
Building Virtual Behaviors from Partially Controllable Available Behaviors in
Nondeterministic Environments

Giuseppe De Giacomo and Fabio Patrizi
Sapienza Universita’ di Roma

Roma, Italy
{degiacomo,patrizi}@dis.uniroma1.it

Sebastian Sardina
RMIT University

Melbourne, Australia
sebastian.sardina@rmit.edu.au

Abstract

The composition problem involves how to coordinate a
set of available modules (e.g., concrete devices installed
in a smart house, such as video cameras, lights, blinds,
etc.) so as to implement a desired but non-existent tar-
get complex component (e.g., a complex entertainment
house system). This paper summarizes the results in (De
Giacomo, Patrizi, and Sardina 2013), by formally defin-
ing the problem within an AI context, characterizing
its complexity, and identifying effective techniques to
solve it. Related results are also briefly discussed.

Introduction
With computers now embedded in everyday devices and en-
vironments like mobile phones, cars and planes, houses, of-
fices, and factories, the trend is to build complex systems
from a collection of simple components. For example, com-
plex entertainment systems within a smart house can be “re-
alised” (i.e., implemented) by suitably coordinating the be-
haviour of a plethora of simple devices and artifacts—lights,
phones, game consoles, TVs, music systems, etc.—installed
in the house. Such embedded systems can provide services
that range from simple tasks, such as “turn on the lights in
the bedroom,” to more complex ones, such as “bring me a
cup of coffee” or “handle house intruder” (by tracking and
taking pictures of the intruder, toggling lights rapidly, and
alerting the owner by email or phone).

The problem of automatically synthesizing such a
controller-coordinator for a desired target (complex) system
is called the behaviour composition problem. Informally, the
problem amounts to realizing an abstract desired target be-
havior module (e.g., a smart house system or complex web-
service) by reusing and re-purposing a set of accessible mod-
ules implementing certain concrete behaviors (e.g., installed
artifacts in the house or available web-services). The ques-
tion then is whether it is possible, and if so synthesise a con-
troller, to coordinate and execute the existing available be-
havior modules so that it appears as if the target module is
being run. Behaviours here refer to the operational logic of a
system (e.g., a vacuum cleaner, microwave, or web-service)
and are generally represented using transition systems.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

This paper summarizes the results on behavior composi-
tion presented in (De Giacomo, Patrizi, and Sardina 2013)
and discusses further related developments. Such work for-
mally defines the composition problem in an AI context,
characterizes its complexity, developes effective techniques
to solve it, and identifies links with several areas of Com-
puter Science and AI. When looking at behavior composi-
tion from an AI perspective, actual controllability of avail-
able behaviors becomes a prominent issue. While one can
instruct a behavior module to carry out an action, the actual
outcome of the action may not always be foreseen a priori,
though it can possibly be observed after execution. While the
work presented here is based on revisiting a certain stream
of work in service composition (Berardi et al. 2003), the is-
sue of dealing with partial controllability (of behaviors) be-
comes central one.

Behavior composition is strongly related to several forms
of (advanced) automated planning, in particular, to plan-
ning for temporally extended goals (Bacchus and Kabanza
1998) as well as fully-observable non-deterministic (FOND)
planning (Daniele, Traverso, and Vardi 2000). The former
investigates techniques for building finite or infinite plans
that satisfy linear- or branching-time specifications, while
the latter studies the planning problem in the context of ac-
tions whose effects cannot be fully determined a priori. In-
deed, the composition problem requires an advanced con-
ditional plan (with loops) that always guarantees all pos-
sible target requests to be “served,” which is, ultimately, a
(temporal) invariant property. What is more, as later proved
by (Ramirez, Yadav, and Sardina 2013), such plans amount
to strong-cyclic policies, the general solution concepts for
FOND planning. Even more, the solutions obtained via the
simulation technique developed in this work are akin to the
so-called universal plans (Schoppers 1987), that is, plans
representing every possible solution.

We shall first present the formal definition of the problem
and its computational complexity. We then provide our tech-
nique based on the formal notion of simulation for synthe-
sizing the most general kind of solutions, called controller
generators, and show how these can deal with behavior fail-
ures. After that, we demonstrate how we can resort, in prac-
tice, to existing platforms for synthesis via model checking
by recasting the composition task as a safety game. We close
by discussing recent developments and open challenges.



e1 e2

e3e4

prepare

recharge

clean

dispose
paint
clean
recharge

recharge

dispose
paint
clean

recharge

prepare

(a) Environment E .

t1

t4

t2

t3t5

prepare

clean

paint

paintdi
sp

os
e

re
ch

ar
ge

(b) Target arm T .

b1 b2 b3 b4
prepare

paint

clean

paint
recharge prepare

clean

B2

a1 a2
e1 ∨ e2 : clean

dispose
recharge

recharge

dispose

B1

c1 c2
recharge

paint

prepare
B3

(c) Available arms B1, B2, and B3.

Figure 1: The painting arms system S = 〈B1,B2,B3, E〉 and the target arm T . Missing guards denote set {e1, e2, e3, e4}.

The Problem
We explain the behavior composition problem using the
painting arms scenario depicted in Figure 1. The overall
aim of the system is to process blocks, one at a time, by
first preparing a block, then optionally cleaning it if neces-
sary (by using water from a special tank), then painting the
block (by using paint from another tank), and finally dispos-
ing the end product. This desired process is represented by
target behavior T . Importantly, after the block is disposed
for collection, the process always makes sure the water and
paint tanks are recharged before processing the next block.

Unfortunately, the desired arm T does not exist in real-
ity. Nonetheless, there are three different actual arms avail-
able: a cleaning-disposing arm B1 able to clean and dispose
blocks; an arm B2 capable of preparing, cleaning, and paint-
ing blocks; and an arm B3 that can paint and prepare blocks.
All three arms are able to trigger the tanks’ recharge opera-
tion. Notice that arm B2 behaves non-deterministically when
it comes to painting a block. This captures the modeler’s in-
complete information about B2’s internal logic.

All modules are meant to execute on a shared non-
deterministic environment E capturing the dynamics of the
domain. For example, blocks can be painted or cleaned only
after they have been prepared, and the water tank can contain
water (states e1 and e2) or be empty (states e3 and e4). Ob-
serve that B1 uses a cleaning action implementation which
requires water available, though clean can still be performed
by other means—as done by arm B2—and hence it is still le-
gal from environment state e3.

Formally, a behavior over an environment E with set of
states E is a tuple B = 〈B, b0, G, F, %〉, where:

• B is the finite set of behavior states;
• b0 ∈ B is the behavior initial state;
• G ⊆ E is a set of guards over E ;
• F ⊆ B is the set of final states (where B can be stopped);
• % ⊆ B ×G×A×B is the behavior transition relation.

We write b
g,a−→ b′ in B to denote 〈b, g, a, b′〉 ∈ %: action

a can be executed by B in state b when the environment is
in a state e such that e ∈ g, which may lead the behavior
to successor state b′. A behavior B is deterministic if there

are no two transitions b
g1,a−→ b′ and b

g2,a−→ b′′ in B such
that b′ 6= b′′ and g1 ∩ g2 6= ∅. Behaviors B1 and B3 are
deterministic, but not B2 due to the paint transition in b2.

An available system is a tuple S = 〈B1, . . . ,Bn, E〉,
where Bi’s are all the available behaviors over the shared
environment E . Available behaviors and environment could
be non-deterministic, and hence partially controllable. Infor-
mally, the behavior composition task is stated as follows:

Given a system S and a deterministic target behavior
T , is it possible to (partially) control the available be-
haviors in S in a step-by-step manner—by instructing
them on which action to execute next and observing,
afterwards, the outcome in the behavior used—so as to
“realize” the desired target behavior?

In other words, can we adequately control the system so that
it appears as if one was actually executing the target module?

Formally, a controller for target T on system S is a partial
function C : HS ×A 7→ {1, . . . , n}, which, given a history
h ∈ HS of the available system (where HS is, basically,
the set of all finite traces of the asynchronous product of the
available behaviors) and a requested (target-compatible) ac-
tion, returns the index of an available behavior to which the
action in question is delegated for execution. Intuitively, a
controller (fully) realizes a target behavior if for every trace
(i.e., run) of the target, at every step, the controller returns
the index of an available behavior that can perform the re-
quested action. Formally, one first defines when a controller
C realizes a trace of the target T . Then, a controller C real-
izes the target behavior T iff it realizes all its traces. In that
case, C is said to be a composition for target T on system
S. Being a sort of conditional planning problem, it is not
surprising that deciding whether there is a composition of a
target module in an available system, even when the system
is fully deterministic, is EXPTIME-complete.

Composition via Simulation
One of the most significant results is that one can rely on the
notion of simulation relation (Milner 1971) as a formal tool
for solution characterization. Intuitively, a transition system
S1 simulates another transition system S2, if S1 is able to



“match”, step by step, all of S2 moves during execution. At
each step of execution, S2 performs a transition among those
allowed in its current state. If, regardless of how S2 happens
to execute, system S1 can, at each step, choose a transition
that “matches” the one executed by S2, then S1 simulates
S2. In other words, system S1 can “mimic” system S2.

The first step towards a simulation-based account for be-
havior composition is to define the notions of enacted mod-
ules. A module is enacted when it is run in the environment
of concern. So, the enacted target TE represents the target
behavior T when “enacted” in the environment E , and is the
transition system obtained by taking the syncrhnous prod-
uct of T with E . A state 〈t, e〉 of TE represents that the
target behavior is in state t and the environment in state
e. Similarly, the enacted available system SE is defined as
the synchronous product of the environment E with the syn-
chronous product of all available behaviors B1, . . . ,Bn. A
state 〈b1, . . . , bn, e〉 in SE provides a snapshot of the avail-
able system stating that behavior Bi is in state bi and the
environment is in state e.

The second step involves adapting the simulation no-
tion to handle the intrinsic “devilish” nature of the non-
determinism in available behaviors and the environment—
their evolutions cannot be totally controlled. In words, en-
acted system state 〈b1, . . . , bn, e〉 ND-simulates enacted tar-
get state 〈t, e′〉 when (i) the states share the same environ-
ment component (i.e., e = e′); (ii) if the target is in a final
state (i.e., t is final in T ), so is the system (i.e., each bi is
final in Bi); and (iii) for all actions the (enacted) target be-
havior can execute from t, there exists a witness behavior Bk
that can execute the same action in state bk while guarantee-
ing, regardless of non-determinism, preservation of the ND-
simulation property for successor target and system states.

The main result (Theorem 1) then states the following:

A composition controller exists for target T on sys-
tem S iff the initial state of enacted system SE ND-
simulates the initial state of enacted target TE .

Put it differently, there is a way for S, when enacted on
E , to mimic the target module T , when enacted on E . Be-
sides being extremely clean, the simulation-based solution
characterization has the following advantages:

1. It facilitates the use of effective techniques to compute
simulation relations (Henzinger, Henzinger, and Kopke
1995)—modulo slight modifications—to solve the com-
position problem.

2. It provides a crisp complexity characterization (Theo-
rem 2): composition existence can be checked in polyno-
mial time in the number of states of the available behav-
iors, of the environment, and of the target behavior, and in
exponential time in the number of available behaviors.

3. It eases the computation (via local checks) of the so-
called controller generator CG, a finite state transducer
that, given an action a (compliant with the target behav-
ior), outputs, through its function ω, the set of all avail-
able behaviors that can perform a next and preserve ND-
simulation. Importantly, such controller generator encom-
passes and can generate all and only those controllers that

are compositions (Theorem 3): every controller obtained
from CG is a composition and every composition can be
obtained from CG.

4. It supports the systematic handling of several types of fail-
ures (Section 4). Firstly, controller generators can be used
to generate just-in-time composition controllers, that is,
controllers generated on-the-fly as the target and system
are executed. Such controllers provide reactive adaptabil-
ity to temporary unavailability of available behaviors and
unexpected state change of behaviors and environment.
Secondly, when one or more available behaviors become
permanently unavailable or a new available behavior is
added to the available system S, a parsimonious refine-
ment of the solution (i.e., controller generator) at hand
can be performed (Theorems 7 and 8), thus avoiding a
(re)computation of a new solution from scratch.

Composition as a Safety Game
The task of computing an ND-simulation relation, and thus
that of synthesizing a composition, can be cast as that of
checking whether a winning strategy exists in a so-called
safety game. The benefit of this approach is the availabil-
ity of actual systems (e.g., TLV (Pnueli and Shahar 1996),
JTLV (Bloem et al. 2011)) capable of computing, in a space-
efficient manner, the winning strategy of a given game.

A safety-game is a game played by two opponents, sys-
tem and environment,1 controlling the values assigned to a
finite set of variables ranging over finite domains. The set
X of variables is partitioned into the subsets Xs and Xe,
controlled, respectively, by the system and the environment.
The game starts with a fixed initial assignment to all vari-
ables and every turn consists of an environment’s move fol-
lowed by a move of the system. The moves available at each
step to the system and environment players are governed
by two transition relations, ρs and ρe, respectively. Since
such moves depend, in general, on the (current) values of
all all variables (including those not controlled by the acting
player) a player can affect, via its move, the options available
next to the other player. The goal of the system is to keep
the game inside a “safe” area, that is, a set of states where
the assignments to variables satisfy a certain criterion, while
that of the environment is to prevent this. In other words, the
system’s objective is to enforce an invariant. The safe area
is represented by the so-called safety-goal formula. For in-
stance, to guarantee that the values assigned to variables v1
and v2 are always different, one can use the formula v1 6= v2.
A game is said to be winning for the system if the system has
a strategy—a function from the history of visited states to
the next system’s move—which guarantees the game to stay
in the safe area, no matter how the environment plays.

The search for a system’s winning strategy (in fact, all
such strategies) is performed through a fixpoint computa-
tion which isolates the fragment of state space where the
system can force the game to stay in the safe area. Through
a reduction, this procedure can be exploited to compute an
ND-simulation relation (in fact, the largest one).

1Despite the matching names, this environment is unrelated
with the shared environments that behaviors interact with.



The idea behind te reduction is as follows. The environ-
ment player encodes (a) the enacted target behavior, which
selects, at runtime, the action to perform next according
to internal logic; and (b) the asynchronous execution of
the available behaviors, synchronously combined with the
shared environment. This approach is motivated by the fact
that both the action request and the actual evolution of the
available system are not under the system player’s control.
Technically, the environment player is able to control a “re-
quested action” variable ranging over all actions available to
the target and a set of variables capturing the state of all be-
haviors and the shared environment. The transition relation
ρe imposes the rules on such control to mimic the enacted
target and the available system. In turn, the system player is
able to control a distinguished “delegation” variable which
ranges over all available behaviors and states which one is
to be activated at a given point (to fulfill the active request).
Formally, the transition relation ρs allows the delegation of
the current requested action to any behavior, even one that is
not able, in its current state, to perform the action.

Finally, the goal formula expresses the fact that it is al-
ways the case that the action currently selected by the en-
vironment is actually executable by the behavior that the
system player has delegated the action to. That is, the goal
requires that all actions requested by the target behavior, ac-
cording to its transition relation, can be delegated to some
available behavior so that all possible future requests can be
successfully delegated.

Discussion

The framework summarized in this peper can be seen as a
core account for behavior composition, that can be extended
in a number of directions. Several extensions, including dis-
tributed composition, multiple target composition, composi-
tion under partial observability, or composition with data or
high-level programs were proposed (see Section 7).

An important recent development concerns the settings in
which there are no composition solutions. For example, re-
moving any of the three processing arms in Figure 1 or just
removing state b4 from module B2 would render the target
arm T unrealizable. In those cases, a mere “no solution”
answer may be highly unsatisfactory: one would prefer ac-
counts for the “best” possible approach to the composition
instance. Again relying on the ND-simulation notion, (Ya-
dav and Sardina 2012; Yadav et al. 2013) proposed a solu-
tion concept, and a corresponding effective technique, as the
alternative target module that is closest to, though probably
less powerful than, the original target and is fully realizable.
Importantly, such alternative target is provably unique.

We close by noting that besides automated planning, and
synthesis in general, the behavior composition problem is of
interest for several other areas of CS and AI, including in-
telligent multi-agents (e.g., coordination of agents’ teams or
plans), robot-ecologies and ambient intelligence (Bordignon
et al. 2007) (e.g., to achieve advanced functionalities from
a plethora of simple devices), and web-service composi-
tion (Berardi et al. 2003).

Acknowledgements The authors would like to acknowl-
edge the support from the Sapienza Award 2013 “SPIR-
ITLETS: SPIRITLET–based Smart spaces,” and that of the
Australian Research Council (under grant DP120100332).

References
Bacchus, F., and Kabanza, F. 1998. Planning for tempo-
rally extended goals. Annals of Mathematics and Artificial
Intelligence 22(1-2):5–27.
Berardi, D.; Calvanese, D.; De Giacomo, G.; Lenzerini, M.;
and Mecella, M. 2003. Automatic composition of e-Services
that export their behavior. In Proceedings of the Interna-
tional Joint Conference on Service Oriented Computing (IC-
SOC), 43–58.
Bloem, R.; Jobstmann, B.; Piterman, N.; Pnueli, A.; and
Sa’ar, Y. 2011. Synthesis of reactive(1) designs. Journal
of Computer and System Sciences 1–28.
Bordignon, M.; Rashid, J.; Broxvall, M.; and Saffiotti, A.
2007. Seamless integration of robots and tiny embedded
devices in a PEIS-ecology. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), 3101–3106.
Daniele, M.; Traverso, P.; and Vardi, M. 2000. Strong cyclic
planning revisited. Recent Advances in AI Planning 35–48.
De Giacomo, G.; Patrizi, F.; and Sardina, S. 2013. Auto-
matic behavior composition synthesis. Artificial Intelligence
Journal 196:106–142.
Henzinger, M. R.; Henzinger, T. A.; and Kopke, P. W. 1995.
Computing simulations on finite and infinite graphs. In Pro-
cedings of the Annual Symposium on Foundations of Com-
puter Science (FOCS), 453–462.
Milner, R. 1971. An algebraic definition of simulation be-
tween programs. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), 481–489.
Pnueli, A., and Shahar, E. 1996. A platform for combining
deductive with algorithmic verification. In Proceedings of
the International Conference on Computer Aided Verifica-
tion (CAV), 184–195.
Ramirez, M.; Yadav, N.; and Sardina, S. 2013. Behav-
ior composition as fully observable non-deterministic plan-
ning. In Proceedings of the International Conference on Au-
tomated Planning and Scheduling (ICAPS), 180–188.
Schoppers, M. J. 1987. Universal plans for reactive robots
in unpredictable environments. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
1039–1046.
Yadav, N., and Sardina, S. 2012. Qualitative approximate
behavior composition. In Proceedings of the European Con-
ference on Logics in Artificial Intelligence (JELIA), volume
7519 of LNCS, 450–462.
Yadav, N.; Felli, P.; Giuseppe, D.; and Sardina, S. 2013.
Supremal realizability of behaviors with uncontrollable ex-
ogenous events. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), 1176–1182.


