs with larger domain 
instances (number of blocks) the use of LPG or LAMA makes realizing the programs at least 1–2 orders of magnitude faster.

Fig. 5 shows the program realization size of RealizePlanProg for SM6. The size of the program realization computed by 
RealizePlanProg using LAMA is always the best; the program realization size of RealizePlanProg[LPG] is slightly larger than 
or equal to RealizePlanProg[LAMA]; finally, for the planning programs with small domain instances, the program realization 
size of RealizePlanProg[Hplan-P] and of RealizePlanProg using either LAMA or LPG are the same, but for the other planning 
programs RealizePlanProg[Hplan-P] computes much larger realizations.

The results in Fig. 5 indicate that, for large planning domain instances, the plans computed by Hplan-P do not usually 
achieve PESs. Figs. 4 and 5 also show that the larger the program realization is, the slower RealizePlanProg is. This is 
because for the considered planning programs the number of open pairs generated by RealizePlanProg is usually similar to 
the program realization size, and the incorporated planner is run at least once for every open pair.
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Fig. 5. Realization size of RealizePlanProg using LPG, LAMA and Hplan-P for planning programs with domain Blocksworld and δ equal to 1C[6], MC[4],
RS[4] and CG[3] (s.t. |δ| = 6). The x-axis refers to the number of blocks in the planning domain.

Fig. 6. CPU time of RealizePlanProg using LPG, LAMA, and Hplan-P for planning programs with domain Zenotravel and δ over four different values and 
|δ| ranges from about 5 to 100. The x-axis refers to the number of program states.

Fig. 7. Realization size of RealizePlanProg using LPG, LAMA, and Hplan-P for planning programs with domain Zenotravel and δ over four different values 
and |δ| ranges from about 5 to 100. The x-axis refers to the number of program states.

For domains different from Blocksworld and program transition relations larger than those in SM6, we obtained 
similar results. Appendix A shows the performance of RealizePlanProg for domains Logistics and Pipesworld with 
benchmark SM50. The appendix gives no result for NuGaT, because it realizes no planning program of this benchmark.

Figs. 6 and 7 compare the CPU time and the program realization size of RealizePlanProg using Hplan-P, LAMA and 
LPG for domain Zenotravel with benchmark S5−100. For all planning programs of S5−100 with domain Zenotravel, 
the number of involved domain objects is the same and equal to 11. These results indicate that for program structures
1C, MC, and RS, both the CPU time and the program realization size grow roughly linearly w.r.t. the number of program 
states; for structure CG, they grow quadratically. Therefore, for the experimented program structures, the performance grows 
linearly w.r.t. the size of the program transition relation. We experimentally observed that for planning programs with 
domain Zenotravel, the average total number of open pairs generated by every considered incorporated planners is: 
about 1 · |δ| if the planning-program structure is 1C; about 1.5 · |δ| if the planning-program structure is MC; about 2 · |δ| if 
the planning-program structure is RS; and, finally, about 2.5 · |δ| if the planning-program structure is CG.

Appendix B shows the results of this analysis for two other domains of benchmark S5−100: Elevators and Storage. 
The results are similar, except for Hplan-P, which fails to realize many planning programs. The rationale for this behavior 
is that, with domains Elevators and Storage, even for domain instances involving few objects, the size of the domain 
state can be large, and consequently achieving PESs can be very hard.
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Table 2
Average CPU time and number of realized planning programs (in parenthesis) of RealizePlanProg using Hplan-P, LAMA and LPG with/out PESs for planning 
programs of benchmark SM50. Gray boxes indicate very significant performance gap.

Domain using Hplan-P using LAMA using LPG

with PESs w/out PESs with PESs w/out PESs with PESs w/out PESs

Barman
1C[50] 76.92 (18) 94.64 (18) 56.88 (20) 109.76 (20) 43.76 (20) 67.29 (20)

MC[26] 467.91 (9) 305.67 (13) 151.44 (20) 511.38 (14) 231.19 (12) 606.46 (7)

RS[14] 370.39 (5) 258.13 (6) 338.46 (16) 760.89 (5) 310.65 (7) 886.56 (2)

CG[8] 393.87 (5) 177.05 (5) 395.99 (10) 678.94 (5) 435.21 (4) 940.81 (1)

Total 277.60 (37) 193.13 (42) 205.18 (66) 475.55 (44) 175.93 (43) 432.38 (30)

Blocksworld
1C[50] 30.17 (4) 60.99 (4) 63.53 (20) 99.89 (20) 24.46 (20) 161.68 (19)

MC[26] 116.95 (3) 586.70 (2) 138.02 (20) 459.41 (20) 74.32 (20) 945.02 (2)

RS[14] 180.45 (8) 731.15 (4) 165.82 (20) 913.42 (8) 101.18 (20) 871.73 (4)

CG[8] 420.55 (8) 865.03 (2) 290.52 (20) 960.11 (2) 162.76 (20) 928.75 (2)

Total 229.54 (23) 642.33 (12) 164.47 (80) 608.21 (50) 90.68 (80) 726.80 (27)

Elevators
1C[50] 34.68 (20) 66.97 (20) 43.52 (20) 82.81 (20) 38.01 (20) 60.24 (20)

MC[26] 354.82 (8) 562.88 (10) 102.24 (20) 813.36 (10) 102.64 (20) 766.48 (10)

RS[14] 286.26 (1) 773.37 (1) 204.70 (20) 1000 (0) 300.74 (11) 961.66 (1)

CG[8] 606.18 (3) 1000 (0) 364.72 (20) 1000 (0) 501.28 (5) 1000 (0)

Total 186.67 (32) 315.93 (31) 178.80 (80) 724.04 (30) 154.06 (56) 573.44 (31)

Logistics
1C[50] 72.27 (20) 113.46 (20) 33.78 (20) 80.68 (20) 13.16 (20) 41.95 (20)

MC[26] 177.88 (5) 936.96 (2) 77.90 (20) 899.85 (4) 44.91 (20) 828.03 (7)

RS[14] 292.62 (2) 1000 (0) 162.59 (20) 1000 (0) 78.15 (20) 1000 (0)

CG[8] 557.73 (2) 1000 (0) 277.23 (19) 1000 (0) 182.36 (20) 1000 (0)

Total 139.15 (29) 377.72 (22) 136.11 (79) 741.90 (24) 79.65 (80) 717.49 (27)

Pipesworld
1C[50] 126.55 (20) 168.05 (20) 69.63 (20) 120.97 (20) 14.70 (20) 65.86 (20)

MC[26] 393.92 (7) 675.43 (4) 164.54 (20) 930.32 (4) 53.56 (20) 867.32 (4)

RS[14] – (0) – (0) 350.47 (20) 1000 (0) 111.34 (20) 1000 (0)

CG[8] – (0) – (0) 629.40 (19) 1000 (0) 256.76 (20) 1000 (0)

Total 195.87 (27) 299.59 (24) 299.38 (79) 759.82 (24) 109.09 (80) 733.29 (24)

Storage
1C[50] 139.50 (2) 196.47 (2) 105.25 (18) 273.28 (16) 19.02 (20) 101.86 (20)

MC[26] – (0) – (0) 156.26 (17) 894.51 (4) 59.95 (20) 1000 (0)

RS[14] 732.76 (1) 292.12 (3) 164.13 (20) 909.93 (6) 83.13 (19) 1000 (0)

CG[8] 1000 (0) 516.40 (1) 278.37 (20) 951.80 (4) 114.58 (17) 1000 (0)

Total 579.55 (3) 297.62 (6) 178.68 (75) 764.81 (30) 67.20 (76) 763.64 (20)

Zenotravel
1C[50] 190.72 (11) 349.73 (8) 95.95 (20) 151.06 (20) 16.43 (20) 50.62 (20)

MC[26] 79.70 (2) 453.51 (2) 209.82 (20) 930.13 (2) 120.24 (20) 902.39 (4)

RS[14] 276.12 (1) 1000 (0) 194.13 (20) 1000 (0) 86.91 (20) 1000 (0)

CG[8] 856.03 (1) 1000 (0) 313.72 (20) 1000 (0) 186.70 (18) 1000 (0)

Total 225.97 (15) 450.27 (10) 203.40 (80) 770.30 (22) 100.41 (78) 731.54 (24)

6.3. Importance of using preferred end states

In order to evaluate the impact of using PESs on the performance of RealizePlanProg, we compared RealizePlanProg
using PESs and ignoring them. Table 2 gives the number of realized planning programs and the average CPU time for the 
planning programs of benchmark SM50. The average CPU time is computed using the CPU-time limit (1000 seconds) for 
the planning programs that RealizePlanProg does not realize (within the CPU time limit); the average realization size is 
computed over the planning programs that RealizePlanProg can solve both with and without using PESs.

The results in Table 2 show that planning with PESs has a high positive impact on the number of realized plan-
ning programs and the average speed of RealizePlanProg. Using either LAMA or LPG, planning with PESs always allows 
RealizePlanProg to realize a larger set of planning programs, and makes it (on average) faster than when planning without 
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Table 3
Average realization size and percentage of computed plans reaching PESs (in parenthesis) of RealizePlanProg using Hplan-P, LAMA and LPG with/out PESs 
for planning programs of benchmark SM50. Gray boxes indicate very significant performance gap. “–” means that there is no data to compute the average.

Domain using Hplan-P using LAMA using LPG

with PESs w/out PESs with PESs w/out PESs with PESs w/out PESs

Barman
1C[50] 56.3 (26.9) 56.9 (27.5) 51.1 (48.3) 62.1 (16.6) 53.5 (38.8) 60.2 (23.1)

MC[26] 126.3 (64.5) 164.7 (63.5) 87.1 (72.4) 179.7 (62.7) 92.0 (68.4) 310.4 (54.3)

RS[14] 128.0 (80.5) 134.4 (80.2) 116.8 (82.5) 165.6 (80.4) 120.5 (82.1) 435.5 (75.7)

CG[8] 175.0 (89.9) 198.8 (89.5) 168.0 (90.1) 275.8 (88.4) 252.0 (88.6) 609.0 (86.9)

Total 101.4 (51.8) 112.8 (51.7) 83.3 (64.6) 135.6 (46.7) 73.5 (50.3) 161.9 (36.0)

Blocksworld
1C[50] 51.0 (50.0) 52.3 (33.3) 51.0 (50.0) 51.9 (37.2) 51.1 (49.1) 158.9 (11.0)

MC[26] 91.5 (68.6) 467.0 (52.7) 98.3 (66.4) 278.6 (54.4) 91.5 (68.7) 949.0 (50.8)

RS[14] 143.8 (81.2) 570.8 (76.1) 166.5 (80.1) 660.9 (75.8) 143.5 (81.4) 727.3 (75.8)

CG[8] 238.0 (88.7) 623.0 (86.8) 238.0 (88.7) 623.0 (86.8) 238.0 (88.7) 623.0 (86.8)

Total 119.8 (70.0) 389.3 (59.7) 95.9 (63.0) 262.9 (52.3) 81.6 (58.4) 336.0 (29.2)

Elevators
1C[50] 52.5 (40.9) 55.2 (19.6) 50.9 (55.0) 54.5 (22.5) 50.9 (55.0) 59.0 (16.4)

MC[26] 98.4 (66.1) 588.3 (51.7) 94.6 (67.4) 500.1 (52.0) 97.1 (66.8) 787.8 (51.2)

RS[14] 140.0 (79.5) 1094 (72.3) – (–) – (–) 151.0 (80.4) 1140 (74.2)
CG[8] – (–) – (–) – (–) – (–) – (–) – (–)

Total 68.2 (49.2) 238.0 (30.3) 65.5 (59.1) 203.0 (32.3) 69.0 (59.6) 328.9 (29.5)

Logistics
1C[50] 54.7 (32.4) 65.5 (8.4) 50.8 (60.0) 61.0 (10.4) 50.8 (62.5) 61.4 (10.4)

MC[26] 84.0 (71.2) 1035 (50.7) 84.3 (71.2) 474.3 (51.9) 84.4 (70.9) 991.1 (51.4)

RS[14] – (–) – (–) – (–) – (–) – (–) – (–)
CG[8] – (–) – (–) – (–) – (–) – (–) – (–)

Total 57.3 (36.0) 153.6 (12.2) 56.4 (61.9) 129.9 (17.3) 59.5 (64.7) 302.4 (21.0)

Pipesworld
1C[50] 54.9 (26.8) 58.8 (13.4) 51.1 (48.3) 60.0 (12.6) 51.0 (50.0) 97.1 (8.5)

MC[26] 102.0 (65.6) 470.5 (51.9) 98.0 (66.4) 496.3 (51.7) 98.5 (66.3) 654.0 (51.2)

RS[14] – (–) – (–) – (–) – (–) – (–) – (–)
CG[8] – (–) – (–) – (–) – (–) – (–) – (–)

Total 62.8 (33.2) 127.4 (19.8) 58.9 (51.4) 132.7 (19.1) 58.9 (52.7) 189.9 (15.6)

Storage
1C[50] 52.0 (33.3) 54.5 (19.6) 51.0 (50.0) 83.1 (5.9) 52.1 (41.9) 138.2 (2.5)

MC[26] – (–) – (–) 70.0 (77.3) 366.3 (52.6) – (–) – (–)
RS[14] 95.0 (82.9) 457.0 (74.3) 109.0 (83.2) 509.8 (75.9) – (–) – (–)
CG[8] – (–) – (–) 171.5 (89.9) 607.3 (86.9) – (–) – (–)

Total 66.3 (49.9) 188.7 (37.9) 81.2 (65.6) 276.1 (36.9) 52.1 (41.9) 138.2 (2.5)

Zenotravel
1C[50] 72.4 (28.4) 90.4 (5.7) 51.0 (52.5) 63.2 (11.8) 51.1 (50.0) 69.3 (11.4)

MC[26] 90.0 (68.5) 598.0 (51.6) 86.0 (69.7) 267.5 (54.3) 87.8 (69.3) 988.8 (51.8)

RS[14] – (–) – (–) – (–) – (–) – (–) – (–)
CG[8] – (–) – (–) – (–) – (–) – (–) – (–)

Total 75.9 (36.4) 191.9 (14.8) 54.1 (54.0) 81.7 (15.6) 57.2 (53.2) 222.5 (18.1)

PESs. Interestingly, very often the algorithm realizes at least two times more planning programs, or is at least one order 
of magnitude faster (see gray boxes in Table 2). The performance gap is very large especially for planning programs with 
structures involving several cycles. Concerning RealizePlanProg[Hplan-P], planning with PESs often gives better performance 
than planning without them, but in some cases we observed a performance decrease. This happened for domain Barman
and δ equal to MC[26], RS[14], or CG[8], domain Elevators and δ equal to MC[26], and domain Storage and δ equal to
RS[14], or CG[8]. In these cases, Hplan-P often crashes when it attempts to solve planning problems with many preferences 
or with preferences involving many propositions.

Table 3 analyzes the program realization size (i.e., the total number of plans in the computed program realization) for 
the planning programs of benchmark SM50. The results in this table indicate that planning with PESs is useful also in terms 
of the realization size. For any considered incorporated planner, exploiting planning with PESs allows RealizePlanProg to 
compute program realizations that are always smaller, and often at least two times smaller (see gray boxes in Table 3). 
Specifically, for every considered program structure involving several cycles, the performance gap obtained by planning 
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Table 4
Maximum number of objects in a planning problem, and maximum size of sets S P , A P , ST and AT for RealizePlanProg using Hplan-P, LAMA and LPG
when solving the planning programs of benchmark SM50.

Domain #objects using Hplan-P using LAMA using LPG

S P ST (AT ) S P (A P ) ST (AT ) S P (A P ) ST (AT )

Barman 24 10 31 (2542) 42 (43) 0 (0) 60 (61) 0 (0)
Blocksworld 17 20 28 (3640) 10 (11) 0 (0) 10 (11) 0 (0)
Elevators 17 8 58 (4640) 12 (13) 0 (0) 65 (66) 0 (0)
Logistics 19 10 71 (3976) 28 (29) 0 (0) 46 (47) 0 (0)
Pipesworld 42 9 29 (2001) 12 (13) 0 (0) 19 (20) 0 (0)
Storage 30 6 40 (2760) 8 (9) 18 (2268) 81 (82) 0 (0)
Zenotravel 22 24 28 (1428) 10 (11) 0 (0) 50 (51) 0 (0)

with/out PESs is almost always very large, except in domain Barman if the realization algorithm uses planners Hplan-P
or LAMA. Using LPG, sometimes PESs are useful even when the program structure forms a single cycle. We think that in 
RealizePlanProg[LPG] PESs are very useful because of the randomization in the local search procedure of LPG: in LPG the 
choice of the actions for the plan under construction is randomized, and this can lead to generate different plans for the 
same problem goals, resulting in different plan end states; however, using PESs in LPG guides the search towards the same 
end states (the preferred ones), ameliorating the diversification determined by the randomization.

The data in Table 4 describes the behavior of RealizePlanProg in terms of: the maximum size of the sets S P of PESs 
and ST of TESs generated for a P-state, and the maximum number of actions in sets A P and AT for benchmark SM50 (A P

for Hplan-P in not considered in the table, because with Hplan-P PESs are encoded as PDDL3 preferences). Sets A P and AT , 
defined in Section 5.2, are used for translating a planning problem with PESs and TESs into a planning problem with action 
costs; they have size |S P | + 1 and |ST | · |P |, respectively, where |P | is the set of problem fluents. While in principle the size 
of these sets can be exponential in the number of problem objects, the results in the table show that this is not the case 
for benchmark SM50.

As for sets ST and AT , since the planning programs of benchmark SM50 have planning domains with no deadend, the 
program transitions are, in principle, realizable from any (reachable) D-state, and so the sizes of S T and AT can be 0. 
On the contrary, Table 4 shows that often this is not the case: when using Hplan-P some states are added to ST and AT

for every considered domains, and when using LAMA these sets have size greater than zero for domain Storage. This 
happens because sometimes Hplan-P and LAMA fail to solve (solvable) planning problems within the given CPU-time limit 
and amount of memory (each failure generates a tabu state).

It is worth noting that for planning program structures including loops, even when sets S T and AT are empty, the plan-
ning problems with PESs that are solved during the execution of RealizePlanProg are interdependent in the sense that the 
solution of a planning problem associated with a transition incoming to a P-state v takes into account the solution of the 
planning problems associated with the transition(s) outgoing from v , as it should (preferably) enable the reuse of the plans 
already computed for the outgoing transitions (this is the purpose of PESs). The number of not interdependent planning 
problems is always (at most) the number of program states, i.e., the number of planning problems with an empty set of 
PESs that are constructed during the execution of RealizePlanProg. Therefore, the average number of solved interdependent 
planning problems can be derived by subtracting the number of program states from the data in Table 3. For instance, with 
δ equal to CG[8], the number of program states is 8. For such δ and domain Barman, the average size of the planning 
program realization generated using LPG and preferred end states is about 252, and hence the number of generated inter-
dependent planning problems is, on average, (at least) 252 − 8 = 244. The results in Table 3 show that, except for programs 
with δ equal to 1C[50], most of the planning problems solved by RealizePlanProg are interdependent.

6.4. Planning programs with maintenance goals

The experimental analysis presented so far uses benchmarks formed by planning programs with only achievement goals. 
In this section, we also consider maintenance goals using benchmark SM+M50, i.e., planning programs with δ equal to
1C+M[50] and domains Logistics and Storage. For Logistics, we designed program transitions with maintenance 
goals constraining all airplanes but one to stay at a particular airport (the headquarter of their airline), and forcing each of 
the airplanes to be used in turn (for the different transitions). Similarly, for Storage all hoists but one are constrained 
to stay at a particular location, and each of them is forced to be used in turn. In these programs, the transitions from any 
D-state in which the maintenance goal formula is not satisfied are unrealizable. Moreover, having maintenance goals in a 
planning problem associated with a program transition can make solving it harder for a planner.

Since the planners used in our experimental analysis do not natively support maintenance goals, planning programs 
with maintenance goals have been translated into planning programs without them. We considered two related translation 
schemes:

T1: the basic schema adding the maintenance goal formula to the precondition formula of every domain action; and
T2: the same schema T1 extended as described in Section 5.3.
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Fig. 8. CPU time and number of generated tabu states of RealizePlanProg using LPG and LAMA with/out achieving the next maintenance goals for planning 
programs with domains Logistics and Storage and δ equal to 1C+M[50]. The x-axis refers to the program number (the greater the number is, the 
greater the size of the planning domain is). The legend from the first chart applies in all four charts.

By using T2, the plans realizing the incoming transitions of v generate end states satisfying the formulas of all maintenance 
goals on the transitions outgoing from v .

Fig. 8 shows the performance of our approach using LAMA and LPG with the two considered translations for planning 
programs of benchmark SM+M50. The results show that, with T1, the performance of RealizePlanProg decreases expo-
nentially with the size of the planning programs; on the contrary, with T2 the performance does not degrade significantly, 
indicating that building plans achieving the maintenance goals on the next transitions is extremely useful. We observed that 
the performance gap with T1 and T2 using Hplan-P is even grater than when using LAMA and LPG. (These performance 
results using Hplan-P are omitted from Fig. 8 for the sake of its readability.)

The number of tabu states generated by RealizePlanProg with T2 is always zero using LPG and LAMA, except for only 
two problems (16 and 17) of Storage using LAMA, where LAMA exceeds the given CPU-time limit; on the contrary, using 
LPG and LAMA with T1, the number of generated tabu states is almost always very high. This happens because with T1
the plan computed to realize a transition incoming to a P-state v usually reaches an end state that does not satisfy all 
the formulae of the maintenance goals on the outgoing transitions of v , making realizing at least one of such transitions 
impossible.

6.5. Usefulness of using plan adaptation techniques

In order to show that using plan adaptation techniques can be very useful to compute the program realization, we 
compared RealizePlanProg with and without using plan adaptation techniques. For this experiment, we considered the 
well-known domains Blocksworld and Zenotravel. Since plan adaptation can be especially useful when the program 
structure forms several cycles and the domain instance is large (i.e., when solving the planning problems can be quite 
hard), for this experiment we considered the planning programs in benchmark ML2−12, which are planning programs with 
a structure forming a complete directed graph. The planning programs of benchmark ML2−12 have a number of program 
states ranging from 2 (program transition relation δ forms a single cycle) to 4 (δ forms 20 cycles). For the planning programs 
over domain Blocksworld, the number of blocks in the domain instances ranges from 40 to 70; for the planning programs 
over domain Zenotravel, concerning moving people in a network of locations by using aircrafts consuming levels of fuel, 
the number of aircrafts, cities and fuel levels is 5, 25 and 4, respectively, while the number of persons ranges from 10 to 50.

In this experiment, we used only planner LPG, since it is the only considered incorporated planner that supports plan 
adaptation. The CPU-time limit used by RealizePlanProg to realize a planning program was 2 hours, while the CPU-time 
limit for solving a planning problem by LPG was 10 minutes. In the following, LPG-Adapt denotes the version of LPG
adapting the plan returned by procedure BestPlan described in Section 5.4.

Fig. 9 shows the CPU time of RealizePlanProg using LPG and LPG-Adapt for planning programs in benchmark 
ML2−12. RealizePlanProg[LPG-Adapt] realizes a larger set of planning programs, and is always faster than or similar to 
RealizePlanProg[LPG]: with LPG-Adapt every considered planning program is realized; without plan adaptation, when the 
planning programs have more than 2 states, for Blocksworld RealizePlanProg cannot realize the planning programs with 
the largest instances, while for Zenotravel it realizes no program. Moreover, RealizePlanProg[LPG-Adapt] is generally 
considerably faster than RealizePlanProg[LPG]. For Zenotravel, it is significantly faster even for relatively small domain 
instances and program structure forming a single cycle (n = 2 in Fig. 9).

Fig. 10 shows the program realization size of RealizePlanProg using LPG and LPG-Adapt for benchmark ML2−12. These 
results indicate that, when using LPG-Adapt, the program realization can be much smaller. The rationale of this behavior is 
that achieving PESs by LPG-Adapt can be much easier than by LPG. This happens because (i) for benchmark ML2−12 the 
domain size is large, and hence achieving PESs can be very hard, (ii) for the considered domains, very often the last plan 
portion (completely) defines the plan end state, and often the last plan portion of the plan computed by LPG-Adapt is the 
same as of the input plan (because the goals are the same). Therefore, very often the end state of the plan computed by 
LPG-Adapt is the same as the end state of the input plan; hence, LPG-Adapt often easily generates plans ending in PESs.
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Fig. 9. CPU seconds of RealizePlanProg using LPG with/out plan adaptation for planning programs over domains Blocksworld, Zenotravel and δ equal 
to CG[2-4]. On the x-axis there is the number of blocks/persons involved in the domain instances. Finally, n is the number of program states.

Fig. 10. Realization size of RealizePlanProg using LPG with/out plan adaptation for planning programs with domains Blocksworld, Zenotravel and δ
equal to CG[2-4]. On the x-axis there is the number of blocks/persons involved in the domain instances. n is the number of program states.

6.6. On domains with many deadends

When the involved planning domain has many deadends in its domain state space, computing a realization of the plan-
ning program can be very hard also using the proposed planning-based approach. In this section, we study the performance 
of RealizePlanProg for domains with a large number of deadends, focusing on an interesting class of planning programs in 
which agent activities can be repeatedly done and undone indefinitely often.

It is worth noting that, when there are deadends, the planning programs for the experimental evaluation need to be 
very accurately designed in order to guarantee their realizability. For instance, consider a planning program with δ equal 
to 1C[50] (a single cycle) in which every transition goal requires moving an airplane in a version of domain Zenotravel
without action refuel, so that the fuel level of the airplanes can never be restored after their use. Such planning programs 
can never be realized, even if the airplane movement were optimal (in terms of fuel consumption), because every D-state 
generated by a plan realizing a transition is different from the D-states generated by any plan previously computed for that 
same transition. Therefore, with an initial limited amount of fuel, there exists no realization for which the execution of cycle
1C[50] can be executed indefinitely often.

The planning programs that we designed for testing RealizePlanProg in domains with deadends use a directed (irre-
versible) version of domain Logistics, concerning the movement of packages among cities by airplanes and trucks, in 
which: only certain movements of airplanes are possible; the initial states are defined as depicted in Fig. 11a; the transition 
relations are modelled using program structure 1E1C; and the achieving goal formulas are defined as depicted in Fig. 11b.

The transition relation defined according to 1E1C models the agent behavior formed by a one-shot activity followed 
by a cyclic activity. The first activity regards the movement of all packages but one (package P0) from airports L00 and
L10 to city L21; the cyclic activity regards the recurrent movement of P0 between city L01 and city L11. Airplanes can 
fly between airports L00 and L10 in both directions, and from L00 to airport L20 but not from L20 to L00. In order 
to realize a planning program in this class, the trick is moving all packages but P0 from L00 to L20 (and, subsequently, 
to L21) by using only one airplane. If both the airplanes were used for this movement, subsequently no airplane would be 
available to move P0 between L01 and L11. Let n be the number of packages to move. The number of deadend D-state 
for the planning programs of this experiment is 8 · 10n over 72 · 10n possible reachable D-states.

Fig. 12 shows the performance of RealizePlanProg for the described planning programs. With LPG and LAMA only the 
programs with few packages to move are realized; while with Hplan-P no program is realized. The results in the fig-
ure indicate that, when the planning domain has many deadends but the number of generated tabu states is not high, 
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Fig. 11. Dynamic domain and agent planning programs with a directed version of domain Logistics.

Fig. 12. CPU time and number of generated tabu states of RealizePlanProg using LPG and LAMA for planning programs with a directed version of domain 
Logistics and δ defined in Fig. 11b (1E1C[3-10] in Logistics). The x-axis refers to the number of packages in the planning domain.

RealizePlanProg can find a solution within the given CPU time limit. However, this happens only for small-size problems. 
When there are many packages in the domain, the number of deadends significantly increases and RealizePlanProg gener-
ates more tabu states, not only because the planning problems associated with the program transitions can be unsolvable, 
but also because they can be very hard to solve for the planners when they are solvable, leading the planner to fail within 
the given CPU time.

7. Related work

The work presented here can be related with two recent efforts to integrate agent-oriented programming and systems 
with declarative goals and lookahead planning. Efforts to integrate declarative goals (e.g., [24–26,58,91,100]) stem from 
the recognized need of providing development frameworks that are more faithful to the notion of rational agent behavior 
developed in agent theory [14,23,97], as well as to enhance those systems with more flexible and robust mechanisms for 
intelligent action selection. For example, the AgentSpeak-like language CANPlan [91] provides a construct Goal(φs, δ, φ f )

with the intended meaning of “achieve (success) goal φs by executing (procedural) plan δ, provided failing condition φ f
remains false” (similar constructs were proposed for other agent programming frameworks, such as AgentSpeak itself or
3APL/2APL). While Goal’s constructs like the above one resemble planning program’s transitions of the form “achieve φs
while maintaining ¬φ f ,” they have some major differences. In particular, there is no effort from agent architectures to 
proactively enforce the satisfaction of the goals; their support remains at the reactive level (i.e., re-try δ if it has completed 
without achieving φs , and successfully drop it or abandon it with failure if φs or φ f becomes true, resp.). In other words, 
no reasoning is performed to guarantee that plan δ is in fact executed in a way that would bring about the goal φs (while 
avoiding φ f ). The reason for this is one of efficiency: agent programs are meant to be executed online under soft real-time 
constraints, and hence rely on the assumption that the given program δ is designed to achieve the goal φs on-the-fly, under 
normal circumstances. Solving planning programs, instead, requires building plans that will not only achieve each local goal 
(in transitions), but that are also mutually “compatible” within the whole network of goals. On the other hand, planning 
programs do not provide, at this point, ways of specifying (and using) available procedural domain information to build 
those plans, something that can arguably help to cope with the complexity of the problem (see below discussion on HGN 
planning).

Another related link between planning programs and agent systems is the integration of automated planning capabili-
ties to the latter. There are indeed a number of platforms and architectures which mix, in some way or another, planning 
and program execution into a so-called continual planning approach, such as A-SHOP [39], Retsina [78], SRI’s Cypress [105],
Propice-Plan [37], CANPlan [91], and JADEX [103]. All these systems are able to do some type of lookahead planning within 
a typical reactive agent execution. In most cases, the type of planning considered is domain-tailored planning, similar to 
HTN-planning [46], rather than first-principle planning as in planning programs [91,104]. In addition, the underlying ap-
proach is to provide specific programming constructs (e.g., CANPlan’s Plan(δ, φ) [91] or IndiGolog’s �(δ; φ?) [29] constructs 
to achieve φ using program δ) that allow for calling a planning module to synthesize a course of actions, which is then 
carried out by the agent execution engine. Roughly speaking, the difference with our work is that the core of continual 
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planning systems is driven by an online executor (which can however resort to local lookahead planning as necessary), 
whereas planning programs are meant to be fully solved offline in order to obtain execution guarantees for all possible 
agent behaviors modelled in the program.

From the planning perspective, the work on hierarchical goal network (HGN) planning [95,96] shares motivations and has 
technical similarities with planning programs, but they also have important differences. HGN planning aims at generalizing 
“classical” HTN planning to include goal networks, by using a different semantics for tasks and methods. In HGN planning, 
tasks correspond to classical goals and methods specify ways to decompose goals into sequences of subgoals. There has 
even been efforts to develop HGN-planning systems that work with partial decomposition knowledge [94]. Like planning 
programs, HGN planning has the ability to specify agent behaviors in a declarative manner using a network of goals. How-
ever, those networks amount to partially-ordered sets of goals (therefore not admitting indefinitely looping behaviors) whose 
total order of satisfaction is left to the solver to decide. Planning programs admit network with cycles and the ordering of 
goals is outside the control of the solver. Generally speaking, the behaviors that HGN planning aims to capture are the same 
as those of planning with temporally extended goals, producing a single plan to be executed. On the other hand, planning 
programs require generating a controller for multiple alternative synthesized plans that cover the whole space of delibera-
tion of the agent (in order to execute the right plan according to the transition chosen by the agent at each step). The idea, 
though, of integrating goal networks with subgoal decomposition knowledge as well as the techniques based on landmark 
reasoning used in existing HGN systems are worth investigating in the context of planning programs, so as to better deal 
with the intrinsic computational difficulty of the task.

One particular agent paradigm that appears capable of encoding planning programs is that of Golog-like situation 
calculus-based high-level programming languages [28,29,68,5]. Indeed, because those languages offer standard program-
ming constructs (including iteration, conditionals, and even parallel execution) as well as non-deterministic δ1 | δ2 (execute 
δ1 or δ2) and a test construct φ? (guarantee φ is true), one could imagine that planning programs could be encoded into 
a particular Golog-like program. This is actually not the case, at least if one considers the standard semantics of these pro-
grams [68], the so called “offline execution.” First, Golog-like languages are typically meant to execute the given program 
to completion and cannot then handle continuous (cyclic) programs/controllers that are meant to run forever, as it is the 
case for planning programs. Second, the non-deterministic constructs have typically an “angelic” semantic: the planner has 
to find one that works. In planning programs, the controller has to guarantee executability for every possible choice. Finally,
Golog-like languages do not come with sophisticated techniques for the actual synthesis of (iterated) successful executions. 
A different analysis needs to be carried out for IndiGolog [29]. This variant of Golog has the capabilities of representing 
our planning programs, by making use of standard constructs to represent the control structure given by the transition 
system and the special deliberation construct �(·) for representing “goal-oriented actions” labeling transition. Specifically, 
each goal-oriented assertion [γ : ψ, φ] can be represented as [ifγ then�((πa.ψ?; a)∗; φ?)]. Nonetheless, due to their online 
execution nature, the resulting IndiGolog program would account for a sort of continual planning approach as discussed 
above, under which goals assertions (modeled as � search blocks) are independent of each other.

Interestingly, in [5], a language based on Golog has been used to specify domain-control knowledge for solving classical 
planning problems, and a translation function has been proposed, which given a planning instance and a program described 
by a Golog-based language outputs a new planning instance that embeds the control stated by the program. This enables 
any planner to exploit search control specified by the program. We could see our work as an extension of that, where 
instead of specifying Golog transitions in terms of actions we specify them in terms of goals.

A synthesis problem tightly related to the work presented here is that of behavior composition [35]. In fact, such prob-
lem is one of the main starting points for our work here. The idea there is to realize (i.e., implement) a given desired, but 
non-existent, target module that a user is meant to operate (e.g., a home entertainment system) by suitably coordinating 
a set of existing available modules (e.g., video cameras, game consoles, automatic blinds and lights, etc.) The problem is in 
fact a generalization, within a broader AI context, of the well-known web-service composition problem [8,9,72] in which 
a target web-service is obtained by putting together a set of existing web-services. Like agents in planning programs, the 
target module user is assumed to operate a behavior specification by issuing requests that ought to be satisfied (by a smart 
controller, called the “composition”). However, in the composition task the request is for the execution of a particular action 
(e.g., play music) rather than the achievement of a state of affairs. Moreover, the challenges involve deciding which of the 
existing available modules will be able to fulfill such request. Rather than searching for adequate behavior delegations, in 
planning programs, we look for complex conditional programs that could be “stitched” together so as to guarantee declar-
ative goal requests. Because actual domain actions will generally be executed in concrete devices and available modules, it 
makes sense to look for plans solving a given planning program that could actually be carried out by proper delegation to 
such modules. It is indeed possible to extend the planning-program framework to accommodate the “delegation” of plans to 
their actual performers, in the same way as done in behavior composition. This is done by compiling away all behaviors into 
the underlying dynamic domain; see [34] for details. What is more, it is possible to suitably encode a complete behavior 
composition task into a planning-program realization, along the line of the hardness proof of Theorem 5. It follows then 
that the framework for agent planning programs presented here subsumes that for behavior composition. Lastly, we note 
that similar techniques based on synthesis over specific game structures [35] or automated planning [86] were used to solve 
the composition task, among others.

The work on agent planning programs is related to generalized planning, in the sense that the result of the planning 
program realization can be seen as a form of generalized plan (e.g., [13,33,98]). Generalized plans are rich control structures 
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that include loops and parametrized or lifted actions whose arguments must be instantiated during execution. The work 
on generalized planning looks at synthesizing a plan that is general enough to realize the same goal on several planning 
scenarios. Instead, the work presented in this article looks at synthesizing a plan that realizes, within the control structure 
imposed by the agent program, a collection of interrelated goals over the same planning domain.

Planning programs can also be considered as a form of complex routines, modelling desired domain evolutions and typ-
ically including conditions and cycles, that an agent executes in the domain. In planning, similar routines can be specified 
by temporally extended goals (e.g., [3,6,36,43,61]), in the following abbreviated with TE-goals. Unlike simple achievement 
goals, which express required properties of the final state achieved by a plan, TE-goals express required properties or con-
straints on the whole (possibly cyclic) sequences of states traversed by all possible executions of a valid plan. For instance, 
TE-goals can be used to require that some state properties are achieved according to a certain sequence, that a property 
holds in every state generated by the plan execution, that a property is achieved periodically or within a certain number of 
plan steps from a state where another property holds, etc. Planning with a class of TE-goals can be compiled into classical 
planning by compilation schemes using additional domain predicates and actions (e.g., [6,43]).

TE-goals can also be used to specify domain-specific control knowledge that a planner can exploit to generate plans 
more efficiently. For deterministic domains, e.g., the forward search planner TLPlan [3] provides a logic-based platform 
supporting reasoning about search control knowledge, in the form of temporal logic formulae that promising plan prefixes 
must not violate. Moreover, TLPlan is capable of building cyclic plans modeling required domain evolutions [61] specified 
by LTL formulas expressing TE-goals. The planning method used by TLPlan relies on the construction and compilation of 
Büchi automata equivalent to the TE-goals [107], which recognize the language of (cyclic) execution sequences satisfying the 
goals. For non-deterministic domains, e.g., planner MBP [22] provides a framework to plan for TE-goals expressed using CTL 
formulas [41] that distinguishes temporal requirements on all possible and on some plan executions [79]. In order to deal 
with large search spaces, the planning approach used in MBP relies on symbolic model checking techniques and BDDs [16].

While TE-goals are declarative plan requirements, planning programs also provide a way of specifying procedural knowl-
edge of the domain. MBP has been extended to support planning with requirements such as “it should do everything that is 
possible to achieve a given condition”, with failure situations of the form “try to reach a goal but, in case of failure, do reach 
a different goal” [65], and with procedural goals specified by constructs expressing conditional and iterative plans. [93]. 
However, the problems addressed by MBP are quite different from agent planning programs, and it is not clear whether the 
problem of realizing an agent planning program can be compiled into a MBP problem so that a plan satisfying the MBP’s 
goals corresponds to a planning-program realization. The most significant differences between planning programs and the 
methods in [65,93] are that the MBP framework cannot cope with the executor decisions, which introduce a sort of nonde-
terminism in the planning program definition and is a distinguishing feature in our problem, and that MBP requires that at 
least one execution reaches a successful state. A consequence of the latter point is, e.g., that procedural goals expressed by 
loops need to terminate, while in planning programs this is not required.

8. Conclusions

The AI community is expressing the need to put more effort in investigating principled ways of integrating planning and 
acting (and hence programs) [47]. In this paper we have studied the notion of agent planning programs, which is much in 
line with this need. Agent planning programs are (finite-state) programs whose atomic instructions consist of precondition-
invariance-postcondition assertions. These programs need to be compiled into executable ones by replacing such assertions 
with plans that, under the guarantee that the precondition is satisfied, maintain the invariance condition and achieve the 
postcondition. The key point is that these plans cannot be computed in isolation, since once a goal (postcondition) has been 
achieved, new precondition-invariance-postcondition triples need to be fulfilled as prescribed by the program. We have 
shown a general solution for such programs and characterized the complexity of the problem.

Interestingly, the general solution proposed, which is optimal from the computational complexity point of view, can be 
implemented directly using game-structure model-checking based synthesis tools such as the mentioned TLV, JTLV and
NuGaT, but also Anzu [60] or Ratsy [10]. This general solution has the flavor of universal plans, but may involve more 
work than really needed. Focusing on deterministic domains, we have developed an iterated-classical-planning technique 
that exploits goal preferences and plan adaptation methods to speed up the realization of transitions in cycles. We have 
tested this technique through an array of experiments, demonstrating that the planning-based approach as a whole is an 
effective way to practically handle agent planning programs in deterministic domains (observe, though, that while we used 
some well-known domain-independent planners, the aim of such experiments was not to show the goodness of a specific 
planner or encoding, and other planners could have been used). This is especially the case with planning domains whose 
state spaces have limited deadends.

There are several further research avenues to explore related to this mix of planning and programming that agent plan-
ning programs provide. We mention here some of them at the extremes of the spectrum. On the one hand, a crucial issue 
that we did not address in this paper is devising convenient representation formalisms for agent planning programs. Indeed, 
we have simply used transition systems in the present work, which can be considered a general but possibly too pristine 
formalism for describing dynamic systems. When it comes to applications, better representation formalisms—in the style 
of those developed in reasoning about action—are preferred. For example, one could resort to variants of high-level agent 
programming languages like Golog/ConGolog/IndiGolog for expressing agent planning programs. Notice though that, as dis-
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cussed in Section 7, one cannot simply adopt their standard computational semantics, and a new sort of off-line semantics 
would be needed that takes into account the realization of planning programs as discussed in this paper, possibly extended 
to deal with first-order representation of data giving rise to infinite-state domains. Pushing this line even further, one could 
consider allowing recursive procedure calls in the planning program, making the planning program itself infinite state (due 
to the need of, e.g., an unbounded stack for dealing with multiple procedure activations). Recent work on decidable verifi-
cation of situation calculus [30–32] and other data-aware process formalisms [7,51] becomes very relevant for this kind of 
research.

At the other end of the spectrum, we are interested in improving and extending implementations based on planning 
techniques. First of all, we would like to generalize the technique presented here to nondeterministic domains (possibly 
using conditional or conformant planners), as well as to introduce measures and techniques to compute optimized program 
realizations. With respect to the latter, one would aim at obtaining plans that are not only good from the computational 
point of view, but also (or alternatively sometimes) from an engineering point of view by maximizing qualities such as 
understandability, robustness, and modifiability.

When it comes to planning programs over deterministic domains, we intend to optimize the performance of the al-
gorithm proposed in Section 5 by including heuristics and techniques that take subsequent transitions into account more 
effectively (when realizing a particular transition), in order to reduce backtracking by avoiding plans that create open pairs 
from which a next transition cannot be realized. We expect these advanced techniques will be helpful especially for pro-
grams over planning domains where our current technique can incur in a high number of backtracks. We would also like 
to draw from the recent work on HGN-planning (and associated planning systems like GoDeL [94]), which, as mentioned 
above, exploits goal decomposition and landmarks to solve classical planning on a network of goals, albeit under a different 
semantics.

Finally, an interesting and challenging direction concerns addressing the realization of dynamic planning programs—
programs in which states or transitions can be added or removed dynamically, and the preconditions-invariance-
postconditions of the transitions can be incrementally revised—without always recomputing a new realization from scratch.
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Appendix A. An encoding example

In this Appendix we show the actual encoding of the nondeterministic variant of the example presented in Section 3. 
The encoding is provided in the language SMV, which is a standard input language for some state-of-the art model checkers 
(such as NuSMV [20] and SMV [73]) that has been adopted also in the synthesis engines TLV [84], JTLV [83] and NuGaT [17]. 
The use of SMV also allows us to show how to express transitions in a compact way.

An excerpt of the listing is reported in Fig. A.1. The game is organized hierarchically in three modules. The topmost 
module, main (top of figure), encodes the whole game, and is composed of two submodules: environment, of type en-
vironment_module (defined in the bottom right section of the figure), which encodes the behavior of the environment, 
and agent, of type system_module (bottom left), which captures the behavior of the system. The module type defines 
what the module (formal) parameters are, i.e., how the module interacts with other modules, and how it behaves.

Module definitions have several sections. VAR is where local variables are declared. Variables can be either boolean, such 
as last of system_module, or of enumerated type, such as fuel of environment_module, which can assume the 
values full, empty and low. In fact, enumerated types are suitably represented using (arrays of) boolean values, so we can 
consider the game as defined over boolean variables only. In the case of main also the modules representing the players, 
although not being proper variables, are declared in section VAR, using the keyword system. According to the semantics of 
two-player games the state transitions of main are obtained by concatenating an agent transition to an environment’s, 
starting with both players in their initial state, with environment moving first.

When a module, such as agent or environment in main, is instantiated, its formal parameters are bound to variables 
(possibly module instances themselves), which can then be accessed by the instantiated module. For instance, the declara-
tion of environment in main states that environment can access the module instance agent, and in particular all of 
its local variables, i.e., agent.act, agent.last, agent.viol.

The VAR section of system_module contains the declarations of system variables, i.e., the controlled variables. These 
include one enumerated variable act for actions, as well as boolean variables last and viol. In environment_module, 
some enumerated variables (fuel, my_loc, car_loc) are used to concisely capture exclusive propositions. For instance, 
since fuel can be at one level only, the fuel variable can assume values full, low and empty. The boolean variables
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Fig. A.1. Excerpt of SMV encoding for the example of Section 3.

driven and rain keep track, respectively, of whether the researcher has just driven and whether it is raining. The re-
maining variables, pp_state and pp_trans, record the current state of the planning program and the current transition 
requested, respectively. Notice that, for convenience, planning program transitions are named. For instance, tr_1 represents 
the transition from v0 to v1.

In section DEFINE, propositional formulas can be defined. This feature is used only in main, where good is a reserved 
name for the formula representing the propositional part of the goal. The declaration good:= agent.last asserts that 
the winning condition of the game, i.e., the formula ϕgoal , is �♦agent.last (the temporal modalities � and ♦ are im-
plicit).

The remaining sections INIT and TRANS are used to define, respectively, the initial state and the transition relation of a 
module. The former contains a formula stating what the initial values of local variables are. For instance, the INIT section 
of system_module expresses the fact that, initially, act is assigned to start, last is true and viol is false (symbols
&, | and ! stand, respectively, for logical and, or and not). These are arbitrary default values, assigned so as to have only 
a single initial state. Action start, the only action that the system can select in the initial state, will set each variable 
(possibly nondeterministically) to its actual initial value (leaving unconstrained variables free to range over their definition 
domain). The corresponding section of environment_module has an essentially analogous structure.

Section TRANS contains a formula that relates the value of each variable at a state with the values of other variables at 
current or next state. This essentially defines the transition relation for the module as including all those pairs of (current 
and successor) states whose variable assignments satisfy the formula. Keyword next is used to refer to the value of a vari-
able at next state. For instance, the expression next(act)!= start expresses that the value of act at next state cannot 
be start (which is allowed only in the initial state). Typically, TRANS is a complex formula obtained as a conjunction of
case blocks which consist of an ordered list of cases, each defined by a condition followed by a consequence, separated by 
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character ‘:’. The semantics of a case stipulates that if the condition holds, the consequence holds too. Cases are evaluated 
in the order they appear in the block: when a case is encountered whose condition holds, the case block assumes the value 
of the consequence associated with the selected case. For instance, in the first block of the TRANS section of module_en-
vironment, the first case states that after action start is executed (sys.act = start), the fuel level will be full:
next(fuel) = full (lines starting with - are commented). The second case, instead, states that if sys.last holds in 
the current state, the fuel level does not change at next state. The second case, however, is considered only if the condition 
of the first one is not satisfied.

The TRANS sections of system_module and enviroment_module encode the transition relations of the system and 
environment players, respectively, for our example. Such relations are expressed through boolean formulas, in particular as 
conjunctions of case blocks.

Consider the TRANS section of system_module. The first case block captures action preconditions. In details, the first 
line expresses that action refuel can be selected for execution at next step only if, at the same step, it is the case that
env_myloc and car_loc match, i.e., that the researcher and the car are in the same location. The second line, which is 
considered only if the condition of the previous case does not hold, requires that, in order for the researcher to be able drive 
home, the tank of the car must be not empty. In addition to preconditions for regular domain actions, this block includes 
also constraints and preconditions on action wait, which has to be executed whenever last holds, and can be selected 
(when last does not hold) only if none of the preconditions for the other actions is satisfied.

The second block encodes the same constraints on proposition last discussed in previous section, i.e., that last can hold 
only if the current achievement goal is indeed achieved and no violation has occurred. So, e.g., the first line of this block 
encodes that if tr_1 is the current requested transition, last can be true only if the researcher is at the department and 
no violation has been recorded (in variable viol). The last block captures when violations occur and, in particular in the 
last line, that once occurred they are recorded forever.

As to environment_module, the TRANS section contains a first set of case blocks which capture the effects of 
actions. For instance, the first block captures how driving actions affect the fuel level of the car. Notice that the evolution of 
fuel is nondeterministic. For each variable used to encode the domain state there is a distinct case block, each considering 
all of the possible actions. After these, a block for the transition requests is present, which states what the transitions are 
that can be requested for each state that the planning program can be in. For instance, at state v0 only tr_1 or (symbol |) 
can be requested. Notice that if a variable is not constrained by TRANS, its value can freely range over its domain. For 
instance, variable rain can assume any value after the execution of any action. The next block captures the guards on 
program transitions. In particular, it requires that, in order for transition tr_4 to be requested, rain must be false (this 
is the only transition where a guard other than true is present). Observe that the guard is required to be satisfied only 
when the transition request is new, i.e., immediately after an occurrence of last, which marks the realization of the current 
transition. Finally, the last block encodes the evolution of program states when the currently requested transition is realized. 
For example, the second line of this block states that when tr_1 is requested and sys.last holds (meaning that the 
requested transition is realized), the next state will be v1, i.e., the destination state of the transition.

We observe that, in SMV, the use of propositional formulas allows one to refer to sets of states, without having to list 
them explicitly, by considering a formula as representative of those states that satisfy it. In the same way, through the use of 
the next operator one can compactly represent transitions between states. Interestingly, TLV, JTLV and NuGaT, as well as 
many other synthesis engines, take advantage of this symbolic representation [16], typically optimized using ordered binary 
decision diagrams, to efficiently manipulate sets of states and transitions.

Appendix B. Proofs

Proof of Theorem 3 (page 75). First of all, by the definition of G , each game state W encodes:

• the (current) domain state W [s] = {p | p ∈ W ∩ P }, that is, the projection of W on the set of D’s domain propositions 
P (recall that XP = P );

• the (current) planning program state W [v] ∈ W ∩ V , which always exists and is unique due to definition of ρe (recall 
that XV = V );

• the transition W [d] = 〈v, γ , ψ, φ, v ′〉 such that W [v] = v , and v, reqv,v ′
γ :ψ,φ ∈ W , which always exists and is unique due 

to definition of ρe (see E6 and E8);
• the action W [a] ∈ W ∩ A, which always exists and is unique by the definition of ρs (S2).

We will say that W represents domain state W [s], planning program state W [v], transition W [d], and action W [a] (or, 
alternatively, that these are represented in W ).

(If Part) Assume that a strategy f winning for the system exists, and let σ = W0W1 · · · be a play compliant with f . From 
now on, we use si = W i[s], vi = W i[v], di = W i[d], and ai = W i[a], for all i ≥ 0.

We start by making two observations. First, transition relations ρe and ρs guarantee that:

• W1 represents the initial domain state s0 of D (E1) and the initial program state v0 of P (E4), that is, W1[s] = s1 = s0
and W1[v] = v1 = v0;
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• if last /∈ W i and i ≥ 1, then vi, reqvi ,v ′
γ :ψ,φ ∈ W i+1 (i.e., program state and current request remain unchanged; see E10 and 

E11), and si+1 ∈ τ (si, ai) (i.e., the domain state represented in the next game state is one resulting from the execution 
of the action executed; see E3);

• if last ∈ W i and i > 0, then si+1 = si (i.e., selected action ai has no effect; see E2), and there exists reqv ′,v ′′
γ ′ :ψ ′,φ′ ∈ W i+1

such that v ′ is represented in W i+1 (E9), reqvi ,v ′
γ :ψ,φ ∈ W i and si+1 |= γ ′ (i.e., W i+1 represents a new and valid request 

transition from the new program state; see E6, E7, and E9).

Second, because f is a winning strategy and σ is compliant with f , we have that:

• for all i ≥ 0, violated /∈ W i , that is, for reqvi ,v ′
γ :ψ,φ ∈ W i , it is the case that either W i |= ψ or W i |= last (see S5, S6 and S7);

• if last ∈ W i and reqvi ,v ′
γ :ψ,φ ∈ W i , then W i |= φ, that is, when the system “plays” last, the achievement goal of the current 

P-transition requested is achieved (S5);
• last holds infinitely many times along σ , as required by ϕgoal .

Let us prove that P is realizable in D from s0. By Theorem 1, it is enough to prove the existence of a realization by 
showing a PLAN-based simulation R (Definition 3) such that 〈v0, s0〉 ∈ R . To that end, consider the relation R ⊆ V × 2P

defined as:

〈v, s〉 ∈ R

if and only if

there exists an f -compliant play σ = W0W1 · · · such that for some i ≥ 0, it is the case that

last ∈ W i , W i+1[s] = s and W i+1[v] = v .

Informally 〈s, v〉 is in R if there is a winning play where s and v are represented in a state (W i+1) just after a previous 
request has been completed (signaled by last being true in W i ). Observe that because last ∈ W0, this includes the case when 
s and v are initial for D and P , respectively, i.e., W1[s] = s0 and W1[v] = v0. In other words a new request in domain state 
s and agent planning program state v has just been initiated (in game state W i+1).

The fact that 〈v0, s0〉 ∈ R is trivial given that last ∈ W0 and, as observed above, W1[s] = s0 and W1[v] = v0 (this holds 
for any f -compliant play). So, it remains to show that R is a PLAN-based simulation (as defined in Definition 3). To that 
end, let 〈v, s〉 be a pair in R , and consider a transition v 

γ :ψ,φ−−−−→ v ′ in P such that s |= γ . First of all we know that:

† Since 〈v, s〉 ∈ R , there exists an f -compliant play σ = W0W1 · · · W�W�+1 · · · such that W�+1[s] = s and W�+1[v] = v , 
for some � > 0, and last ∈ W� .

†† Given that game G accounts for every transition in the agent planning program (see E6), there is one such play σ such 
that reqv,v ′

γ :ψ,φ ∈ W�+1 (i.e., W�+1[d] = 〈v, γ , ψ, φ, v ′〉).

Next, let us define an HT-plan π for such transition such that π achieves φ while maintaining ψ from state s (first 
constraint in Definition 3), and π preserves R (second constraint in Definition 3). The idea is to define a general (conditional) 
plan that makes the same action selections, at every step, as those done by the winning strategy f . The key is that the 
winning strategy f is indeed encoding a valid HT-plan. More concretely, consider the general plan π such that for any 
history h = s0 a1−→ s1 a2−→ · · · an−→ sn with s0 = s, it is the case that:

• π(s0 a1−→ s1 a2−→ · · · an−→ sn) = an+1, if there exists a play σ̂ = σ |�W 0W 1 · · · W n · · · such that:
– play σ̂ is complaint with strategy f ;
– W 0 = W�+1;
– W i[s] = si and W i[a] = ai+1, for all i ∈ {0, . . . , n}; and
– last /∈ W i for all i ∈ {0, . . . , n − 1}.

• π(s0 a1−→ s1 a2−→ · · · an−→ sn) is left undefined, otherwise.

It is not difficult to see that, because of all four constraints and the fact that strategies are deterministic, all plays σ̂ as 
above will coincide on all game states W 0 to W n , and hence plan π is well-defined.

Let us first prove that π is an HT-plan, that is, that all executions of π are finite. Suppose, on the contrary, that there is 
an infinite execution h = s0 a1−→ s1 a2−→ · · · of π . This means that π(s0 · · · sk) = ak+1, for each k ≥ 0, and because of the way 
π was built, this implies that there has to exist an (infinite) play σ̂ = σ |�W 0W 1 · · · such that each W i corresponds to each 
state si (i.e., W i[s] = si ) and action ai+1 (i.e., W i[a] = ai+1). More importantly, since h is infinite and π is always defined, 
it has to be the case, due to the last constraint in definition of π , that last /∈ W i , for all i ≥ 0—last does not hold true from 
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W 0 onwards. It follows then that σ̂ �|= �♦ last. However, this is a contradiction, since σ̂ is a play compatible with strategy 
f (by how σ was constructed above), and f is a winning strategy for a game whose goal is indeed ϕgoal = �♦ last. Hence, 
the above infinite execution h of π may not exists, all executions of π are finite, and π is an HT-plan.

Next let us show that the two constraints in the PLAN-based simulation Definition 3 are satisfied. To that end, take any 
complete execution h = s0 a1−→ s1 a2−→ · · · sn−1 an−→ sn of HT-plan π . Then:

• Because of the way that π was constructed we can infer that:
– there exists an f -compliant play σ̂ = σ |�W 0W 1 · · · W n−1W n · · · such that, among other things, last /∈ W i and 

W i[a] = ai+1, for all 0 ≤ i ≤ n − 1;
– π(h) is undefined, since h is complete (i.e., h cannot be further extended with π );
– it has to be the case that last ∈ W n . Suppose, on the contrary, that this is not the case and last /∈ W n . Then, take 

any f -compliant play σ̂ ′ = σ |�W 0W 1 · · · W n W ′W ′′ · · · . There has to be at least one such play given that ρ is, by 
construction, serial (i.e., there are no deadends). Since π(h) is undefined, it has to be the case that play σ̂ ′ does 
not satisfy one of the four constraints in the definition of π above. However, σ̂ ′ trivially satisfies the first three 
requirements, so last ∈ W i , for some i ≤ n. We know, due to existence of σ̂ as above, that last /∈ W i , for all 0 ≤ i ≤
n − 1. Then, last ∈ W n .

Now, recall from (††) above, that reqv,v ′
γ :ψ,φ ∈ W 0 = W�+1. Due to (E11) and the fact that last /∈ W i , for all i ≤ n, such 

active request is propagated throughout the whole game play up to W n included. Hence, reqv,v ′
γ :ψ,φ ∈ W n . That, together 

with the fact that last ∈ W n and (S5), implies that:
– W n[s] = sn |= φ and since h stands for any complete execution of π , π achieves φ from state s0 = s.
– W n |= ¬ violated. Due to axiom (S7), we conclude that W 0 |= ¬ violated. This together with constraint (S6), implies 

that W i[s] = si |= ψ , for all i ∈ {0, . . . , n − 1}. Thus, π maintains ψ from state s0 = s.
So, putting it all together, HT-plan π achieves φ while maintaining ψ from state s.

• Consider the play σ̂ = σ |�W 0W 1 · · · W n−1W n W n+1 · · · from above. We already know that the play is complaint with 
strategy f , and that last, reqv,v ′

γ :ψ,φ ∈ W n . Due to axiom (E9), it follows then that W n+1[v] = v ′ .
We also know that W n[s] = sn . Because last ∈ W n , it follows due to axiom (S4) that wait ∈ W n (a no-op action is done 
at game state W n). Because of axiom (E2), W n+1[s] = sn has to hold—the domain remains still. Thus, by how R was 
defined, we conclude that 〈v ′, sn〉 ∈ R , that is, π preserves R from 〈v, s〉 for transition v 

γ :ψ,φ−−−−→ v ′ .

Summarizing, we have just demonstrated that for any transition v 
γ :ψ,φ−−−−→ v in P , the plan π is a conditional plan 

satisfying both requirements of Definition 3. Then, relation R is indeed a PLAN-based simulation and the existence of a 
realization is guaranteed by Theorem 1.

(Only-If Part) Let � : 2P × δ 
→ HTD be a realization of P in D from s0. From �, we shall derive a winning strategy f for 
the system, by induction on the length of environment moves X0 X1 · · · Xn . For the base case, we define f (X0 = XI ) = Y I =
{init, last}.

Assume f is defined for � moves, and let us define the system � + 1’s move as per strategy f . To that end, consider a 
legal sequence of � + 1 environment moves of the form λ = X0 X1 · · · X� X�+1, with � ≥ 0, such that σ = W0W1 · · · W� is a 
finite play compliant with λ and f , that is, W i = (Xi, f (X0 · · · Xi)), for 0 ≤ i ≤ �. Then, we define:

f (X0 · · · X�+1) =
{ {a} if a = π(Xk+1[s] · · · X�+1[s])

{last,wait} if π(Xk+1[s] · · · X�+1[s]) is undefined

where:

– index k ≤ � is the largest index such that last ∈ Wk in σ . That is Wk represents the last state where a transition request 
was fulfilled and a new request has been issued at Xk+1 and is still “active.”

– HT-plan π is defined as π = �(Xk+1[s], Xk+1[d]). Basically, plan π is the plan that was prescribed by realization �
when the transition request Xk+1[d] was issued at state Xk+1[s]. Since Wk is the last step where last holds true, such 
request is still “active.” We prove below that π does exist.

Next, we are to prove that function f is indeed a strategy for G (in doing so, we show that plan π above always exists). 
We do so by induction on the length of λ:

• If � = 0, then λ = X0 X1 (and σ = W0). Thus, k = 0 (recall last ∈ W0 since last ∈ Y I ) and, by axioms E1 and E4, X1[s] = s0

and X1[v] = v0. Moreover, because of axioms E6 and E7, reqv0,v ′
γ :ψ,φ ∈ X1 denotes some legal request transition X1[d] from 

v0 with its guard being true in s0 (i.e., s0 |= γ ). Due to Definition 4, �(X1[s], X1[d]) is defined, that is, �(X1[s], X1[d]) =
π for some HT-plan π that achieves φ while maintaining ψ . We need now to consider two cases:
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– if π(X1[s]) is defined, then Y1 = f (X0 X1) = π(X1[s]) = {a}. Because plan π achieves φ, action a is executable in 
domain state X1[s] and hence axiom S3 is satisfied. Also, since π maintains ψ , X1[s] = s0 |= ψ . This, together with 
the fact that violated /∈ Y I = Y0 and violated /∈ Y1, implies that axioms S6 and S7 are also met by f ’s prescribed move. 
The other constraints on the system are trivially satisfied.

– if π(X1[s]) is undefined, then Y1 = f (X0 X1) = {last, wait}. This is the case when the request is satisfied in s0, without 
performing any (domain) action. Because plan π achieves φ, it is the case that X1[s] = s0 |= φ. This, together with 
the fact that violated /∈ Y1, implies that axiom S5 is satisfied by f ’s move (i.e., wait), which requires the domain to 
remain in s0, so that φ is still satisfied after action execution. Moreover, since last ∈ Y1 and violated /∈ Y1, axioms S6 
and S7 are met as well. Also the remaining constraints on the system can be easily checked to be satisfied.

• Next consider λ = X0 X1 · · · X� X�+1, for some � ≥ 0. By induction hypothesis, f (X0 X1 · · · X�) is defined and is a legal 
system move. This means that there exists k′ < � and a plan π ′ as per definition of f above that was used to define 
f (X0 X1 · · · X�). We consider again two cases:
– if f (X0 X1 · · · X�) = {a}, for some domain action a, then the same request as one step before is still active and we can 

therefore take k = k′ and π = π ′ to define f (X0 X1 · · · X� X�+1). We use an analogous reasoning as that for the base 
case:
∗ if π(Xk+1[s] · · · X�+1[s]) is defined, then Y�+1 = f (X0 · · · X�+1) = π(Xk+1[s] · · · X�+1[s]) = {a}. Because plan π

achieves φ, action a is executable in domain state X�+1[s] and hence axiom S3 is satisfied. Also, since π maintains 
ψ , X�+1[s] |= ψ , which, together with the fact that violated /∈ Y� and violated /∈ Y�+1, implies that axioms S6 and S7 
are also met by f ’s prescribed move. The other constraints on the system are trivially satisfied.

∗ if π(Xk+1[s] · · · X�+1[s]) is undefined, then Y�+1 = f (X0 · · · X�+1) = {last, wait}. This is the case in which the active 
request has just been met at X�+1. Because plan π achieves φ, it is the case that X�+1[s] |= φ. This, together with 
the fact that violated /∈ Y�+1, implies that axiom S5 is satisfied by f ’s move (wait). Moreover, since last ∈ Y�+1 and 
violated /∈ Y�+1, axioms S6 and S7 are met as well. The other constraints on the system are trivially satisfied.

– if f (X0 X1 · · · X�) = {last, wait}, then the latest request issued at game state Wk′+1 has just been fulfilled in the 
previous game state W� = (X�, {last, wait}). We therefore take k = � in order to define f (X0 X1 · · · X�+1). Because 
λ is a legal sequence of environment moves, ρe(W�, X�+1) applies, and hence all axioms of the environment are 
met. This means that move X�+1 encodes the successor state v ′ for the planning program P , the same domain 
state as X� (due to wait action), and a new legal transition request from v ′ (with its guard true at state X�+1). 
Because � is a realization, plan π ′ preserves a PLAN-simulation relation R , for which, in particular, it is the case 
that R(X�+1[v], X�+1[s]). Hence, by Definition 4, �(X�+1[s], X�+1[d]) is defined, yielding an HT-plan π that realizes
transition X�+1[d] (i.e., brings about X�+1[d]’s achievement goal while respecting its maintenance goal). Therefore, 
f (X0 X1 · · · X�+1) is defined and we can apply the same case reasoning as above, depending on whether π prescribes 
a domain action or not (i.e., wait), to show that f respects the rules of the game for the system player and is indeed 
a legal strategy. �

Finally, the fact that f is indeed a winning strategy follows from the fact that it is defined in terms of HT-plans that 
are finite. This means that, eventually, every HT-plan will complete, will be undefined, and f will eventually always play 
proposition last, thus meeting G ’s winning condition.

Proof of Theorem 5 (page 76). For EXPTIME membership we just observe that the general procedure works for this special 
case as well.

For the EXPTIME-hardness, we show a reduction from behavior composition problem for deterministic behaviors which 
is known to be EXPTIME-hard [76].

We define an (agent) behavior as a tuple B = 〈B, A, b0, �〉, where:

• B is the finite set of behavior’s states;
• A is the finite set of behavior’s actions;
• b0 ∈ B is the behavior’s initial state;
• � : B × A 
→ B is the behavior’s partial transition function.

Notice behaviors are deterministic since � is a partial function.
The behavior composition problem can be phrased as follows: check if a target behavior T = 〈T , A, t0, �t〉 can be sim-

ulated [75] by the asynchronous product of the available behavior B1, . . . , Bn with Bi = 〈Bi, A, bi0, �i〉, with i ∈ {1, . . . , n}. 
The problem is known to be EXPTIME-hard in the number n of available behaviors [76].

We reduce to the realization of the planning programs in deterministic domain as follows. First we define the dynamic 
domain D = 〈P , 2P , A, ρ〉 and an initial state S0 as follows:

1. P = (
⋃n

i=1 Pi) ∪{Execa | a ∈ A} ∪{Execreset}, where Pi = {b | b ∈ Bi} is a set of new propositions representing the different 
states of available behavior Bi ; propositions Execa records “behavior action” a has just been executed; and proposition 
Execreset does this for an extra special action reset states whether.
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2. A′ = Ab ∪{reset} where Ab = {ai | a ∈ A, i ∈ {1, . . . , n}}, that is, the domain actions are formed by the behaviors’ actions 
further annotated with the behavior that just did the action, plus the special action reset.

3. ρ ⊆ 2P × A′ × 2P , such that
• 〈S, reset, S ′〉 ∈ ρ iff

– Execreset /∈ S , that is, annotated behavior actions are not enabled and hence the only action enabled is reset;
– S ′ = (S − {Execa | a ∈ A}) ∪ {Execreset}, that is, the only effect of reset is making Execreset true and reset all Execa to 

false;
• 〈S, ai, S ′〉 ∈ ρ with ai ∈ Ab iff

– Execreset ∈ S , that is, the last action executed is reset;
– bi ∈ S and b′

i ∈ S ′ for �i(bi, a) = b′
i , that is, behavior i moves from state bi to state b′

i according to its transition 
function �i ;

– for all j �= i, it is the case that S ∩ B j = S ′ ∩ B j , that is, all other behaviors j �= i remain still;
– Execreset /∈ S ′ , in this way all behavior actions are disabled after the transition in new state S ′; and
– Execa ∈ S ′ , S ′ records the fact that behavior action a has just been performed.

4. S0 = {b10, . . . , bn0}, that is, the initial state of D denotes that all available behavior are in their respective initial states, 
but also that behavior actions are not enabled (only a reset action can be executed initially).

We next build, based on target behavior T = 〈T , A, t0, �t〉, the planning program P for the dynamic domain D above as 
P = 〈P , V , v0, δ〉, where

• P is the set f propositions of the dynamic domain D;
• V = {t0, t1 | t ∈ T }, that is the planning program has as states, the states of T annotated with 0 and 1 (i.e., P doubles 

the states of the target behavior T );
• v0 = t0

0, that is, the same initial state of B0 annotated with 0;
• δ is defined as follows:

– t0 true:Execreset,¬Execreset−−−−−−−−−−−−−−−−→ t1, that is reset actions are used to move from the a state t ∈ T annotated with 0 to 
the same state annotated with 1, with the only effect of enabling “regular actions” by making Execreset true, while 
maintaining that no other action has been executed (guards are not used in the encoding and are simply put to �);

– t1 true:Execa,Execreset−−−−−−−−−−−→ t′0 for �T (t, a) = t′ , that is, we mimic the actions in T but moving from state annotated with 1
to states annotated with 0.

the result of this is that in states annotated with 0 the only transition allowed resets the executability of actions, and 
in the states annotated with 1 action requests according to the target behavior T are made.

The key point is that the only way to satisfy [true : Execreset, ¬Execreset] involves the execution of a single action reset

and to satisfy [true : Execa, Execreset] we must use a single action within {a1, . . . , an}. It is immediate to verify that if the 
planning program P is PLAN-simulated by D iff T is simulated by the asynchronous product of B1, . . . , Bn . Hence from the 
EXPTIME-hardness in [76] we get the EXPTIME-hard lower-bound for our case. �
Proof of Lemma 1 (page 78). Termination is guaranteed because the number of possible open pairs that can be generated by 
the algorithm is finite, at every iteration of the external loop (lines 5–25) an open pair 〈s, v〉 is extracted from Open (line 6), 
and the number of times any open pair is added by steps 15 and 25 to Open is finite. The latter point holds because:

• Step 15 never adds the same pair 〈s, v〉 to Open more than once, because it adds the pair to Open only if the end state 
s of the plan computed by Plan for a realization d incoming to v is not in States(v) (step 14); moreover, when 〈s, v〉 is 
added to Open, States(v) is extended with s (step 16), and, when s is removed from States(v), Tabu(v) is extended with 
s (step 21–22), preventing the generation of any plan achieving s.

• Step 25 adds a pair 〈s, v〉 to Open only if the realization of 〈s, v〉 fails, where 〈s, d〉 ∈ Source(s, v) and d is a program 
transition from v to v , and only if 〈s, v〉 becomes part of the realization frontier using � modified by removing the plan 
that realizes transition d. In the worst case, there exist |V | transitions outgoing from v whose guard holds in s. Since we 
are assuming that the realization of 〈s, v〉 fails, at least one transition outgoing from v cannot be realized from s. When 
the algorithm fails to realize such a transition, step 21 (permanently) adds s to Tabu(v), and hence step 15 cannot add 
this pair again to Open. Therefore, the algorithm can realize transition d from state s at most |S| times (the maximum 
number of different end states of a plan), and 〈s, v〉 is added to Open at most |S| · |V | times.

This guarantees that the condition of the external loop becomes false after a finite number of iterations and so that the 
algorithm terminates. �
Proof of Theorem 6 (page 78). Assume that the function � returned by the algorithm is not a valid realization for the 
input agent planning program P . Then, by Definitions 3 and 4, there exists at least one pair 〈s, v〉 reached when P is 
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Fig. C.1. CPU time for benchmark SM50.

executed according to � and a program transition d = 〈v, 〈γ , ψ, φ〉, v ′〉 with s |= γ such that either (1) �(s, d) = noPlan, 
or (2) �(s, d) = π and π does not maintain ψ or last(π(s)) �|=φ. Case (1) cannot hold because � is returned only if Open is 
empty and all pairs 〈s, v〉 that are reachable according to � are added to Open (steps 13–16), to be then removed from Open
when (1.a) every transition d outgoing from v is either correctly realized by �(s, d) or the guard of d does not hold in s, or 
(1.b) an outgoing transition whose guard holds in s cannot be realized. However, pair 〈s, v〉 cannot be removed from Open
because of (1.a), since we are assuming that �(s, d) = noPlan and s |= γ ; 〈s, v〉 can neither be removed because of (1.b), 
since, when a transition outgoing from v whose guard holds in s cannot be realized from state s, � is set undefined for all 
〈s′′, d′′〉 that are sources of 〈s, v〉 (steps 23–24), while we are assuming that 〈s, v〉 is reached when P is executed according 
to �. Case (2) cannot hold because we are assuming that procedure Plan is sound. �
Proof of Theorem 7 (page 78). Assume that there exists a realization � for P , and let 〈s0, v0〉 be the initial open pair. For 
every transition d = 〈v0, 〈γ , ψ, φ〉, v〉 outgoing from v0 such that s0 |= γ , there exists a plan π such that s′ = last(π(s0)), 
�(s0, d) = π , π maintains ψ , and s′ |=φ. By construction of Tabu(v) in RealizePlanProg (lines 18–21), s′ /∈Tabu(v), since any 
domain state s can be in Tabu(v) only if there exists a transition outgoing from v , with its guard holding in s, that cannot 
be realized from s, which, by Definition 4, cannot be the case for s = s′ . Since the usage of Tabu(v) in subroutine Plan
prevents the generation of any plan reaching an end state s ∈ Tabu(v), s′ /∈ Tabu(v), and Plan can generate a valid plan for 
every solvable planning problem in the input domain (Plan is complete), Plan cannot generate failure when it realizes 
transition d from 〈s0, v0〉 (lines 10–11 of RealizePlanProg). Thereby, in line 18 of RealizePlanProg, π �=failure when 
〈s, v〉 = 〈s0, v0〉, and RealizePlanProg cannot terminate returning failure (line 19). Then, by Lemma 1, RealizePlanProg
terminates returning a realization for P .

Assume that there exists no valid realization for the underlying planning program. By Lemma 1, RealizePlanProg termi-
nates. By Theorem 6, if RealizePlanProg terminated returning a realization it would be valid, but this would contradict the 
assumption that there exists no valid realization. Thereby, RealizePlanProg terminates returning failure. �
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Fig. C.2. Realization size for benchmark SM50.

Proof of Theorem 8 (page 79). (1) Let π be a valid plan for �. A valid plan π ′ for �′ can be obtained by appending to π
action Ignore-pref in A P and, subsequently, a sequence of actions formed by one action in Act-tabu(s) for each TES s. 
The goal φ of � achieved by subplan π of π ′ remains satisfied at the end state of π ′ because actions in A P and AT do not 
delete any proposition in the proposition set P of the domain of �. Action Ignore-pref ∈ A P is executable at the end of 
subplan π , because its precondition normal-mode holds in the initial state of �′ , and it is not deleted by the actions in 
A+ forming π ; Ignore-pref satisfies goal check-pref of �′ , because it is an additive effect of the action, and it is not 
deleted by the actions in AT . Since π is a valid plan, for each TES s, s �= last(π) holds, and hence there exists p ∈ P such that 
either p is false in s and true in last(π), or p is true in s and false in last(π). Therefore, for each conjunct g = not-tabu(s)
of the achievement goal formula φ′ of �′ , there exists an action a in Act-tabu(s) that is executable after the execution 
of Ignore-pref in last(π) and achieves g because (i) precondition end-mode of a is added by Ignore-pref and it 
is deleted by no action in AT , and (ii) by construction of AT , the other precondition of a holds in last(π) and no other 
action in AT can delete such a precondition. Moreover, plan π ′ maintains the maintenance goal ψ of � and �′ , because 
π maintains ψ and no action in A P ∪ AT can make it false. It follows that there exists a valid plan solving the translated 
problem �′ that is formed by π followed by an action in A P (Ignore-pref) and a sequence of actions in AT .

(2) Since π ′ is a valid plan for �′ , φ′ |= φ and the actions in A P and AT do not add propositions of P , the subplan π
of π ′ formed by the actions in A+ satisfies the achievement goal of �, as well as the maintenance goal of �. Moreover, 
since π ′ is valid, for each TES s, plan π ′ contains at least one action a ∈ Act-tabu(s) achieving conjunct not-tabu(s)
of goal formula φ′ . By construction of AT and Act-tabu(s), since all actions in π ′ are executable and the actions in A P

and AT do not add/delete propositions of P , last(π) must be different from any TES of �. Hence, by removing precondition 
normal-mode from the actions in π ′ , we obtain a plan solving �. �
Proof of Theorem 9 (page 80). (1) Let π be a valid plan for � ending in a PES of �. A valid plan π ′ for problem �′ such 
that c(π ′) = 0 can be obtained by appending to π action Sat-pref(s) and, subsequently, a sequence of actions formed by 
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Fig. C.3. CPU time for benchmark S5−100.

one action in Act-tabu(s) for each TES s. Action Sat-pref(s) preserves the maintenance goal of �′ and is executable 
at the end of subplan π , because Sat-pref(s) has no effect in the proposition set of the domain of �, precondition 
normal-mode of Sat-pref(s) holds in the initial state of �′ and is not deleted by the actions in A+ forming π , and, 
since s is a PES of �, by construction of Sat-pref(s), the other preconditions of Sat-pref(s) hold in last(π). Moreover, 
Sat-pref(s) satisfies conjunct check-pref of the achievement goal formula φ′ of �′ , because it is an additive effect of 
the action, and it is not deleted by the actions in AT . For each conjunct g = not-tabu(s) of φ′ , there exists an action 
a ∈ Act-tabu(s) that achieves g and is executable after the execution of Sat-pref(s) in last(π), because (i) precondition 
end-mode of a is added by Sat-pref(s) and is deleted by no action in AT , and (ii) by construction of AT , the other 
precondition of a holds in last(π) and no other action in AT can delete such a precondition. Moreover, every action in 
Act-tabu(s) preserves the maintenance goal of � and �′ . Therefore, plan π ′ is valid, and, since the cost of every action 
of π ′ is zero, c(π ′) = 0.

(2) By Theorem 8, the subplan π obtained from π ′ by removing the actions in A P and AT and precondition 
normal-mode is valid for �. Since c(π ′) = 0 and π ′ is valid, π ′ contains an action Sat-pref(s) achieving the goal 
conjunct check-pref of φ′ , for some PES s of �. By construction of action set A+ and action Sat-pref(s), Sat-pref(s)
can be executed only as the first action after the end of subplan π . Moreover, by construction of Sat-pref(s) and since 
π ′ is valid, subplan π must end in a PES of �. �
Appendix C. Additional experimental results

Figs. C.1 and C.2 show the CPU time and the program realization size of RealizePlanProg using LPG, LAMA and Hplan-P
with PESs for planning programs with domain Logistics and Pipesworld and δ equal to 1C[50], MC[26], RS[14] and
CG[8] (s.t. |δ| is about 50). The x-axis of the graphs in these appendixes refers to the program number (higher program 
numbers correspond to programs with domains that have larger sizes). Figs. C.3 and C.4 show the CPU time and the program 
realization size for planning programs with instances of domain Elevators based on 9 objects, instances of domain 
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Fig. C.4. Realization size for benchmark S5−100.

Storage based on 25 objects, and δ equal to 1C[5-100], MC[4-51], RS[3-23] and CG[3-11] (s.t. |δ| ranges from about 5 
to 100). The x-axis of the graphs in these latter appendixes refers the number of program states. The fact that Hplan-P does 
not appear in a graph means that it realizes no planning program among those evaluated in the graph.
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