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Abstract. We investigate agents that have incomplete information and make decisions

based on their beliefs expressed as situation calculus bounded action theories. Such the-

ories have an infinite object domain, but the number of objects that belong to fluents at

each time point is bounded by a given constant. Recently, it has been shown that verify-

ing temporal properties over such theories is decidable. We take a first-person view and

use the theory to capture what the agent believes about the domain of interest and the

actions affecting it. In this paper, we study verification of temporal properties over online

executions. These are executions resulting from agents performing only actions that are

feasible according to their beliefs. To do so, we first examine progression, which captures

belief state update resulting from actions in the situation calculus. We show that, for

bounded action theories, progression, and hence belief states, can always be represented

as a bounded first-order logic theory. Then, based on this result, we prove decidability of

temporal verification over online executions for bounded action theories.

Keywords: Reasoning about actions, Situation calculus, Progression, Online execution,

Verification of agent behaviors, Mu-Calculus.

1. Introduction

In this paper, we develop a computationally-grounded framework to model
and verify agents that operate in infinite domains, have incomplete informa-
tion and make decisions based on their beliefs, expressed as situation calculus
bounded action theories [11]. The situation calculus [33,36] is a first-order
logical framework for reasoning about action, where several issues have been
addressed, such as the frame problem, time, continuous change, complex ac-
tions and processes, uncertainty, and many others. It is also the basis of the
Golog family of agent programming languages [10,27] and has been used to
develop rich theories of agent mental states and actions [44].
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We use situation calculus action theories to express the mental model of
an agent that can deliberate and act in the world. We take a first-person view
and use the theory to capture what the agent believes about the domain of
interest and the actions affecting it. In other words, the agent represents its
beliefs1 about the world as a situation calculus theory and uses it to reason
and deliberate about what to do. Once the agent has chosen an action it
executes it in the real world, and follows such an execution in its mental
model constituted by the theory.

Essentially the agent works in a sort of infinite loop in which, at each it-
eration, the agent (i) understands which actions are known to be executable
in the current state through reasoning, exploiting the (incomplete) informa-
tion formalized in the situation calculus theory, (ii) choses one among them
(using any suitable deliberation mechanism which we do not model here),
and (iii) executes it, advancing to the resulting state.2 This agent execution
regime is known in the literature as online execution [10,16] and contrasts
with so called offline execution, in which the agent reasons about possible
action executions but does not perform any actions in the real world.

The main goal of this paper is to analyze the agent’s online execution
capabilities through verification of temporal properties expressed in a first-
order variant of the μ-calculus. For instance, we can easily express that
there exists a sequence of actions known to be executable that reaches a
state where a goal is true, even if the agent has incomplete information
about the world (as represented by the action theory), and hence we can
check if a conformant plan [5] exists through verification.

Specifically, we adopt bounded action theories [11], a particular class of
action theories, for which it was shown that verification (over offline execu-
tions) of a very expressive class of first-order μ-calculus temporal properties
is decidable. Bounded action theories are basic action theories [36], which
entail that in all situations the number of object tuples in the extension of
each fluent is bounded by a constant. In such theories, the object domain
remains nonetheless infinite, as is the domain of situations. Boundedness
can often be safely assumed, since in reality facts don’t persist indefinitely
as everything decays and changes. Moreover, agents often forget facts either
because they are not used or because they cannot be reconfirmed. Many ex-
amples of domains modeled as bounded action theories are reported in [11],

1We assume that the agent’s beliefs are always true and use belief and knowledge
interchangeably.

2In this paper we do not consider sensing, but if we did the sensing results obtained
by the execution of the action would be incorporated into the theory; see [16] for details.
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which also identifies various ways to obtain boundedness: (i) by strength-
ening preconditions to block actions where the bound would be exceeded;
(ii) by ensuring that actions are effect bounded and never make more fluent
atoms true than they make false; and (iii) by using fading fluents whose
strength fades over time unless they are reconfirmed.

Towards the goal of devising decidable techniques for verifying properties
of online execution in the case of bounded situation calculus action theories,
first we examine progression [29] for such kind of theories. By progressing
the initial situation description over an action we obtain a new situation
description representing all that is known about the situation after the action
is performed. More specifically, the fragment of the original theory that talks
about the initial situation can be considered the initial belief state, and
similarly the result of progressing such fragment as the result of executing
an action can be considered the belief state after the action, and so on.3 In
this sense progression can be thought of as capturing belief state update that
results from actions in the situation calculus. Unfortunately, in the general
case, progression (and hence such belief states) can only be expressed in
second-order logic [29,50]. Here, we show that for bounded action theories,
progression, and belief states, can always be represented in first-order logic,
and discuss how a first-order progression can be constructed.

Often, belief states are a priori thought of as some sort of first-order the-
ory about the current world state whose models are the possible alternative
world states that the agent thinks it may be in [39,40]. However, in the
situation calculus, first-order belief states are not complete in general unless
one additionally keeps a description of the past situations; to represent up-
dated belief states without keeping such past information, second-order logic
is needed [29,50]. When progression is first-order representable, such first-
order belief states are indeed “complete” and no further information (apart
from the specification of actions) is needed. Hence for bounded theories, by
iterating progression steps we obtain a “computationally grounded” model
of agents [52], in the sense that such a model captures how the belief states
of agents are generated and updated from the action theory, which describes
what is true (according to the agent) and how this evolves as actions are
performed.

With this result on progression in place, we investigate the verification of
online executions of agents. We show that for a very rich class of temporal

3Notice that such a belief state will be complemented by the part of the theory that
talks about executability and effects of actions, which remains unchanged through the
progression.
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properties expressed in a first-order variant of the μ-calculus verification
of online executions is decidable. This result complements the one in [11],
which showed decidability of verification for offline executions.

The rest of this paper is organized as follows. In Sect. 2, we briefly review
the situation calculus and the notion of online execution. Then in Sect. 3,
we recall the definition of progression. In Sect. 4, we go over the notion of
bounded action theory from [11] and give some examples. In Sect. 5, we show
our first major result, i.e., that the progression of a bounded action theory
can always be represented in first-order logic. Following that in Sect. 6, we
introduce a language for expressing temporal properties of online executions
(a first-order variant of the μ-calculus), and then show our main result, i.e.,
that verification of such properties over bounded action theories is decidable.
Finally in Sect. 7, we discuss related work, while in Sect. 8, we summarize
our contributions and discuss future work.

2. The Situation Calculus and Online Executions

The situation calculus [33,36] is a sorted predicate logic language for rep-
resenting and reasoning about dynamically changing worlds. All changes to
the world are the result of actions, which are terms in the language. We de-
note action variables by lower case letters a, action types by capital letters
A, and action terms by α, possibly with subscripts. A possible world history
is represented by a term called a situation. The constant S0 is used to denote
the initial situation where no actions have yet been performed. Sequences
of actions are built using the function symbol do, where do(a, s) denotes the
successor situation resulting from performing action a in situation s. Besides
actions and situations, there is also the sort of objects for all other entities.
Predicates and functions whose value varies from situation to situation are
called fluents, and are denoted by symbols taking a situation term as their
last argument (e.g., Holding(x, s)). For simplicity, and without loss of gen-
erality, we assume that there are no functions other than constants (and do)
and no non-fluent predicates. We denote fluents by F and the finite set of
primitive fluents by F . The arguments of fluents (apart from the last argu-
ment which is of sort situation) are assumed to be of sort object. A special
predicate Poss(a, s) is used to state that action a is executable in situation
s. The abbreviation Executable(s) means that every action performed in
reaching situation s was possible in the situation in which it occurred.

Within the language, one can formulate action theories that describe how
the world changes as the result of the available actions. Here, we concen-
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trate on basic action theories (BATs) as proposed in [35,36]. We also assume
that there is a finite number of action types A. Moreover, we assume that
the terms of object sort are in fact a countably infinite set N of standard
names for which we have the unique name assumption and domain closure.
As a result a basic action theory D is the union of the following disjoint
sets: the foundational, domain independent, (second-order, or SO) axioms
of the situation calculus (Σ); (first-order, or FO) action precondition ax-
ioms stating when actions can be legally performed and characterizing Poss
(Dap); (FO) successor state axioms describing how fluents change between
situations (Dss); (FO) unique name axioms for actions and (FO) domain
closure axioms on action types (Duna); (SO) unique name and domain clo-
sure axioms for object constants (Dcoa); and (FO) axioms describing the
initial configuration of the world (D0), which we assume finite.4 Note that
successor state axioms encode the causal laws of the domain; they take the
place of the so-called effect axioms and provide a solution to the frame
problem.

We say that a formula φ(s) is uniform in a situation term s if s is the
only situation term it contains, and we will use the term situation-suppressed
to refer to the formula such that the situation argument in fluents is omit-
ted (see [36] for a formal definition). Following standard terminology, sen-
tences are closed formulas of the language with no free variables of any
sort.

A basic action theory represents the conditions under which actions are
executable, how the world state changes as a result of the actions that are
possible, and what information the modeler has about the initial state. Typ-
ically such theories are used to support reasoning on “offline executions”,
where the agent “thinks” about the executability of action sequences and
what conditions would hold in the resulting state, without actually exe-
cuting any action in the real world. In this way, the agent can understand
the consequences of acting before actually performing any action. Situa-
tion calculus action theories can also be used to support reasoning on “on-
line executions” [10,16], where the agent reasons on the theory to under-
stand which actions are possible and what they bring about, so as to se-
lect in an informed way one of them and actually perform it in the real
world. We can think of an agent operating online as executing the following

4This assumption is in line with that of [29] and, as it will be clearer later on, enables
the existence of a finite progression.
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procedure using its basic action theory D and starting in the initial situation
Snow

5:

Snow := S0;
while (true) do {

A := { ground action α | D |= Poss(α, Snow) };
choose α ∈ A;
execute α;
Snow := do(α, Snow)

}
In other words, at each iteration the agent selects one action among those

that it knows/believes to be executable and executes it, and so on.
The following simple example illustrates the difference between online

and offline executions.

Example 1. Consider a domain in which actions α and β are available, and
are executable under the following precondition axioms:

Poss(α, s) ≡ P (s), Poss(β, s) ≡ ¬P (s).

Further let us assume that the following successor state axiom holds for
fluent F

F (do(a, s)) ≡ (a = α ∨ a = β) ∨ F (s)

and that the initial situation description is empty, and hence we do not know
whether P or ¬P holds initially. Then by reasoning on offline executions we
can infer that

D |= ∃a.Poss(a, S0) ∧ F (do(a, S0)).

However, there are no online executions leading to F . Indeed the agent
cannot infer P and thus doesn’t know whether α is in fact executable and
similarly it cannot infer ¬P and thus doesn’t know whether β is executable.
So it cannot select α nor β. In other words, while some executable action
exists, the agent does not know exactly which one can be executed, i.e., no
action is epistemically feasible for the agent [38].

5Reasoning on “online executions” also allow us to incorporate the results of sensing
coming from the real world as we execute actions in the action theory [10,16,38]. In this
paper we do not consider sensing, however.
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In this paper we are interested in verification of temporal properties over
online executions. In particular, the procedure above if executed for all pos-
sible action choices generates a sort of infinite tree representing all possible
ways to execute actions online. We are interested in verifying temporal prop-
erties over such a tree.

Next we present a basic action theory that will be our running example.

Example 2. Consider a factory where items are moved by robots between
available working stations, may be painted when located at a particular
station, and shipped out of the factory when placed at the shipping dock.
Items may be heavy or fragile, in which case a different type of robot is
required for moving them. We introduce the following action theory where
fluents and actions have the intuitive meaning.6

Action Precondition Axioms:

• Poss(move(r, x, l), s) ≡ IsRobot(r) ∧ IsLoc(l)

• Poss(ship, s) ≡ ∃x At(x, ShipDock, s)

• Poss(paint(x), s) ≡ At(x, PaintStn, s)

Successor State Axioms:

• At(x, l, do(a, s)) ≡ γ+(x, l, a, s) ∨ ¬γ−(x, l, a, s) ∧ At(x, l, s), where:

γ+(x, l, a, s) ≡ ∃r.a = move(r, x, l) ∧ ∃zAt(x, z, s) ∧
¬∃yAt(y, l, s) ∧ (Heavy(x) ⊃ HandlesHeavy(r)) ∧
(Fragile(x) ⊃ HandlesFragile(r)), and

γ−(x, l, a, s) ≡ a = ship ∧ At(x, ShipDoc, s) ∨
∃r∃l′.a = move(r, x, l′) ∧ l �= l′ ∧
¬∃yAt(y, l′, s) ∧ (Heavy(x) ⊃ HandlesHeavy(r)) ∧
(Fragile(x) ⊃ HandlesFragile(r));

• Painted(x, do(a, s)) ≡ a = paint(x) ∨ Painted(x, s) ∧ ¬Shipped(x, s);

• Shipped(x, do(a, s)) ≡ a = ship(x);

Initial State Axioms:

• IsRobot(r) ≡ r = R1 ∨ r = R2;

6We omit leading universal quantifiers for readability. Also, for simplicity, we use non-
fluent predicates, e.g., IsLoc. To conform to the assumptions of the previous section, such
predicates can be modeled by fluents whose successor state axioms preserve their truth
value in all situations.
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• HandlesHeavy(r) ≡ r = R1;

• HandlesFragile(r) ≡ r = R2;

• IsLoc(l) ≡ l = Hold1 ∨ l = Hold2 ∨ l = Hold3 ∨
l = PaintStn ∨ l = ShipDock;

• At(x, l, S0) ≡ (x = I1 ∧ l = Hold1) ∨ (x = I2 ∧ l = Hold2) ∨
(x = I3 ∧ l = Hold3);

• ∀x¬Painted(x, S0) ∧ ∀x¬Shipped(x, S0);

• (Heavy(x) ≡ x = I1) ∧ (Fragile(y) ≡ (y = I2 ∨ y = I3)) ∨
(Heavy(x) ≡ (x = I1 ∨ x = I3)) ∧ (Fragile(y) ≡ y = I2).

The successor state axiom for At says that item x is at location l after ac-
tion a is performed in situation s if and only if either a involved robot r
moving x to l and nothing was at l in s, and if x is either heavy or fragile
then r handles this, or x was already at l in s, and a was not to ship it
when it was at the shipping dock in s, nor was it for a robot r to move
it to a different location l′ where r can handle x. Note that each station
may hold at most one item at any given time. Also, Shipped(x, s) holds if
item x has been shipped in the last performed action, while Painted(x, s)
keeps track of items that have been painted until Shipped(x, s) becomes true.
With regards to item I3, there is incomplete information about its proper-
ties as heavy or fragile. Thus a conformant plan needs to be obtained for
processing it.

3. Progression and Belief States

The progression of a basic action theory is the problem of updating the
initial description of the world in D0 so that it reflects the current state of
the world after some actions have been performed. In other words, a one-step
progression of D with respect to a ground action α is obtained by replacing
the initial knowledge base D0 in D by a suitable set Dα of sentences so that
the original theory D and the theory (D − D0) ∪ Dα are equivalent with
respect to how they describe the situation do(α, S0) and the situations in
the possible futures of do(α, S0).

In a seminal paper, Lin and Reiter [29] gave a definition for the progres-
sion Dα of D0 with respect to α and D as follows. Denote by Sα the situation
term do(α, S0) and let M and M ′ be structures with the same domains for
sorts action and object. We write M ∼Sα

M ′ if: (i) M and M ′ have the same
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interpretation of all situation-independent predicate and function symbols;7

and (ii) M and M ′ agree on all fluents at Sα, that is, for every relational
fluent F , and every variable assignment μ, M,μ |= F (�x, Sα) if and only if
M ′, μ |= F (�x, Sα). Then, for Dα a set of (possibly second-order) sentences
uniform in Sα, we say that Dα is a progression of D0 with respect to α and
D if for any structure M , M is a model of Dα if and only if there is a model
M ′ of D such that M ∼Sα

M ′.
This definition requires for the two theories D and (D − D0) ∪ Dα that

any model of one is indistinguishable from some model of the other with
respect to how they interpret the situations in Sα and the future of Sα. One
technical detail is that according to this definition, some of the situation-
independent properties of D are incorporated into the updated version of
the initial knowledge base Dα. In particular Duna ∪ Dcoa (which is already
present in D−D0) needs to be in Dα in order to comply with the definition.
We will see later how we can focus on the part of Dα that does not include
Duna ∪ Dcoa, in particular when this is finite and can be constructed by
operating on D0.8

Now, observe that we can take progression as a way of characterizing the
belief state of an agent in a particular situation, i.e., what the agent believes
about the current situation and what may happen in the future. In the
context of the situation calculus, the various models of a basic action theory
can be seen as characterizing the possible actual states where an agent may
be in, while the notion of belief state may be captured by everything that is
entailed by the theory in a particular situation.9 The progressed knowledge
base Dα is a sentence that essentially represents this.

It has been shown that in the very general case, progression, hence this
form of belief states, can only be captured in second-order logic [29,50].
Nonetheless there are cases, such as the so-called relatively complete theories
[29], for which a first-order progression can always be obtained (an analysis
of all the known classes to date can be found in [51]). Next, we proceed to
show that for bounded action theories it is also the case that a first-order
progression can always be constructed.

7In our case we do not have situation-independent predicates and the only functions
we consider are constants.

8A discussion on the need for Duna in Dα and a slightly more involved definition that
separates Duna from the progression can be found in [50, Definition 6, Appendix A].

9In fact, accounts in epistemic variants of the situation calculus have also been studied
[25,42], but here we appeal to an interpretation directly based on entailment.
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4. Bounded Action Theories

Let b be some natural number. We can use the notation |{�x | φ(�x)}| ≥ b to
stand for the FO formula:

∃�x1, . . . , �xb.φ(�x1) ∧ · · · ∧ φ(�xb) ∧
∧

i,j∈{1,...,b},i �=j

�xi �= �xj .

We can also define (|{�x | φ(�x)}| < b) .= ¬(|{�x | φ(�x)}| ≥ b). Using this, De
Giacomo et al. [11] defines the notion of a fluent F (�x, s) in situation s being
bounded by a natural number b as BoundedF,b(s)

.= |{�x | F (�x, s)}| < b and
the notion of situation s being bounded by b:

Boundedb(s)
.=

∧

F∈F
BoundedF,b(s).

An action theory D then is bounded by b if it entails that: ∀s.Executable(s)
⊃ Boundedb(s). De Giacomo et al. [11] shows that for bounded action the-
ories, verification of sophisticated temporal properties is decidable. It also
identifies interesting classes of such theories.

Example 2 (continued). It is not difficult to show that the basic action
theory we introduced in Example 2 is in fact bounded by 5. First note that
there are 5 locations initially and as IsLoc is a non-fluent predicate this
always remains true (and similarly for the other non-fluent predicates). For
the fluent At, initially it is bounded by 3 and the action theory maintains this
bound since moving an item replaces one atom of At by another, shipping
removes one, and painting has no effect on At. Note that we do not model
the arrival of new items (we will do this in the next example), however since
there can be at most one item in each location, even in this case At would
remain bounded by 5. For the fluent Shipped, it is bounded by 1 as initially
it is an empty relation and the theory ensures that the ship action leaves
at most one atom true at each situation, namely the item that was just
shipped. Finally, for the fluent Painted it is bounded by 3 as no new items
can arrive and only those present in the factory can be painted.

The case of item I3 is interesting as it illustrates how incomplete knowl-
edge affects planning. The above action theory entails that a plan exists
such that I3 is eventually shipped. In this conformant plan, both robots will
attempt to move item I3 to the shipping dock in sequence with exactly one
of them successfully moving it (depending on whether it is fragile or heavy),
and then it will be shipped.

On the other hand, for either robot r the theory does not entail that r
can successfully move I3 to the shipping dock: if I3 is heavy, only R1 can
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move it, while if it is fragile only R2 can move it. As a result, the plan of
robot R1 moving I3 to the shipping dock and then shipping it is not feasible
because the agent in control does not know that I3 will be at the shipping
dock after R1 tries to move it, and as a result the ship action will not be
known to be executable (and similarly for a plan that only involves R2).

Finally, the theory entails that there exists a plan such that eventually
all objects are painted and shipped. We discuss how such statements can be
specified and verified in the remainder.

In the above example, it is straightforward to satisfy the boundedness
assumption as the domain of objects that may be affected in any future
situation is in fact limited to the objects mentioned in the description of the
initial state. Nonetheless, we can easily extend it to the case where arbitrary
items may be introduced through an arrive action that brings new objects
to the factory.

Example 3. We adapt the theory of Example 2 so that it also includes
action arrive(x), where item x is placed in the shipping dock provided that
the dock is free and the item is not already in the factory. This can be seen
as an exogenous action that is invoked periodically when new items arrive
and need to be processed.

The new theory is the same as before except that the following action
precondition axiom is added

Poss(arrive(x), s) ≡ ¬∃yAt(y,ShipDock) ∧ ¬∃lAt(x, l, s),

and γ+(x, l, a, s) in the successor state axiom for At(x, l, s) is replaced by
the following formula:

a = arrive(x) ∧ l = ShipDock
∨ ∃r.a = move(r, x, l) ∧ ∃zAt(x, z, s) ∧ ¬∃yAt(y, l, s)
∧ (Heavy(x) ⊃ HandlesHeavy(r))
∧ (Fragile(x) ⊃ HandlesFragile(r)).

First, note that as there are infinitely many constants, which are stan-
dard names, effectively an unbounded number of items may be handled by
subsequent arrive, move, and ship actions. Observe though that since there
are only a fixed number of stations in the factory, in any given situation
the number of items present in the factory remains bounded, in fact by the
same number as before. We can reason about this in a similar way as in the
previous example.

As before, At is initially bounded by 3 but now the action theory ensures
that it remains bounded by 5. This is because new items may arrive at
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the shipping dock only when the shipping dock is empty. As moving an
item replaces one atom of At by another, and shipping an item removes
one atom, there can be at most 5 items in the factory, one in each of the 5
available stations. Consequently, Painted is also bounded by 5 as only those
items present in the factory can be painted, and Shipped is bounded by 1 as
before.

In the previous examples, all individuals that may appear in the exten-
sions of fluents are “standard names” mentioned in the description of the
initial knowledge base or in the arguments of subsequent actions. Nonethe-
less, this is not necessary for boundedness. In the following example we
adapt the theory to state that initially there is an item at station Hold3
whose identity is not known, and which is either fragile or heavy.

Example 4. Consider again Example 2 and assume that the identity of
the object at station Hold3 is unknown. The new theory is the same as
before except for the initial state axioms for At, Heavy, and Fragile, now
combined into the following:

∃i. ¬IsLoc(i) ∧ ¬IsRobot(i) ∧ i �= I1 ∧ i �= I2 ∧
∀x{At(x, l, S0) ≡ (x = I1 ∧ l = Hold1) ∨ (x = I2 ∧ l = Hold2)

∨ (x = i ∧ l = Hold3)} ∧
∀x∀y{(Heavy(x) ≡ x = I1) ∧ (Fragile(y) ≡ (y = I2 ∨ y = i))

∨ (Heavy(x) ≡ (x = I1 ∨ x = i)) ∧ (Fragile(y) ≡ y = I2).}
This shows that the boundedness condition does not require the identity

of the individuals involved in the relations to be known. This allows for
representing rich scenarios where initially it is only specified that a bounded
number of objects will be in the extension of some property, and where the
identity of these objects may be discovered later. For example, in a university
admissions scenario we may know that at most ten new doctoral students
will be admitted, and later on learn who these new students are.

5. Progressing Bounded Theories

We start by showing general results about progression. First we show that
we can remove Duna ∪ Dcoa from D when finding a progression for D0, and
then add them back to get a correct progression with respect to the original
theory.



Progression and Verification of SitCalc Agents with Bounded Beliefs

Lemma 1. Let D∗ be D − (Duna ∪ Dcoa). If D∗
α is a progression of D0 with

respect to α and D∗, then D∗
α ∪Duna∪Dcoa is a progression of D with respect

to α and D.

Proof. Assume that the “if” part of the lemma holds, i.e., that D∗
α is a

progression of D0 with respect to α and D∗. We will show that the “then”
part of the lemma holds by considering the definition of progression for
D∗

α ∪ Duna ∪ Dcoa and showing that for any structure M , M is a model of
D∗

α∪Duna∪Dcoa if and only if there is a model M ′ of D such that M ∼Sα
M ′.

(⇐): Let M be an arbitrary model, and an M ′ such that M ′ |= D and
M ∼Sα

M ′. Since Duna ∪ Dcoa is in D and mentions only equality atoms
between terms of sort object and action, it follows by M ∼Sα

M ′ that also
M |= Duna ∪Dcoa. Now, since D∗ ⊂ D, it follows that M ′ |= D∗. Along with
M ∼Sα

M ′, by the hypothesis it follows that M |= D∗
α. The other direction

is similar.

As we are interested in a knowledge base that remains finite as we
progress, this lemma allows us to focus on the part of Dα that can be main-
tained to be finite (note that Duna∪Dcoa is infinite because Dcoa is infinite),
and then reason with Dα under the assumption of uniqueness of names for
actions and objects. In particular, Lemma 1 allows us to look into “compos-
ing” a progression from various parts of D0 that are progressed separately
as shown in the next result:

Lemma 2. Let D be a basic action theory and D∗ be D − (Duna ∪ Dcoa). Let
Prog∗

D,α(φ) denote any progression of {φ} with respect to α and (D∗ −D0)∪
{φ}.10 The following holds:

Prog∗
D,α

(
∨

i

ϕi

)
≡

∨

i

Prog∗
D,α(ϕi),

where ϕi are (possibly second-order) sentences uniform in S0.

Proof. (⇐): Suppose not. Then there exists a model M such that, for
some k, M |= Prog∗

D,α(ϕk) but M �|= Prog∗
D,α(

∨
i ϕi). By the definition

of progression, since M �|= Prog∗
D,α(

∨
i ϕi), there exists no M ′ such that

M ′ |= (D∗−D0)∪{∨
i ϕi} and M ∼Sα

M ′. Also by the same definition, since
M |= Prog∗

D,α(ϕk), there exists an M ′′ such that M ′′ |= (D∗ − D0) ∪ {ϕk}
and M ∼Sα

M ′′, which, in turn, implies that there exists an M ′′ such that

10A second-order specification of Prog∗
D,α(φ) is always guaranteed to exist by results

in [29].
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M ′′ |= (D∗ − D0) ∪ {∨
i ϕi} and M ∼Sα

M ′′, hence we get a contradiction.
The other direction is similar.

Lemma 2 says that one can obtain a progression of a disjunctive D0

by progressing separately all of its disjuncts with respect to D∗, and then
adding the (infinite) set Duna ∪ Dcoa by means of Lemma 1.

Theorem 1. Let D be a basic action theory with D0 of the form
∨

i ϕi, where
ϕi are (possibly second-order) sentences uniform in S0, α be a ground action,
and D∗, Prog∗

D,α(φ) as in Lemma 2. Then the following is a progression of
D0 with respect to α and D:

∨
i Prog∗

D,α(ϕi) ∪ Duna ∪ Dcoa.

Now we turn to bounded action theories. Firstly, we show that the initial
situation description D0 of a bounded action theory D can be replaced by
an equivalent disjunctive sentence uniform in S0. To this end, consider a
partition M0 = {M1

0,M2
0, . . .} of the models of D, such that each cell Mi

0

contains all models that agree, up to object renaming, on the intepretation
of fluents at S0 and of all constants. In other words, models in the same cell
have isomorphic interpretations of constants and of fluents at S0.

Proposition 1. For a bounded action theory, M0 is finite.

Proof. By the boundedness of D and the finiteness of D0 it follows that
there exist, up to object renaming, only finitely many distinct interpretations
of constants and fluents at S0. Since, for each of such interpretations, M0

contains at most one cell, it is necessarily finite.

For bounded action theories, the interpretation of fluents at S0 can be
captured (up to object renaming) by a characteristic sentence, i.e., a sen-
tence of the form:

∃w1, . . . , wk.AllDist(w1, . . . , wk) ∧
n∧

i=1

∀�xi.(Fi(�xi, S0) ≡ φi(�xi, w1, . . . , wk)),

where: AllDist(w1, . . . , wk) is a formula of inequalities stating that w1, . . . , wk

have distinct values, also distinct from any constant in D0; and φi(�xi, w1,
. . . , wk) is a formula of the form

∨
(�xi ◦�t), with ◦ ∈ {=, �=} and �t containing

only variables wi and constants from D0,11 that represents, up to object re-
naming, the extension of the set of fluents {F1 . . . Fn} in the language at S0,
and the interpretation of constants occurring in such extensions. We observe
that k is not the bound b. Indeed, b is a bound on the (maximum) number

11Note that each of the disjuncts �xi ◦�t, e.g., �xi = �t is in fact a conjunction of the form
x1

i = t1 ∧ · · · ∧ xm
i = tm, as �xi and �t are vectors of variables and terms.
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of tuples contained in the extension of the fluents, while k is a bound on the
number of distinct elements that can occur in such extensions. Naturally,
k can be derived from b, through the (maximum) arity of fluents, and vice
versa. Note that characteristic sentences are FO and uniform in S0, and that
the sets of models of non-equivalent characteristic sentences are disjoint.

Example 5. The characteristic sentence:
∃w1, w2.(w1 �= w2 ∧ w1 �= c ∧ w2 �= c) ∧ ∀x1, x2.

F (x1, x2, S0) ≡ ((x1 = w1 ∧ x2 = w2) ∨ (x1 = c ∧ x2 = w1))

captures the models that agree, up to object renaming, on the interpretation
of c and F at S0. In particular, the sentence captures all models such that,
for any three distinct objects o, o1 and o2, c is interpreted as o and the
extension of F at S0 contains exactly two pairs 〈o1, o2〉 and 〈o, o1〉.

It can be checked that any two models of D are isomorphic at S0 if and
only if they satisfy equivalent characteristic sentences. Thus, each cell of
Mi

0 can be associated to a characteristic sentence Φi that fixes the fluent
interpretations at S0. For each of such sentences, by replacing D0 with {Φi}
in D, one obtains a characterization of Mi

0.

Proposition 2. Let Φi be a characteristic sentence associated with Mi
0.

Then, M ∈ Mi
0 if and only if M |= (D − D0) ∪ {Φi}.

Proof. Consequence of the fact that M0 partitions the models of D and
Φi captures the fluent interpretations at S0.

By this result and the fact that M0 is finite, i.e., for some �, M0 =
{M1

0, . . . ,M�
0}, it turns out that M is a model of D if and only if it is a

model of any one of the theories (D − D0) ∪ {Φ1}, . . . , (D − D0) ∪ {Φ�}.
Then, it is immediate to see that M is a model of D if and only if M |=
(D − D0) ∪ {∨�

i=1 Φi}. By this, the next result easily follows, which states
that the initial situation description D0 can be rewritten as {∨�

i=1 Φi}.

Theorem 2. Any bounded action theory D is logically equivalent to (D −
D0) ∪ {∨�

i=1 Φi}, where Φi is a characteristic sentence of cell Mi
0 of the

partition M0 = {M1
0, . . . ,M�

0} as defined above.

This result shows the existence of a particular first-order sentence Φ0 =
{∨�

i=1 Φi} uniform in S0, that can replace D0 in D, but does not provide
a constructive way to obtain Φ0. The following result implies that, for a
bounded action theory, such a sentence is in fact computable.

Proposition 3. For a bounded action theory D, the characteristic sentences
of the cells of M0 are computable.
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Proof. Since D is bounded, one can compute a natural number B such that
the fluent extensions in any executable situation, including S0, contain at
most B distinct values. Thus, the characteristic sentences associated with
the cells of M0 use at most B distinct variables, and so we can take as
candidate characteristic sentences those where at most B distinct variables
occur, which are finitely many (once a suitable normal form is fixed).

By Theorem 2 and the fact that non-equivalent characteristic sentences
have disjoint sets of models, it follows that a candidate characteristic sen-
tence Φ is such that (D −D0)∪{Φ} |= D if and only if it characterizes some
cell Mi

0. For bounded action theories, it can be checked that the entailment
(D −D0)∪{Φ} |= D holds if and only if {Φ}∪Dcoa |= D0 holds, that is, one
can check whether Φ |= D0 only on models enforcing Dcoa. Notice that any
model of Φ has finite (in fact, bounded) fluent extensions. Based on this and
the fact that Φ and D0 are essentially FO sentences, by exploiting results
about making FO sentences domain independent (see, e.g., [28]), i.e., such
that their satisfaction does not depend on the object domain of a model,
one can show that checking whether a model M satisfying Φ also satisfies
D0 is decidable.

Thus, a way to obtain the desired characteristic sentences is to take all
the candidate sentences Φ such that Φ |= D0. To this end, one can observe
that since the models of each Φ have the same (finite) fluent extensions
(up to renaming), they satisfy the same FO domain-independent sentences.
Therefore, to check whether Φ |= D0, one can take any model M (satisfying
Dcoa) such that M |= Φ, and check whether M |= D0. In our case, the fluent
extensions of a model satisfying a characteristic sentence can be obtained
from the characteristic sentence itself.

Next, we observe that the syntactic form of the characteristic sentence of
each cell is essentially the same as that of relatively complete initial knowl-
edge bases with bounded unknowns, defined in [51] (cf. Definition 3), for
which a FO progression (expressed again as a relatively complete sentence
with bounded unknowns) always exists (cf. Theorem 1 in [51]). Therefore,
given D, one can apply Theorem 2 to rewrite D0 as a disjunction of (finitely
many) characteristic sentences, and then progress each of them separately,
using Theorem 1, to compute a progression of D. Note that, while pro-
gression applies to a single action, since the resulting progression is still a
disjunction of characteristic sentences, we can apply it iteratively to deal
with arbitrary (finite) action sequences.

So, with Theorem 1 we have shown that we can split the progression
of a disjunctive D0 into the disjunction of separate progressions, and with
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Theorem 2 that we can rewrite any D0 (of a bounded action theory) into
an appropriate form of disjuncts, each of which we can progress separately
using Theorem 1 in [51]. Theorem 3 below essentially shows how the main
idea behind the progression mechanism in [51] can be extended to progress
initial knowledge bases that are disjunctions of relatively complete initial
knowledge bases with bounded unknowns.

Theorem 3. All bounded action theories are iteratively first-order progress-
able.

This view of the knowledge base as a disjunction of a finite set of charac-
teristic sentences provides a practical abstraction based on the boundedness
assumption that also illustrates how it can be updated. We next show one
step of progression for Example 4.

Example 6. The initial knowledge base can be logically equivalently ex-
pressed as the disjunction of two characteristic sentences, ψ1 ∨ ψ2, the first
of which is the following:

∃w.AllDist(w,R1, R2, Hold1, Hold2, Hold3, PaintStn, ShipDock, I1, I2)∧
∀r(IsRobot(r) ≡ r = R1 ∨ r = R2) ∧ ∀r(HandlesHeavy(r) ≡ r = R1) ∧
∀l{IsLoc(l) ≡ l = Hold1 ∨ l = Hold2 ∨ l = Hold3 ∨

l = PaintStn ∨ l = ShipDock; )} ∧
∀x∀l{At(x, l, S0) ≡ (x = I1 ∧ l = Hold1) ∨

(x = I2 ∧ l = Hold2) ∨ (x = I3 ∧ l = w)} ∧
∀x(Painted(x, S0) ≡ false) ∧ ∀x(Shipped(x, S0) ≡ false) ∧
∀x(Heavy(x) ≡ x = I1) ∧ ∀x(Fragile(y) ≡ (y = I2 ∨ y = w)).

The second sentence, ψ2, is the same as ψ1 except for the last two conjuncts,
in which item w is characterized as heavy instead of fragile:

∀x(Heavy(x) ≡ x = I1 ∨ x = w) ∧ ∀x(Fragile(y) ≡ y = I2).

Now consider action move(R1, I1, ShipDock). Using the progression method
of [51] for each characteristic sentence, we obtain a progressed version of the
knowledge base, ψ′

1 ∨ ψ′
2, which is identical to ψ1 ∨ ψ2, except that the

location of I1 is updated in the specification of At. For ψ′
1, we have:

. . .
∀x∀l{At(x, l, S0) ≡ (x = I1 ∧ l = ShipDock) ∨

(x = I2 ∧ l = Hold2) ∨ (x = I3 ∧ l = w)} ∧
. . .
As to ψ′

2, it is obtained by replacing the specification of At in ψ2 with the
one above.
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6. Verifying Online Executions

To express properties over online executions of BATs, we introduce a spe-
cific first-order variant of the μ-calculus [21,45]. The main characteristic of
μ-calculus is its ability to express directly least and greatest fixpoints of
(predicate-transformer) operators formed using formulae relating the cur-
rent state to the next one. By using such fixpoint constructs one can easily
express sophisticated properties defined by induction or co-induction. The
μ-calculus is known to be one of the most powerful temporal logics, subsum-
ing both linear time logics, such as LTL, and branching time logics such as
CTL and CTL* [3].

Our variant of the μ-calculus, called μLO, is able to express first-order
properties logically implied in a situation (as opposed to expressing first-
order properties true in a situation as in [11]). This is needed since online
executions depend on what is logically implied, which, in a first-person view,
corresponds to what the agent believes. To do so the “atomic” μLO formu-
las have the form holds(ϕ) and express that the FO (closed) formula ϕ is
logically implied by the BAT in the current situation. The syntax of μLO
is as follows:

Φ ::= holds(ϕ) | ¬Φ | Φ1 ∧ Φ2 | 〈−〉Φ | Z | μZ.Φ,

where ϕ is an arbitrary closed situation-suppressed (i.e., with all situa-
tion arguments in fluents suppressed) situation calculus FO closed formula,
whose constants must appear in D \ (Duna ∪ Dcoa), and Z is an SO (0-ary)
predicate variable. We use the following standard abbreviations: Φ1 ∨ Φ2 =
¬(¬Φ1 ∧ ¬Φ2), [−]Φ = ¬〈−〉¬Φ, and νZ.Φ = ¬μZ.¬Φ[Z/¬Z]. Intuitively,
〈−〉Φ holds in a situation if there exists an action (that is known to be
executable) after which Φ holds, and [−]Φ holds in a situation if for all
actions (that are known to be executable), Φ holds afterwards. As usual in
the μ-calculus, formulae of the form μZ.Φ (and νZ.Φ) must satisfy syntactic
monotonicity of Φ with respect to Z, which states that every occurrence of
the variable Z in Φ must be within the scope of an even number of nega-
tion symbols. The fixpoint formulas μZ.Φ and νZ.Φ denote respectively the
least and the greatest fixpoint of the formula Φ, seen as a predicate trans-
former λZ.Φ (their existence is guaranteed by the syntactic monotonicity of
Φ). We can express arbitrary temporal/dynamic properties using least and
greatest fixpoint constructions. For instance, to say that it is possible to
eventually achieve ϕ, where ϕ is a closed situation-suppressed formula, we
use the least fixpoint formula μZ.ϕ ∨ 〈−〉Z. Similarly, we can use a greatest
fixpoint formula νZ.ϕ ∧ [−]Z to express that ϕ always holds. Note that our
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μLO language does not allow for quantification across situations. However
one can mitigate this limitation by using fluents to refer to objects across
situations.

As to semantics, since μLO contains formulae with predicate free vari-
ables, given an action theory D, we introduce a predicate variable valuation
V, i.e., a mapping from predicate variables Z to sets of ground situation
terms. Then, we assign semantics to formulae by associating with D and V
an extension function (·)D

V which maps μLO formulae to subsets of ground
situation terms. We denote by Γ the set of ground executable situation terms,
inductively defined as follows12:

• S0 ∈ Γ;

• If σ ∈ Γ, A is an action type with parameters �x, �n ∈ �N is a vector of
names such that |�n| = |�x|, and D |= Poss(A(�n), σ), then do(A(�n), σ) ∈
Γ.

The extension function is defined inductively as follows:

(holds(ϕ))D
V = {σ ∈ Γ | D |= ϕ[σ]}

(¬Φ)D
V = Γ − (Φ)D

V
(Φ1 ∧ Φ2)D

V = (Φ1)D
V ∩ (Φ2)D

V
(〈−〉Φ)D

V = {σ ∈ Γ | ∨
A ∃�n ∈ �N .

do(A(�n), σ) ∈ Γ ∧ do(A(�n), σ) ∈ (Φ)D
V }

(Z)D
V = V(Z)

(μZ.Φ)D
V =

⋂{E ⊆ Γ | (Φ)D
V[Z/E] ⊆ E}

With a slight abuse of notation, given a closed situation-suppressed for-
mula ϕ, we denote by ϕ[σ] the formula ϕ with the situation argument rein-
troduced and assigned to σ. Also, given a valuation V, a predicate variable
Z, and a set E of situation terms, we denote by V[Z/E ] the valuation ob-
tained from V by changing the value of Z to E . Notice also that when a μLO
formula Φ is closed (with respect to predicate variables), its extension (Φ)D

V
does not depend on the predicate valuation V. The only formulas of interest
in verification are those that are closed. We say that a theory D entails a
closed μLO formula Φ, written D |= Φ, if S0 ∈ (Φ)D

V (for any valuation V,
which is in fact irrelevant for closed formulas).

We next show some examples. For simplicity we adopt the notation of
the well-known logic CTL∗, which can be thought of as a fragment of μLO.

12Intuitively Γ is the set of situations forming the tree of online executions mentioned
in Sect. 2.
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In particular E
 and A
 respectively express that there exists an (infinite)
path (of action executions) satisfying 
 and that all paths satisfy 
; and G

and F
 respectively express that along a path 
 always holds and along a
path 
 eventually holds.

Example 7. For the agent in Example 2, one property of interest to verify
is whether it is possible for the agent to eventually know that it has shipped
all items that were in the factory. This can be expressed as the least fixpoint
formula μZ. holds(¬∃x∃l.At(x, l) ∨ 〈−〉Z) or, in CTL∗, EF holds(¬∃x∃l.
At(x, l)).

In the above, we rely on the fact that if there are no items left in the
factory, then all items that were there must have been shipped. It is easy to
check that the theory of Example 2, D2, entails this formula. More gen-
erally, a formula EFϕ represents an instance of a conformant planning
problem. It is satisfied by a theory if there exists an executable sequence
of actions such that afterwards the agent knows that ϕ holds. In fact we
can also show that the above property can always be achieved: D2 |=
AGEF holds(¬∃x∃l.At(x, l)). Another property that can be shown to hold
for this domain is that it is possible for the agent to eventually know that it
has shipped all items that were in the factory, and that every shipped item
was painted. We express this as follows: D2 |= E(F holds(¬∃x∃l.At(x, l))∧
Gholds(∀x(Shipped(x) ⊃ Painted(x)))).

Example 8. For the agent in Example 3, with associated theory D3, we
can show that: D3 |= EF (holds(∀l¬∃x.At(x, l)) ∧ F holds(∀l.IsLoc(l) ⊃
∃x.At(x, l))), i.e., it is possible to eventually have all items shipped out
of the factory and then later to eventually have all locations filled with
items. Moreover, we can also show that always if an item is at the shipping
dock it can be shipped out next: D3 |= AG(holds(∃x.At(x, ShipDock)) ⊃
〈−〉holds(¬∃x.At(x, ShipDock))). However, this is not the case for other
locations, e.g. Hold1, as it is possible for all locations to become occupied, at
which point the agent must ship the item at the shipping dock before it can
move the item at any other location: D3 |= ¬AG(holds(∃x.At(x,Hold1)) ⊃
〈−〉holds(¬∃x.At(x,Hold1))).

We observe that because Γ and N (thus the object sort) are infinite,
one cannot check whether D |= Φ using an exhaustive search procedure,
as typically done, e.g., in standard μ-calculus model checking [21]. This is
true also for bounded theories, which can be infinite-state. However, under
the assumption of boundedness, a finite structure can be constructed, which
can be used to carry out the verification task. Such a construction is based
on an abstraction process which amounts to clustering all the situations
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whose corresponding states are isomorphic, so as to generate a finite-state
transition system that can be used for the verification. The following result,
proven in the rest of the section, is based on the construction of such a
transition system.

Theorem 4. Let D be a BAT bounded by b and Φ a closed μLO formula.
Then, checking whether D |= Φ is decidable.

The proof involves two steps. Firstly, we provide an alternative semantics
for μLO formulas, equivalent to the one above. Such a semantics is defined
on top of a transition system TD derived from D, which we call progression-
based and that captures the evolution of the domain according to D. The
second step exploits our results about progression of bounded theories, to
show that a finite-state transition system TF can be effectively constructed,
which is equivalent, for the purpose of verification, to TD. Since standard
model checking algorithms can be executed on TF , this implies that the
verification of μLO formulas is decidable.

We start by introducing the notion of transition system (TS). An (online-
execution) transition system is a tuple T = 〈Q, q0, λ, →〉, where:

• Q is the set of possible states;

• q0 ∈ Q is the initial state;

• λ : Q → 2L̃ is the labeling function, associating each state q with a
set Dq of situation-suppressed sentences over N (L̃ denotes the set of
situation calculus situation-suppressed sentences);

• → ⊆ Q × Q is the transition relation.

As can be seen, this is a special case of standard labelled TS, where
states are labelled by (possibly non first-order) logical theories. We call this
class of TSs online-execution to stress that they can accommodate all the
information relevant to online executions.

The semantics of a μLO formula Φ over a TS T , under a valuation V, is
as follows:

(holds(ϕ))T
V = {q ∈ Q | λ(q) |= ϕ}

(¬Φ)T
V = Q − (Φ)T

V
(Φ1 ∧ Φ2)T

V = (Φ1)T
V ∩ (Φ2)T

V
(〈−〉Φ)T

V = {q ∈ Q | ∃q′.q → q′ ∧ q′ ∈ (Φ)T
V}

(Z)T
V = V(Z)

(μZ.Φ)T
V =

⋂{E ⊆ Q | (Φ)T
V[Z/E] ⊆ E}
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We say that T entails a closed μLO formula Φ, written T |= Φ if
q0 ∈ (Φ)D

V (for any valuation V, which is irrelevant). This is essentially
the standard semantics of the μ-calculus [21], with satisfaction replaced by
entailment on state labels.

Every action theory D induces a (family of) so-called progression-based
TS TD = 〈Q, q0, λ,→〉, defined as follows:

• Q = Γ;

• q0 = S0;

• λ is inductively defined as follows:

– λ(q0) = D̃0 ∪ Dcoa ∪ Duna, where D̃0 is the situation-suppressed
version of D0;

– if q → q′ and q′ = do(A(�n), q), for some action type A with para-
meters �x and names �n ∈ �N , then λ(q′) is the situation-suppressed
version of a progression of (D − D0) ∪ λ(q)[S0] with respect to
A(�n), where λ(q)[S0] stands for the theory obtained from λ(q) by
re-introducing the situation argument and assigning it to S0 in any
fluent atom.13

• → ⊆ Q × Q is the transition relation such that q → q′ if and only if
q′ = do(A(�n), q), for some action type A and names �n ∈ �N .

Intuitively, TD is the (infinite) situation tree of the theory with each
situation labelled by a progression of D with respect to some ground action
term, and taking the preceding situation as initial situation. As the following
result shows, TD retains all the information entailed by D at every situation,
and can thus be used to interpret μLO formulae.

Theorem 5. Let D be a basic action theory (not necessarily bounded), and
Φ a μLO formula. Then (Φ)D

V = (Φ)TD
V .

Proof. By induction on the structure of Φ. For Φ = holds(ϕ), let σ =
do(αn, do(. . . , do(α1, S0) · · · )) ∈ Γ. By the definition of TD, the labeling of
σ in TD, i.e., λ(σ), is obtained by iteratively progressing D with respect to
α1, . . . , αn (and then suppressing the situation term). Then, by definition of
progression, D |= ϕ[σ] if and only if λ(σ) |= ϕ, that is, σ ∈ (Φ)D

V if and only
if σ ∈ (Φ)TD

V . For Φ = 〈−〉Φ′, by the definition of TD, we have that for any
σ′ ∈ Γ, σ′ = do(α, σ) for some α iff σ → σ′ in TD. Then, because by the
induction hypothesis, σ′ ∈ (Φ′)D

V if and only if σ′ ∈ (Φ′)TD
V , it follows that

13Notice that, in general, there exist many possible, logically equivalent, progressions,
hence the family of TSs.
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σ ∈ (〈−〉Φ′)D
V if and only if σ ∈ (〈−〉Φ′)TD

V . The cases of boolean connectives,
Φ = Z, and Φ = μZ.Φ′ are immediate.

As a corollary, we have that: D |= Φ if and only if TD |= Φ. Thus, one can
check whether D |= Φ using TD instead of D. However, TD is also infinite,
thus this result alone does not help in showing decidability of the verification
problem. To overcome this obstacle, we construct a further finite-state TS
that is equivalent to TD with respect to the verification of μLO formulas, and
that we can use to effectively perform the check. To this end, we introduce
the notions of logical equivalence modulo renaming between theories and
online-execution bisimulation between TSs, and state relevant results about
them.

Two theories D and D′ over the same signature and names N , are said
to be logically equivalent modulo renaming (of constants), written D ∼ D′,
if there exists a bijection h : N → N such that D |= h(D′) and h(D′) |= D,
where h(D′) stands for the theory obtained from D′ by replacing every
constant n it mentions by h(n). We say that h preserves a set of constants
C ⊆ N , if h(n) = n, for every n ∈ C. We write D ∼C D′ to denote that D
and D′ are logically equivalent modulo renaming preserving C.

Logical equivalence modulo renaming formalizes the intuition that D and
D′ have exactly the same models, modulo renaming of constants. It can be
seen that when two theories are logically equivalent modulo renaming, they
satisfy the same closed formulas, modulo renaming of constants.

Theorem 6. Let D and D′ be two action theories over the same signature
and names N , such that D ∼ D′. Then, for any closed (situation calculus)
formula ϕ, we have that D |= ϕ if and only if D′ |= h(ϕ), for h a witness of
D ∼ D′, and h(ϕ) the formula obtained from ϕ, by renaming each constant
n as h(n).

Proof. Immediate consequence of the definition of logical equivalence mod-
ulo renaming.

In particular, this result implies that formulae mentioning only preserved
constants can be left unchanged.

Corollary 1. If D ∼C D′, for D and D′ action theories over the same
signature and names N , then, for any closed (situation calculus) formula ϕ
mentioning only constants in C, we have that D |= ϕ if and only if D′ |= ϕ.

Thus, to check whether a closed formula ϕ is entailed by a class of logically
equivalent (modulo renaming) theories, it is sufficient to evaluate the formula
against an arbitrary representative of the class.
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Logical equivalence modulo renaming can be applied to state labels of
TSs, to lift standard bisimulation to online-execution TSs. To this end, let
T1 = 〈Q1, q10,→1, λ1〉 and T2 = 〈Q2, q20,→2, λ2〉 be two TSs, and C ⊆ N
a set of constants. An (online-execution) C-preserving bisimulation between
T1 and T2 is a relation B ⊆ Q1 × Q2 such that B(q1, q2) implies:

• λ1(q1) ∼C λ2(q2);
• for every transition q1 →1 q′

1, there exists a transition q2 →2 q′
2, such

that 〈q′
1, q

′
2〉 ∈ B;

• for every transition q2 →2 q′
2, there exists a transition q1 →1 q′

1, such
that 〈q′

1, q
′
2〉 ∈ B.

T1 and T2 are said to be (online-execution) bisimilar with respect to C,
written T1 ≈C T2, if 〈q10, q20〉 ∈ B, for some bisimulation B preserving C.
As usual, bisimilarity is an equivalence relation.

A notable property of online-execution bisimulations is that they preserve
entailment of μLO formulas.

Theorem 7. Given two TSs T1 and T2, and a set of constants C ⊆ N , if
T1 ≈C T2 then, for every closed μLO formula Φ with constants in C, we
have that T1 |= Φ if and only if T2 |= Φ.

Proof. The proof is by induction on the structure of Φ and essentially anal-
ogous to that of the bisimulation-invariance theorem for standard μ-calculus
[21]. In fact, the only difference is in the case of atomic formulae (Φ = ϕ)
and the next operator (Φ = 〈−〉Φ′). For the former, the thesis is a direct
consequence of Corollary 1 as, by the definition of online-execution bisimula-
tion, λ(q10) ∼C λ(q20). For the latter, we first observe that, by the definition
of online-execution bisimulation, there exists a transition q10 →1 q1 if and
only if there exists a transition q20 →2 q2 such that 〈q1, q2〉 ∈ B. Now,
one can see that q1 ∈ (Φ′)T1

V if and only if the TS T ′
1 = 〈Q1, q1,→1, λ1〉,

obtained from T1 by setting the initial state to q1, is such that T ′
1 |= Φ′,

and analogously for q2 and T ′
2 = 〈Q2, q2,→2, λ2〉. Also, it is immediate

to see that because T1 ≈C T2, we have that T ′
1 ≈C T ′

2. But then, by
the induction hypothesis, T ′

1 |= Φ′ if and only if T ′
2 |= Φ′, and the thesis

follows.

Observe that this result holds even between an infinite-state TS, say TD,
and a finite-state TS, say TF . When this is the case, the verification can
be performed on TF by adapting standard μ-calculus model checking tech-
niques, which essentially perform fixpoint computations on a finite state
space. Unfortunately, two major obstacles prevent this approach from being
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effective at this stage. Firstly, Theorem 7 applies only provided TF is avail-
able while, thus far, we have no guarantee that it is actually computable.

Secondly, μ-calculus model checking requires a procedure to check whether
state labelings of TF , which are essentially FO theories, entail atomic sub-
formulas of Φ, a problem that is, in general, undecidable.

For the former problem, we next describe a procedure for the construction
of a finite-state TS TF that we then prove to be online-execution bisimilar
to TD. The latter problem can be easily overcome by resorting to Theorem
15 of [11], which states that the verification problem for bounded theories
is decidable for a variant of μLO that covers the case that concerns us.

Algorithm 1 Computation of a finite-state TS bisimilar to TD.
1: let C be the (finite) set of constants occurring in D \ (Duna ∪ Dcoa);

2: let U := ∅; F := {u0}; λ(u0) := D̃0 ∪ Dcoa ∪ Duna; →:= ∅;
3: while F �= ∅ do
4: pick u ∈ F ; let F := F \ {u};
5: for all action types A with parameters �x do
6: let Cλ(u) be the set of constants occurring in λ(u) \ (Duna ∪ Dcoa);
7: let O ⊂ N be any set s.t. |O| = |�x| and O ∩ (C ∪ Cλ(u)) = ∅;
8: for all assignments v : �x → O ∪ C ∪ Cλ(u) s.t. λ(u) |= Poss(A(v(�x))) do
9: let Dα be the progression of (D − D0) ∪ λ(u) with respect to α = A(v(�x));

10: if there exists u′ ∈ U s.t. Dα ∼C λ(u′) then
11: let →:=→ ∪{u → u′};
12: else
13: let U := U � {u′}, for u′ a fresh state; λ(u′) = Dα;
14: let →:=→ ∪{u → u′}; F := F ∪ {u′};
15: end if
16: end for
17: end for

18: end while

We construct TF using Algorithm 1. The algorithm takes a basic action
theory D bounded by b as input and returns a finite-state TS TF = 〈U, u0,
→, λ〉 bisimilar to TD. TF is obtained by iteratively progressing D, starting
from the initial situation and expanding the frontier states in F (lines 5–17).
However, at each step, the theory is not progressed in all possible ways, that
is with respect to all the infinitely many executable ground action terms;
instead, only a finite subset of such terms is considered (see lines 6–7). Notice
that by the boundedness assumption and Theorem 3, the progression of Dα

is computable (Duna and Dcoa need not be explicitly represented but can
be assumed, and reasoning can be performed under these assumptions),
which is clearly a necessary condition for the algorithm to terminate (line 9
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could not be completed otherwise). In addition, for the algorithm to be well-
defined, it is required that testing the condition of the if statement (line 10)
be decidable. This fact is a consequence of the next result, once observed
that, D being b-bounded, so are the models of the labels of the states in U .

Theorem 8. Let D01 and D02 be finite sets of uniform situation-suppressed
sentences over N , and let C ⊆ N be a finite set of constants. If D01 and
D02 are bounded by b, then checking whether D01 ∼C D02 is decidable.

Proof. Associate D0i (i = 1, 2) with the formula Φi = Boundedb ∧ ∃
�x.AllDist(�x).D0i[�c/�x], where �c contains all the constants in D0i not occur-
ring in C, �x is a fresh set of variables such that |�c| = |�x|, and, by slight abuse
of notation, D0i[�c/�x] stands for the conjunction of the formulas in D0i, with
the constants in �c syntactically replaced by the variables in �x. It can then be
seen that checking whether D01 ∼C D02 is equivalent to checking whether
Φ1 and Φ2 are logically equivalent (according to the standard definition).
Notice that each Φi imposes only constraints on the objects occurring in
the extension of some fluent, while it does not constrain the remaining ob-
jects. In particular, it leaves the object sort free. Moreover, such formulas
constrain the fluent extensions to be bounded. As a result, to check whether
Φ1 ≡ Φ2, it is sufficient checking whether the finite models of the two for-
mulas such that the object sort contains only the values occurring in some
fluent, match. But since such models are finite and, up to object renaming,
finitely many, this is decidable.

Termination of the algorithm is guaranteed by the following result.

Theorem 9. If D is a BAT bounded by b, then Algorithm 1 terminates and
produces a TS TF with a finite number of states in U .

Proof. We observe that, under boundedness, there exist only finitely many
equivalence classes of theories, with respect to logical equivalence mod-
ulo renaming. This holds, in particular, for theories containing situation-
suppressed formulas only, such as those labeling the states of TF . Termi-
nation is a consequence of this observation and the fact that, by the if
statement, a new state u′ (to expand) is added to F only if no other state u
is present in U with a labelling that is logically equivalent modulo renaming
to that of u′.

Finally, we can prove that Algorithm 1 returns a TS bisimilar to TD.

Theorem 10. If D is a BAT bounded by b, then TF ≈C TD, for C the set
of constants occurring in D \ (Duna ∪ Dcoa).
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Proof. Define B ⊆ Q×U such that 〈q, u〉 ∈ B if and only if λ(q) ∼C λ(u).
Obviously, 〈q0, u0〉 ∈ B, as λ(q0) = λ(u0), by the definition of TD and the
construction of TF . We show that B is an online-execution bisimulation. To
this end, consider a pair 〈q, u〉 ∈ B and observe that, by the definition of
TD, a transition q → q′ exists in TD if and only if, for some ground action
A(�n), λ(q) |= Poss(A(�n)) (with Poss situation-suppressed). Similarly, by
the way TF is constructed, a transition u → u′ exists in TF if and only if
λ(u) |= Poss(A(�m)), for some ground action A(�m).

Assume q → q′, thus λ(q) |= Poss(A(�n)), for some A(�n). We next prove
that for any choice of O in Algorithm 1, there exists an action term A(v(�x))
such that λ(u) |= Poss(A(v(�x))). To see this, observe that, by definition of
∼C , there exists a bijection h witnessing λ(q) ∼C λ(u). Assume first that h
maps the objects of �n into objects of the set O ∪ C ∪ Cλ(u). In this case, the
fact that λ(u) |= Poss(A(v(�x))) is implied by Theorem 6, for v(�x) = h(�n).
Otherwise, there exists an element n of �n such that h(n) /∈ O∪C ∪Cλ(u). In
this case, we modify h into a bijection h′ analogous to h except that h(n) is
swapped with some value h(n′) ∈ O such that n′ does not occur in �n. This is
always possible because |�x| = |O| and O∩ (C ∪Cλ(u)) = ∅. It can be checked
that the so-obtained h′ is also a witness of λ(q) ∼C λ(u). In addition, by
the constraints on the choice of O, one can iterate these changes, to finally
obtain an h′ such that h′(�n) ∈ O ∪ C ∪ Cλ(u), for which the previous case
applies. Thus, there exists a transition u → u′ in TD.

The fact that λ(q′) ∼C λ(u′) follows from the observation that when we
progress theories that are logically equivalent modulo renaming, through
the same ground actions (modulo the same renaming), we end up with pro-
gressed theories that are logically equivalent modulo the same renaming (it
is easy to show that, otherwise, Theorem 6 would be violated). In particular,
λ(q′) and λ(u′) are obtained as progressions of, respectively, (D−D0)∪λ(q)
and (D − D0) ∪ λ(u), which are logically equivalent modulo renaming, as so
are λ(q) and λ(u).

Proving the other requirement of the bisimulation relation is simpler, as
any ground action term considered in the construction of TF has a corre-
sponding term in TD, and no surgery is required on h.

Once TF is obtained, a variant of the standard algorithm for μ-calculus
model checking [21] can be applied to check whether TF |= Φ. This obser-
vation, together with Theorems 10 and 7, implies the desired result, i.e.,
Theorem 4.
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7. Related Work

There has been growing interest in reasoning about and verifying agent
programs. Most work on verification of agent systems/programs uses propo-
sitional modal logics and model checking techniques [3,32]. These include [6,
18,47], and [53], which all focus on model-checking of BDI programs. Model
checking (and satisfiability) in these propositional modal logics is decidable.
But such logics can only represent finite domains and finite state systems.

There is also some work that uses first-order logical formalisms and can
deal with infinite domains. This includes work that uses theorem proving
techniques, such as Shapiro et al.’s CASLve verification environment [43,44]
for multi-agent ConGolog programs based on an extended version of the situ-
ation calculus with knowledge and goal fluents. Another approach first de-
veloped by [8] uses fixpoint approximation techniques reminiscent of model
checking, in combination with “characteristic graphs”, which can finitely
represent a Golog program’s configuration graph. De Giacomo et al. [15] and
Sardina and De Giacomo [37] also use these techniques. But note that for
these first-order formalisms, verification is undecidable in general. So these
approaches have no termination guarantees and are hence sound but not
complete.

First-order reasoning about action formalisms such as the situation calcu-
lus are very general and expressive. So until recently, decidability results for
reasoning in the situation calculus had been few, e.g., [46] for an argument-
less fluents fragment, and [23] for a description logic-like 2 variables frag-
ment. It is the case that situation calculus basic action theories support
regression to reduce reasoning about a given future situation to reasoning
about the initial situation [36], and generalizations of this result such as
just-in-time histories [17] can also be exploited. However, these techniques
cannot be used to verify general temporal properties.

A significant advance was [11], where the class of bounded action theo-
ries in the situation calculus is identified for which verification of temporal
properties is decidable. In such theories, the number of object tuples that
belong to the extension of fluents is bounded in every situation. But the ob-
ject domain remains infinite, and an infinite run may involve an unbounded
number of objects. Claßen et al. [9] also identifies cases where verification of
ConGolog programs is decidable. In both of these works, properties are verified
over offline executions. In this paper, we essentially extend such approaches,
in particular [11], to verify temporal properties over online executions. By
the way, note that in [14] it is shown that if the initial situation description
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is bounded, then one can verify using the techniques of [11] that an action
theory remains bounded in all executable situations.

Verification of infinite states systems is of interest not only for AI, but
also for other areas of computer science. There is also substantial work that
uses model checking techniques on infinite state systems. However, in most of
this work the emphasis is on studying recursive control rather than on a rich
data oriented state description; typically data are either ignored or finitely
abstracted, see e.g., [7]. There has recently been some attention paid in the
field of business processes and services to including data into the analysis of
processes [20,22,24]. Interestingly, while we have verification tools that are
quite good for dealing with data and processes separately, when we consider
them together, we get infinite-state transition systems, which resist classical
model checking approaches to verification. Lately, there has been some work
on developing verification techniques that can deal with such infinite-state
processes [1,2,4,19]. In particular [2,4] brings forth the idea of exploiting
state boundedness to get decidability for verification of infinite-state data-
aware systems.

Note that in this paper, we take a first-person view of the action theory
as representing the agent’s beliefs, so the notion of belief is metatheoretic.
There has also been work on versions of the situation calculus that incor-
porate an additional knowledge/belief modality, thus taking a third-person
view of knowledge/belief. This can be done by adapting the possible worlds
model of knowledge to the situation calculus, as first proposed by [34]. Scherl
and Levesque [41,42] formalized this approach in the context of Reiter’s ba-
sic action theories [36] and showed that regression could be used to answer
epistemic queries about a given ground situation. Lakemeyer and Levesque
[25,26] also developed a first-order modal version of the epistemic situation
calculus.

The approach in this paper is related to but quite different from that in
[12], which builds on a version of the situation calculus with a knowledge
modality [41]. Such an approach is especially interesting when there are
several agents working from their own first-person account simultaneously,
and we can consider their relationship to a third-person (modeler) account
[43]. However De Giacomo et al. [12] uses a notion of bounded epistemic
action theory that is more restrictive than ours, in that it requires that the
number of object tuples that the agent thinks may belong to any given fluent
in a situation is bounded. In other words, the total number of tuples summed
over all epistemic alternatives (in the situation), is required to be bounded.
Here, instead, we only require that in any possible world (i.e., model of the
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theory), the number of distinct tuples in the extension of any fluent in any
given situation is bounded.

There is also a lot of work on progression. As mentioned in Sect. 5, the
notion of progression for basic action theories was first introduced by Lin and
Reiter [29]. They were also first to investigate restrictions that guarantee a
first-order progression: a restriction on the form of D0, namely the relatively
complete databases, and a restriction on the type of available actions, namely
the context-free assumption for actions, each of which guarantees that a
first-order progression can always be found. There is a lot of related work to
this direction. Liu and Levesque [31] introduced the local-effect assumption
for actions which was later shown by Vassos et al. [49] to be a sufficient
condition for ensuring that a first-order progression can be found, while Liu
and Lakemeyer [30] extended this further to the so-called normal actions.
Among the most relevant to this work is the recent result about progressing a
D0 that is relatively complete with bounded unknowns [51], where essentially
D0 is similar to a database with named nulls and constraints on the values
of those. In this work, Vassos and Patrizi [51] also give a classification of all
known restrictions (or classes of basic action theories) for which a first-order
progression can always effectively be computed.

Finally, note that in [13] the online executions verification for bounded
action theories framework presented in this paper is adapted to handle sens-
ing actions. There, a first-order variant of linear time logic [48] is used to
specify the properties to be verified. It is also shown that one can always
obtain a first-order progression for sensing actions.

8. Conclusion

We have proposed a decidable framework for verifying agents with bounded
beliefs operating in infinite state domains. The agent has bounded beliefs if
the action theory that models the agent’s beliefs and deliberation process
entails that the number of tuples that belong to any fluent in any situation
is bounded by a constant. We have shown that this boundedness condition
is sufficient to ensure that the agent’s belief state in any situation can be
progressed and remain first-order representable. The framework allows com-
plex subjective temporal properties to be specified and verified over online
executions of the agent, i.e., executions where the agent only performs ac-
tions that it knows are feasible.14 We have assumed that the object domain

14The assumption that an action can only occur in an online execution if the agent
believes that it is executable is perhaps too strong for exogenous actions; in this case, it
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is isomorphic to an infinite set of standard names. Since we are concerned
with online executions, it would be strange to allow for the occurrence of
actions that the agent cannot even name. But note that all the results we
have shown hold even if we drop domain closure for objects.

In the case where the initial situation description is in the form studied
in [51], computing progression becomes particularly easy. This simplifies
verification by making it simple to compute the finite transition system on
which the model checking algorithm is applied.

In future work, we want to extend our online executions verification
framework to deal with partially observable actions and forgetting (which
helps to maintain boundedness); this will require changes to the specifica-
tion language as it introduces forms of nondeterminism that are not under
the agent’s control. We also want to allow some forms of quantification
across situations in the specification language. Finally, we want to extend
the framework to support the verification of agent programs.
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Footnote 14 continued
might be better to just require that the agent not believe that the action is not executable.
But then the agent should come to know that the action was indeed executable when she
observes it, and exogenous actions become analogous to sensing actions. Sensing is beyond
the scope of this paper, so here we assume that an exogenous action can only occur
when the agent believes that it can. We leave relaxing this assumption and handling the
knowledge producing effects of exogenous actions for future work.
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