
Verification of Data-Aware Commitment-Based
Multiagent System

Marco Montali Diego Calvanese
KRDB Research Centre for Knowledge and Data

Free University of Bozen-Bolzano, Italy
surname@inf.unibz.it

Giuseppe De Giacomo
Dip. di Ing. Informatica, Automatica e Gestionale

Sapienza Università di Roma, Italy
degiacomo@dis.uniroma1.it

ABSTRACT
In this paper we investigate multiagent systems whose agent inter-
action is based on social commitments that evolve over time, in
presence of (possibly incomplete) data. In particular, we are inter-
ested in modeling and verifying how data maintained by the agents
impact on the dynamics of such systems, and on the evolution of
their commitments. This requires to lift the commitment-related
conditions studied in the literature, which are typically based on
propositional logics, to a first-order setting. To this purpose, we
propose a rich framework for modeling data-aware commitment-
based multiagent systems. In this framework, we study verification
of rich temporal properties, establishing its decidability under the
condition of “state-boundedness”, i.e., data items come from an in-
finite domain but, at every time point, each agent can store only a
bounded number of them.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial
Intelligence—Multiagent Systems; D.2.4 [Software Engi-
neering]: Software/Program Verification

Keywords
Data aware commitments, formal verification, temporal logics, on-
tologies

1. INTRODUCTION
In this paper we investigate multiagent systems (MASs) whose

agent interaction is based on social commitments that evolve over
time, in presence of possibly incomplete data. MASs based on so-
cial commitments have been extensively studied in the literature
[8]. Intuitively, a social commitment CC(d, c, qp, qd) models a re-
lationship between a debtor agent d and a creditor agent c, in which
d commits towards c that, whenever condition qp holds in the sys-
tem, it will bring about condition qd in the following course of inter-
action. Commitments provide a semantics for the agent interaction
that abstracts away from the internal agent implementation, and can
be thus employed to specify business protocols and contracts. The
establishment of commitments is regulated by contracts, which de-
pend on domain-specific events and conditions. Established com-
mitments, in turn, have a lifecycle that is regulated by a so-called
commitment machine [11] on the basis of such contracts.

Appears in: Proceedings of the 13th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2014),
Lomuscio, Scerri, Bazzan, Huhns (eds.), May, 5–9, 2014, Paris,
France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

While in the literature, virtually all the work is based on proposi-
tional contents for such commitments [8], here we explicitly man-
age data described through first-order formalisms, in line with [7].
In other words, we study how data maintained by the agents impact
on the dynamics of such systems, and on the evolution of their com-
mitments. Technically, this requires to lift to first-order the notions
related to contracts, commitments, and commitment machines.

As a result, we obtain a powerful framework of data-aware
commitment-based MASs (DACMASs), which incorporates the
typical notions of commitment-based MASs but in a rich, data-
aware context. In our framework, the commitment machine itself
becomes a special agent, called institutional, which is in charge of
supporting the evolution of the system according to the commit-
ments. In addition, this agent manages core information about the
MAS itself, such as the list of participating agents, which changes
over time as the system unfolds.

Data manipulated by agents are described in terms of a domain
ontology, expressed in a lightweight description logic (DL), tai-
lored towards ontology-based data access. This ontology provides
a common ground for the agent interaction and commitments, es-
tablishing the vocabulary that is shared by all of them. In particular,
we rely on DLR-Lite [5], the n-ary version of the DL at the base of
the OWL 2 QL profile of the OWL 2 W3C standard. Note that
the system dynamics and commitment-machines representation are
orthogonal to how data are represented, and could be recast into a
plain relational setting, at the price of losing the semantic richness
of DL. Each agent has its own data about the domain and the con-
tracts it is involved in, expressed in terms of a DLR-Lite ontology.
Such data are manipulated through actions, in response to events
and according to the commitments in place. At each point in time,
only a finite number of data is present in the system. However, such
data change over time: old data are removed by the agents, and new
data (coming from a countably infinite domain ∆) are inserted.

The main result of this paper is that, when a DACMAS is state-
bounded, i.e., the number of data that are simultaneously present
at each moment in time is bounded, verification of rich temporal
properties becomes decidable. More specifically, we are able to
check DACMASs against properties expressed in a sophisticated
first-order variant of µ-calculus with a controlled form of quan-
tification across states. We do this by exploiting recent results in
[2, 6], and reducing verification of state-bounded DACMASs to
finite-state model checking through a faithful form of abstraction,
essentially obtained by replacing real data items with a finite num-
ber of symbolic values, while correctly preserving the relationships
among the real data items themselves.

2. PRELIMINARIES
Description Logics (DLs) [1] are logics that represent the domain



of interest in terms of objects, concepts, denoting sets of objects,
and relations between objects.

We consider here the DL DLR-Lite [5], which is a DL that be-
longs to the DL-Lite family of lightweight DLs and that is equipped
with relations of arbitrary arity. In DLR-Lite, concepts C and rela-
tions R are built from atomic concepts N and atomic relations P
(of arity ≥ 2) according to:

C −→ N | P [i] | C u C R −→ P | P [i1, . . . , ih]

where h ≥ 2 and for i1, . . . , ih, which denote pairwise dis-
tinct components of relation P , we have that {i1, . . . , ih} ⊆
{1, . . . , n}, where n is the arity of P . Similarly, i ∈ {1, . . . , n}.
Intuitively, u denotes concept conjunction, while P [i1, . . . , im] de-
notes the projection of relation P on its components i1, . . . , im.
This results in a concept if m = 1 and in a relation otherwise.

Formally, the semantics of DLs is given in terms of first-order
interpretations I = (∆I , ·I), where ∆I is a nonempty interpreta-
tion domain, and ·I is an interpretation function, assigning to each
concept C a subset CI of ∆I , and to each n-ary relation R an
n-ary relation RI over ∆I such that

(C1 u C2)I = CI1 ∩ CI2
(P [i1, . . . , im])I = {(o′1, . . . , o′m) | there is ~o ∈ P I s.t.

~o[ij ] = o′j , for j ∈ {1, . . . ,m}}

(Here, ~o[i] denotes the i-th component of tuple ~o.) Also, ·I assigns
to each constant a an object aI of ∆I . We adopt the unique name
assumption, i.e., a1 6= a2 implies aI1 6= aI2 .

In DLs, knowledge about the domain of interest is encoded in
an ontology O = 〈T ,A〉, which is formed by a TBox T , encod-
ing intensional knowledge, and an ABox A, encoding extensional
knowledge about individuals objects.

A DLR-Lite TBox is a finite set of assertions of the form:

E1 v E2 (concept/relation inclusion assertion),
E1 v ¬E2 (concept/relation disjointness assertion),

(key i1, . . . , i`:R) (key assertion),

where R has arity n, and 1 ≤ i1 < i2 < · · · < i` ≤ n. To ensure
decidability of inference, and good computational properties, we
require that no relation P can appear both in a key assertion and in
the right hand side of a relation inclusion assertion [10, 5].

A DLR-Lite ABox is a finite set of assertions of the form:

N(a1) (concept membership assertion),
P (a1, . . . , an) (relation membership assertion),

where P has arity n, and a1, . . . , an denote constants.
The semantics of an ontology is given by stating when an inter-

pretation I satisfies an assertion, where I satisfies: E1 v E2, if
EI1 ⊆ EI2 ; E1 v ¬E2, if EI1 ∩ EI2 = ∅; (key i1, . . . , i`:R), if
there are no two distinct tuples in RI that agree on all their com-
ponents i1, . . . , i`; N(a1), if aI1 ∈ NI ; and P (a1, . . . , an), if
(aI1 , . . . , a

I
n) ∈ P I . A model of an ontology O = 〈T ,A〉 is an

interpretation that satisfies all assertions in T and A. An ontology
O is satisfiable if it has at least one model, and it logically implies
an assertion α, written O |= α, if all models of O satisfy α.

Next we introduce queries, whose answers, as usual in ontolo-
gies, are formed by constants denoting individuals explicitly men-
tioned in the ABox. In the following, when convenient, we identify
a vector ~x with the set of its elements. A union of conjunctive
queries (UCQ) q over an ontology 〈T ,A〉 is a FOL formula of
the form

∨n
i=1 ∃~yi.conj i(~x, ~yi) with free variables ~x and existen-

tially quantified variables ~y1, . . . , ~yn. Each conj i(~x, ~yi) in q is a
conjunction of atoms of the form N(z), P (~z), where N and P re-
spectively denote a concept and a role name occurring in T , and

z, ~z are constants of A or variables in ~x, ~y1, . . . , ~yn. The (certain)
answers to q over 〈T ,A〉 is the set ANS(q, T ,A) of substitutions θ
of the free variables of q with constants inA such that qθ evaluates
to true in every model of 〈T ,A〉, denoted 〈T ,A〉 |= qθ. DLR-
Lite enjoys nice computational properties, in particular w.r.t. query
evaluation: computing the certain answers to a UCQ can be done in
polynomial time in the size of 〈T ,A〉, and in AC0 in the size of A
alone (i.e., in data complexity) [5]. Such result is based on the FOL
rewritability property of DLR-Lite [5], which states that for every
UCQ q and TBox T , we can rewrite q into a new UCQ rewT (q)
such that ANS(q, T ,A) = ANS(rewT (q), ∅,A), for every ABox
A. In other words, the TBox can be “compiled away”.

We also consider ECQs, which are FOL queries whose atoms are
UCQs evaluated according to the certain answer semantics above
[4]. An ECQ over T and A is a possibly open formula of the form
(where q is a UCQ):

Q −→ [q] | ¬Q | Q1 ∧Q2 | ∃x.Q

The (certain) answers to Q over 〈T ,A〉, is the set of substitutions
θ of the free variables of Q with constants in A defined by com-
posing the certain answers of the UCQs q in Q through first-order
constructs, and interpreting existential variables as ranging over the
constants in A only. Hence, the first-order constructs in ECQs are
interpreted under a (weaker) epistemic semantics. ECQs over DLR-
Lite ontologies enjoy the same computational properties as UCQs,
in particular FOL rewritability of query answering [4].

3. FRAMEWORK
We introduce now our framework for modeling DACMASs. For-

mally, a DACMAS is a tuple 〈T , E ,X , I, C,B〉, where: (i) T is a
global DLR-Lite TBox; (ii) E is a set of predicates denoting events
(where the predicate name is the event type, and the arity deter-
mines the content/payload of the event); (iii) X is a finite set of
agent specifications; (iv) I is a (partial) specification for the insti-
tutional agent; (v) C is a contractual specification; (vi) and B is a
Commitment Box (CBox). We discuss each component in detail.

3.1 The Global TBox
The global TBox is used to represent the key concepts, relations

and (semantic) constraints characterizing the domain in which the
agents operate, so as to provide a common ground for the agent
interaction. Part of this TBox is fixed for every agent system, and
is used to model core notions related to the system itself. The ex-
tension of such core notions is maintained by a single, special in-
stitutional agent, which is also responsible for the manipulation of
commitments (cf. Section 3.6). The data maintained by such an
agent are publicly available and can be queried by the other agents,
but only modified by the institutional agent itself. Specifically, the
institutional agent maintains data about the following relations:
• Agent denotes the set of (names of) agents that currently partic-
ipate to the system. Since the institutional agent is always part of
the system, we fix its name as inst, and enforce that inst always
belongs to the extension of Agent.
• Spec, whose extension is immutable, denotes the set of agent
specification names mentioned in X (cf. Section 3.2).
• hasSpec connects agents with their current specification(s):
hasSpec[1] v Agent, hasSpec[2] v Spec.

Each agent, including the institutional agent, maintains a pro-
prietary DLR-Lite ABox, in which it stores its own data. Such
data can be queried only by the agent itself and by the institutional
agent, which exploits the results of such queries to keep track of
the evolution of commitments. Furthermore, each agent progresses
its own ABox during the execution in such a way that it is always



consistent with the global TBox T . Notice that the overall collec-
tion of ABoxes is not assumed to be consistent with the TBox, i.e.,
the TBox assertions are only required to be satisfied by each agent
individually.

Since, in general, queries may involve the ABoxes of several
agents, to disambiguate to which ABox a query atom refers, we
augment the vocabulary of the global TBox with a location argu-
ment that points to an agent. We use R@a(~x) to denote an atomic
query returning the extension of R in the ABox of agent a. If a
does not point to (the name of) an agent currently in the system,
then R@a(~x) evaluates to empty. Beside the special constant inst,
we also use self to implicitly refer to the agent that is posing the
query (similarly to “this” in object-oriented programming). When
clear from the context, we omit @self and just use relations with-
out the location argument. We denote with UCQ` (resp., ECQ`)
the language obtained from UCQ (resp., ECQ) by extending atoms
with a location argument.

3.2 Agent Specifications
In a DACMAS, agents interact by exchanging messages. A mes-

sage is sent by a sender agent to a receiver agent, and is about the
occurrence of an event with a payload, containing data to be com-
municated. All agents but the institutional one are only aware of the
events they send and receive. As for data, the institutional agent has
instead full visibility of all exchanged messages, so as to properly
handle the evolution of commitments.

Agents determine the events they may send, and also how they
react to events, through proactive and reactive rules. Such rules
are grouped into behavioural profiles called agent specifications,
and model: (i) the possible, proactive emission of an event, di-
rected to another agent (communicative rule); (ii) conditional inter-
nal (re)actions, which lead to update the agent ABox when send-
ing/receiving an event to/from another agent (update rule). The
update could result in the insertion of new data items (from the
countably infinite domain ∆), not already present in the system.

The exchange of a message represents a synchronization point
among the sender, receiver and institutional agent. Hence, the re-
action of the three agents is interpreted as a sort of transaction, such
that each of them effectively enforces the update on its own ABox
only if each of the three resulting ABoxes is consistent with T . An
inconsistency could potentially arise when reacting to an event ei-
ther because the same data item is asserted to be member of two
disjoint classes, or because a key assertion is violated.

Formally, an agent specification is a tuple 〈sn,Π〉, where sn is
the specification name, and Π is a set of communicative and update
rules. Such rules are defined over the vocabulary of T and B, and
are applied over the ABoxes of the agent and of inst. This allows
the agent to query the status of commitments and obtain the names
of the other participants.

A communicative rule has the form

Q(r, ~x) enables EV(~x) to r

where Q is an ECQ`, and EV(~x) is an event supported by the sys-
tem, i.e., predicate EV/|~x| belongs to E . The semantics of a com-
municative rule is as follows. Whenever Q(r, ~x) evaluates posi-
tively, the agent autonomously selects one of the answers θ returned
by the query, using it to determine the event receiver and its pay-
load. This states that the ground event EV(~x)θ can be sent by the
agent to rθ, provided that rθ indeed points to an actual agent name
in the system (including the two special names inst and self).

EXAMPLE 3.1. Consider a DACMAS where customers and
sellers interact to exchange goods. We model the behavioural rules

for customers and sellers using two agent specifications. To buy
from a seller, a customer must register to that seller. A registration
request is modeled in the customer specification as:

Spec@inst(sel, seller) enables REQ_REG to sel

Assuming that each seller maintains its customers and items re-
spectively in relations MyCust and Item, the proposal of an item to
a customer is modeled in the seller specification as:

MyCust(m) ∧ Item(i) enables PROPOSE(i) to m

Update rules are ECA-like rules of the form:
• on EV(~x) to r if Q(r, ~x) then α(r, ~x) (on-send)
• on EV(~x) from s if Q(s, ~x) then α(s, ~x) (on-receive)
where EV/|~x| is an event type from E , Q is an ECQ`, and α is an
update action with parameters (described below). Each such rule
triggers when an event is sent to/received from another agent, and
Q holds. This results in the application of α using the actual event
payload and receiver/sender. Action α queries the ABox of the
agent and of inst, using the answers to add and remove facts to the
ABox.

Formally, an update action is an expression α(~p) : {e1, . . . , en},
where α(~p) is the action signature (constituted by the name α and
by a list ~p of parameters), and {e1, . . . , en} are update effects, each
of which has the form

[q+(~p, ~x)] ∧Q−(~p, ~x) add A, del D

• q+ is an UCQ`, andQ− is an ECQ` whose free variables occur
all among those of q+; intuitively, q+ selects a set of tuples from
the agent ABox and that of inst, while Q− filters away some of
them.1 During the execution, the effect is applied with a ground
substitution ~d for the action parameters, and for every answer θ to
the query [q+(~d, ~x)] ∧Q−(~d, ~x).
• A is a set of facts (over the alphabet of T andB) which include as
terms: free variables ~x of q+, action parameters ~p and/or Skolem
terms f(~x, ~p). We use SKOLEM(A) to denote all Skolem terms
mentioned in A. At runtime, whenever a ground Skolem term is
produced by applying θ to A, the agent autonomously substitutes
it with a possibly new data item taken from ∆. This mechanism
is exploited by the agent to inject new data into the system. The
ground set of facts so obtained is added by the agent to its ABox.
• D is a set of facts which include as terms free variables ~x of q+

and action parameters ~p. At runtime, whenever a ground fact in D
is obtained by applying θ, it is removed from the agent ABox.
As in STRIPS, we assume that additions have higher priority than
deletions (i.e., if the same fact is asserted to be added and deleted
during the same execution step, then the fact is added). The
“add A” part (resp., the “del D” part) can be omitted if A = ∅
(resp., if D = ∅).

EXAMPLE 3.2. Consider three possible reaction rules for the
seller. The fact that the seller makes every agent that sends a request
become one of its customers is modeled as:

on ASK_REG from c if true then makeCust(c)

where makeCust(x) : {[true] add{MyCust(x)}}.
Assume now that the seller maintains the item cart for a cus-

tomer, using relation InCart(i, c) to model that item i is in the cart
of c. The seller reaction to an “empty cart” request is modeled as:

on EMPTY_CART_REQ from c if MyCust(c) then doEmpty(c)

1The distinction between q+ and Q− is needed for technical rea-
sons, borrowed from [2].



where doEmtpy(c) : {[InCart(i, c)]  del{InCart(i, c)}}. Note
that the effect is applied to each i in the cart of c.

Consider now the case where the seller receives a new item i to
be sold. It reacts by adding i and deciding its price. This is modeled
with a Skolem term p(i):

on NEW_ITEM(i) from a if true then addItem(i)

where addItem(i) : {[true] add{Item(i),Price(i, p(i))}}.

3.3 Institutional Agent Specification
The institutional agent inst manages the core information of the

DACMAS. Its behaviour is (partially) captured by the institutional
agent specification I, which differs from the other agent specifica-
tions in two respects.

First, since inst is aware of all messages exchanged by the other
agents and can query their ABoxes, its specification is not only
constituted by communicative rules and on-send/on-receive reac-
tive rules, but also by on-exchange rules of the form:

on EV(~x) from s to r if Q(s, r, ~x) then α(s, r, ~x)

where Q and α can query the internal ABox of the institutional
agent, and the ABoxes of s and r. To conveniently specify reactions
of inst that do not depend on a specific event, but trigger whenever
an event is exchanged, we use:

on any event from s to r if Q(s, r) then α(s, r)

Second, I is only a partial specification for inst. In fact, inst is
also responsible for the manipulation of commitments, which re-
sults in a set of additional on-exchange rules that, starting from the
contractual specification (cf. Section 3.4), encode the commitment
machines for the commitments involved in the contract. These
rules are automatically extracted from the contractual specification
(cf. Section 3.6).

EXAMPLE 3.3. Consider a portion of institutional agent spec-
ification, modeling the creation of a new agent whenever inst re-
ceives a request (whose payload denotes the specification to be ini-
tially followed by that agent).

To handle this request, inst uses relation NewA to store a newly
created agent together with is initial specification. The axiom
NewA[1] v ¬Agent is part of T , and enforces that a new agent
has indeed a new name.

The behaviour is defined in two steps. In the first step, inst reacts
to a creation request by choosing an agent name (using Skolem
term n()). The reaction is applied only if there is no pending new
agent to be processed.

on AG_REQ(s) from a if ¬(∃x∃y.NewA(x, y)) then create(s)

create(s) : { [true] add{NewA(n(), s))} }

Note that axiom NewA[1] v ¬Agent ensures that the update is
blocked if the chosen name is already used in the system.

In the second step, inst informs itself that a new agent has to be
processed:

NewA(a, s) enables INSERT_AG(a, s) to self

The corresponding reaction finalizes the insertion of the new agent,
moving it to the set of participating agents:

on INSERT_AG(a, s) from self if true then do_ins(a, s)

do_ins(a, s) : { [true] add{Agent(a),Spec(a, s)},
del{NewA(a, s)} }

3.4 Contractual Specification
The contractual specification C consists of a set of commitment

rules, which are reactive rules similar to on-exchange rules. The
main difference is that, instead of actions, they describe (first-order)
conditional commitments and their creation. Technically, a com-
mitment rule has the form:

on EV(~x) from s to r if Qc(s, r, ~x) (∗)
then CCn(s, r, [q

+
p (s, r, ~x, ~y)] ∧Q−p (s, r, ~x, ~y), Qd(s, r, ~x, ~y))

where n is the commitment name, the ECQ` Qc is the condition for
the creation of the conditional commitment, [qp]

+∧Q−p (where, as
in update effects, q+

p is a UCQ`, and Q−p is an ECQ` whose free
variables all occur among those of q+

p ) is the precondition deter-
mining the generation of a corresponding base-level commitment,
and the ECQ` Qd is the discharge condition for such base-level
commitment. All the aforementioned queries can be posed over the
ABoxes of s, r, and inst. We use GET-CC(C) to extract the set of
conditional commitments contained in C.

According to the literature, commitments are manipulated either
explicitly via specific events (such as a commitment cancellation
or delegation), or implicitly when the commitment precondition or
discharge condition becomes true. The allowed commitment ma-
nipulations, together with the resulting commitment states, are cap-
tured by means of a commitment machine [11]. In this work, we
consider a simple commitment machine, inspired by [11, 12], and
show how to lift it to a first-order setting, taking into account that
in our framework the precondition and the discharge condition are
specified through queries over the data of the involved agents. More
elaborated commitment machines, in terms of events and states, can
be seamlessly incorporated.

Specifically, every commitment in GET-CC(C) is associated to a
specific first-order commitment machine, which is activated using
the corresponding commitment rule in C of the form above, instan-
tiated possibly multiple times, depending on the agent data. The
machine evolves as follows:
1. When an event of type EV is sent by agent a to agent b with
payload ~d, if Qc(a, b,~d) is satisfied, an instance of the conditional
commitment n is created. The debtor, creditor, and payload of this
instance are respectively a, b, and ~d.
2. Such instance is explicitly or implicitly manipulated by the in-
volved agents. Explicit manipulation is done via specific mes-
sage exchanges; we consider in particular the case of delega-
tion from the debtor a to a new debtor, and the case of can-
cellation. Implicitly, instead, the instance can generate one or
more corresponding base-level commitment instances: whenever
[q+
p (a, b,~d,~v)]∧Q−p (a, b,~d,~v) is satisfied with actual values~v for

variables ~y, the conditional commitment instance creates a base-
level commitment instance with payload ~d and ~v. Such base-level
instance is put into the active state. The discharge condition for
this instance is the instantiation of Qd with the involved agents and
specific payload, i.e., a is committed to bring about Qd(a, b,~d,~v).
3. Also a base-level commitment instance is explicitly and implic-
itly manipulated by the involved agents. Explicit manipulation of
an active base-level instance resembles that of conditional commit-
ment instances, with the difference that, when canceled, a base-
level commitment instance enters into the violated state. Implicit
manipulation determines instead the discharge of the instance as
soon as Qd(a, b,~d,~v) holds, moving the instance from active to
satisfied.

EXAMPLE 3.4. Consider a commitment rule establishing a
conditional commitment that the seller takes whenever it accepts



the registration of a customer c. The conditional commitment is
about the delivery of items paid by c. Specifically, for each item
sold by the seller, if c has paid that item, then the seller commits
to ensure that c will hold that item. Note that the two conditions
are correlated by the same item, and that a base-level commitment
is created for each paid item. This cannot be expressed in proposi-
tional logic. Assuming that the seller stores a fact Paid(i, c) if c has
paid for i, and that the customer stores a fact Owned(i) whenever
it owns i, the commitment rule can be specified as:

on ACCEPT_REG from s to c if MyCust@s(c)
then CCDelivery(s, c, [Item@s(i) ∧ Paid@s(i, c)],Owns@c(i))

Note the use of location arguments, reflecting that payments are
maintained by the seller, whereas the items owned by the customer
are maintained by the customer itself.

3.5 Commitment Box
The commitment box B is a set of relations used by inst to main-

tain the concrete instances of conditional commitments, and the in-
stances of their corresponding base-level commitments (with their
states). In fact, due to the presence of data, commitments do not
only require to keep track of the involved agents, but also of the
payload associated to each of their instances. Such relations are
extracted from the contractual specification as follows. Each com-
mitment CCn(s, r, [q

+
p (s, r, ~x, ~y)] ∧ Q−p (s, r, ~x, ~y), Qd(s, r, ~x, ~y))

in GET-CC(C) induces two relations in B, on the basis of the com-
mitment name n and the payloads ~x and ~y: (i) nCC/ar, where
ar = 2 + |~x| for debtor, creditor, and conditional commitment
payload; (ii) nC/ar, where ar = 3 + |~x|+ |~y| for debtor, creditor,
state, and base-level commitment payload.

EXAMPLE 3.5. The commitment in Example 3.4 induces
the following relations in B: DeliveryCC(debtor, creditor) and
DeliveryC(debtor, creditor, state, item).

3.6 Commitment Machine Formalization
As anticipated in Section 3.3, the specification of inst must be

complemented with a set of additional on-exchange rules, used to
properly manipulate the evolution of commitments as the interac-
tion unfolds. Commitment instances are stored by inst using the
vocabulary of the CBox B, and evolved through the application of
these rules. Specifically, these rules ground the (first-order) com-
mitment machine described in Section 3.4 to each specific commit-
ment of GET-CC(C), according to the “templates” described in the
remainder of this section. We denote with CC-RULES(C) all the
commitment manipulation rules produced from C.

When discussing the templates, we refer to a commitment rule
ρ ∈ C of the form (∗) in Section 3.4. Notice that, when n, ~x and ~y
are mentioned in the rule templates, they are meant to be replaced
with the actual commitment name and payload variables.

CC creation. For each ρ ∈ C, a corresponding creation rule is
obtained, depending on n and ~x. When the rule triggers, a new
instance of the conditional commitment nCC is created, with the
actual agents and payload:

on EV(~x) from s to r if Qc(s, r, ~x) then create_nCC (s, r, ~x)

create_nCC (s, r, ~x) : { [true] add{nCC(s, r, ~x)} }

CC delegation. The delegation of a conditional commitment in-
stance for commitment n is triggered when the old debtor do sends
to the new debtor dn a DELEGATE_nCC event, specifying in the
event payload the creditor and the payload of the instance to be

delegated. If such an instance exists, the debtor is updated by inst:

on DELEGATE_nCC(c, ~x) from do to dn
if nCC(do, c, ~x) then changedeb_nCC (do, dn, c, ~x)

changedeb_nCC (do, dn, c, ~x) : { [true] add{nCC(dn, c, ~x)},
del{nCC(do, c, ~x)}}

CC cancelation. The cancelation of a conditional commitment in-
stance for commitment n is triggered when the debtor sends to the
creditor a CANCEL_nCC event, providing the instance payload. If
the instance exists, it is removed:

on CANCEL_CC(~x) from d to c
if nCC(d, c, ~x) then delete_nCC (d, c, ~x)

delete_nCC (d, c, ~x) : { [true] del{nCC(d, c, ~x)} }

C creation. Every conditional commitment instance for relation
nCC creates a base-level commitment instance whenever the pre-
condition (whose variables ~x are grounded with the instance pay-
load) holds with an answer substitution θ for variables ~y. This
results in the creation of a new tuple for relation nC with the ac-
tual, full payload. This does not depend on the specific exchanged
event, but only on the actual configuration of the data. Hence, a
single “any-event” rule can be used to manage the creation of all
base-level instances at once:

on any event from d to c if true then createC (d, c)

where, for each commitment CCn(s, r, [q
+
p (s, r, ~x, ~y)] ∧

Q−p (s, r, ~x, ~y), Qd(s, r, ~x, ~y)) in GET-CC(C), action createC (d, c)
contains the following detachment effect:

[nCC(d, c, ~x) ∧ q+
p (d, c, ~x, ~y)]∧Q−p (d, c, ~x, ~y)

 add {nC(d, c, active, ~x, ~y)}

Differently from the propositional formalization of a commitment
machine, in which the conditional commitment detaches to a base-
level one, in our setting the conditional commitment instance is
maintained, and keeps waiting for other situations matching the
precondition with different data.
C delegation. It resembles the CC delegation:

on DELEGATE_nC(c, ~x, ~y) from do to dn
if nC(do, c, active, ~x, ~y) then changedeb_nC (do, dn, c, ~x)

changedeb_nC (do, dn, c, ~x, ~y) :
{[true] add{nC(dn, c, active, ~x, ~y)}, del{nC(do, c, active, ~x, ~y)}}

C cancelation. It determines a transition for the base-level com-
mitment instance from the active to the violated state:

on CANCEL_C(~x, ~y) from d to c
if nC(d, c, ~x, ~y) then viol_nC (d, c, ~x, ~y)

viol_nC (d, c, ~x, ~y) :
{[true] add{nC(d, c, viol, ~x, ~y)}, del{nC(d, c, active, ~x, ~y)}}

C discharge. Similarly to the case of C creation, the discharge
of base-level commitment instances is handled by a single “any-
event” rule, which checks the discharge condition for each active
commitment instance with the actual payload, evolving the instance
to the satisfied state if it holds:

on any event from d to c if true then dischargeC (d, c)

where, for each CCn(s, r, [q
+
p (s, r, ~x, ~y)] ∧ Q−p (s, r, ~x, ~y),

Qd(s, r, ~x, ~y)) in CC(C), action dischargeC (d, c) contains:

[nC(d, c, active, ~x, ~y)] ∧Qd(d, c, ~x, ~y)
 add{nC(d, c, sat, ~x, ~y)}, del{nC(d, c, active, ~x, ~y)}



C removal. A last “any-event” reactive rule is used by inst to
remove those instances of base-level commitments that already
achieved a final state (sat or viol):

on any event from a to b if true then removeFinal()

where, for each base-level commitment relation nC in B, action
removeFinal() contains:

[nC(d, c, s, ~x, ~y)] ∧ (s = sat ∨ s = viol) del{nC(d, c, s, ~x, ~y)}

EXAMPLE 3.6. Assume that the only rule in C is that of Exam-
ple 3.4. The following CC creation rule is produced

on ACCEPT_REG from s to c if MyCust@s(c)
then create_DeliveryCC (s, c)

create_DeliveryCC (s, c) : {[true] add{DeliveryCC(s, c)}}

Furthermore, the following C creation and C discharge update ac-
tions are produced:

createC (d, c) : {[DeliveryCC(d, c) ∧ Item@d(i) ∧ Paid@d(i, c)]
 add{DeliveryC(d, c, active, i)}}

dischargeC (d, c) : {[DeliveryC(d, c, active, i)] ∧ Owns@c(i)
 add{DeliveryC(d, c, sat, i)}, del{DeliveryC(d, c, active, i)}}

4. EXECUTION SEMANTICS
The execution semantics of a DACMAS is defined in terms of a

transition systems that, starting from a given initial state, accounts
for all the possible system dynamics, considering in particular all
the (possibly infinite) sequences of message exchanges, and all the
possible substitutions that the agents choose during the application
of update actions to provide concrete values for the Skolem terms.

Given a DACMAS S = 〈T , E ,X , I, C,B〉 and an initial state
σ0, the execution semantics of S over σ0 is defined by a transition
system Υσ0

S = 〈∆, T ∪ B,Σ, σ0,⇒〉, where:
• Σ is a (possibly infinite) set of states. Each state σ ∈ Σ is
equipped with a function abox that, given the name a of an agent,
returns the ABox σ.abox(a) of a in σ, if and only if a participates to
the system in state σ. Specifically, σ.abox(inst) is always defined,
and for other agent names a, σ.abox(a) is defined if and only if a
belongs to the extension Agent in σ.abox(inst).
• σ0 ∈ Σ is the initial state. We assume that every ABoxA in σ0 is
such that (T ,A) is satisfiable, and that Spec(sn) ∈ σ0.abox(inst)
if and only if 〈sn, _〉 ∈ X .
• ⇒ ⊆ Σ× Σ is a transition relation.

Instrumental to the definition of the transition system is the ex-
tension of answering ECQ` queries so as to take into account loca-
tion arguments. Formally, given a TBox T , we define that R@b(~x)
holds in state σ from the perspective of agent a under substitution
θ for ~x, written T , σ, a, θ |= R@b(~x), if:2

{
σ.abox(a) is defined and (T , σ.abox(a)) |= R(~x)θ, if bθ = self
σ.abox(bθ) is defined and (T , σ.abox(bθ)) |= R(~x)θ, if bθ 6= self

Note that the semantics supports a sort of dynamic binding of loca-
tion arguments, using θ to substitute a variable location argument
with an agent name. This relation extends in the natural way to
UCQ` and ECQ`, considering that quantification ranges over the
active domain ADOM(σ) of σ, which is defined as the union of the
active domains of the ABoxes maintained by the agents present in
σ. This, in turn, allows us to define the certain answers to Q ob-
tained by agent a in state σ, denoted ANS`(Q, T , σ, a), as the set

2We assume that θ is the identity on data items (including the spe-
cial constants self and inst).

1: procedure BUILD-TS
2: input: DACMAS S = 〈T , E,X , I, C,B〉 and initial state σ0

3: output: Transition system 〈∆, T ∪ B,Σ, σ0,⇒〉
4: Σ := {σ0},⇒ := ∅
5: while true do
6: pick σ ∈ Σ and a ∈ {ag | Agent(ag) ∈ σ.abox(inst)}
7: Fetch all current behavioural rules for a
8: Calculate the enabled events for a and their receiver
9: if There exists at least an enabled event then

10: pick an enabled event EV(~e) for a with receiver b
11: Ai := APPLY(S, σ, inst, a, b, EV(~e)) . New inst ABox
12: Σ := Σ ∪ {σ′} . Tentatively add a new state σ′
13: for all x ∈ {ag | Agent(ag) ∈ Ai} do
14: σ′.abox(x) := APPLY(S, σ, x, a, b, EV(~e))

15: if for every x ∈ {ag | Agent(ag) ∈ Ai}, 〈T , σ′.abox(x)〉 is
satisfiable then⇒ :=⇒∪ 〈σ, σ′〉

16: else Σ := Σ \ {σ′} . Inconsistent execution step
17: function APPLY(S, σ, x, a, b, EV(~e))
18: output: new ABox for x after reacting to EV(~e) from a to b
19: if x 6∈ {inst, a, b} then return σ.abox(x)

20: Fetch all current behavioural rules for x
21: if x = a then . x is the sender agent
22: Fetch all on-send and “self” on-receive rules and compute actions

with actual params
23: if x = b then . x is the receiver agent
24: Fetch all on-receive and “self” on-send rules and compute actions

with actual param
25: if x = inst then . x is the institutional agent
26: Fetch all matching and “any-event” on-exchange rules and com-

pute actions with actual param
27: TOADD := ∅, TODEL := ∅
28: for all α(~v) ∈ ACT do . ACT = set of fetched actions
29: TOADDSK := ∅
30: for all effect “[q+(~p, ~x)] ∧Q−(~p, ~x)  add A, del D” in the

definition of α do
31: for all θ ∈ ANS`([q

+(~v, ~x)] ∧Q−(~v, ~x), T , σ, x) do
32: TOADDSK := TOADDSK ∪Aθ[~p/~v]
33: TODEL := TODEL ∪Dθ[~p/~v]

34: pick a substitution θsk of the Skolem terms with data
35: TOADD := TOADD ∪ TOADDSKθsk
36: if x = inst then TOADD := TOADD ∪ {Agent(inst)}
37: return (σ.abox(x) \ TODEL) ∪ TOADD

Figure 1: Transition system construction

of substitutions θ for the free variables in Q such that Q holds in
state σ from the perspective of a, i.e.,

ANS`(Q, T , σ, a) = {θ | T , σ, a, θ |= Q}.

The construction of the transition system Υσ0
S is given in Fig-

ure 1. From a given state, a successor state is nondeterministically
computed as follows: (i) a sender agent is picked from the set of
active agents; (ii) the communicative rules of the sender agent are
evaluated, determining the set of enabled (ground) events with des-
tinations; (iii) an enabled event with destination is picked from such
set; (iv) the sender, destination and institutional agents react to the
picked event by evaluating their update rules, and by executing the
corresponding actions. In general, the resulting transition system
is infinite-branching, due to the agent choices when injecting new
data into their ABoxes, and contains infinite runs, due to the possi-
bly infinitely many different facts stored in such ABoxes over time.

5. VERIFICATION OF DACMAS
To specify dynamic properties over DACMASs, we use a first-

order variant of µ-calculus [13, 6]. µ-calculus is virtually the most
powerful temporal logic used for model checking of finite-state
transition systems, and is able to express both linear time logics



such as LTL and PSL, and branching time logics such as CTL and
CTL* [9]. Technically, µ-calculus separates local properties, as-
serted on the current state or on states that are immediate succes-
sors of the current one, from properties talking about states that
are arbitrarily far away from the current one [13]. The latter are
expressed through the use of fixpoints.

In our variant of µ-calculus, local properties are expressed as
ECQ` queries over the current state of the DACMAS. At the same
time we allow for a controlled form of first-order quantification
across states, inspired by [2, 6], where the quantification ranges
over data items across time only as long as such items persist in the
active domain. Formally, we define the logic µLECQ`

p as:

Φ ::= Q` | ¬Φ | Φ1 ∧ Φ2 | ∃x.LIVE(x) ∧ Φ |
LIVE(~x) ∧ 〈−〉Φ | LIVE(~x) ∧ [−]Φ | Z | µZ.Φ

where Q is a (possibly open) ECQ` query, in which the only
constants that may appear are those in the initial state of the
system, Z is a second order predicate variable (of arity 0),
and LIVE(x1, . . . , xn) abbreviates

∧
i∈{1,...,n} LIVE(xi). For

µLECQ`
p , the following assumption holds: in LIVE(~x) ∧ 〈−〉Φ and

LIVE(~x) ∧ [−]Φ, the variables ~x are exactly the free variables of
Φ, once we substitute to each bounded predicate variable Z in Φ
its bounding formula µZ.Φ′. We adopt the usual abbreviations,
including νZ.Φ for greatest fixpoints.

Intuitively, the use of LIVE(·) in µLECQ`
p ensures that data items

are only considered if they persist along the system evolution, while
the evaluation of a formula with data that are not present in the
current state trivially leads to false or true. This is in line with
DACMASs, where the evolution of a commitment instance persists
until the commitment is discharged or canceled, and where an agent
name is meaningful only while it persists in the system: when an
agent leaves the system and its name a is canceled by inst, inst
could reuse a in the future to identify another agent.

The formula µZ.Φ denotes the least fixpoint of the formula Φ.
As usual in µ-calculus, formulae of the form µZ.Φ must obey to
the syntactic monotonicity of Φ w.r.t. Z, which states that every oc-
currence of the variable Z in Φ must be within the scope of an even
number of negation symbols. This ensures that the least fixpoint
µZ.Φ always exists.

The semantics of µLECQ`
p formulae is defined over a possibly in-

finite transition system Υ = 〈∆, T ∪ B,Σ, σ0,⇒〉 (cf. Section 4),
assuming that ECQ` queries are posed from the point of view of
inst. This does not prevent the possibility to query the ABoxes
of the other agents, thanks to the dynamic binding for location ar-
guments. Since µLECQ`

p contains formulae with both individual
and predicate free variables, we introduce an individual variable
valuation v, i.e., a mapping from individual variables x to ∆, and
a predicate variable valuation V , i.e., a mapping from the predi-
cate variables Z to subsets of Σ. With these three notions in place,
we assign meaning to formulae by associating to Υ, v, and V an
extension function (·)Υ

v,V , which maps formulae to subsets of Σ.
Formally, the extension function (·)Υ

v,V is defined inductively as
shown in Figure 2.

When Φ is a closed formula, (Φ)Υ
v,V does not depend on v or

V , and we denote the extension of Φ simply by (Φ)Υ. A closed
formula Φ holds in a state s ∈ Σ if s ∈ (Φ)Υ. In this case, we
write Υ, s |= Φ. Given DACMAS S, an initial state σ0 and a
µLECQ`

p formula Φ, we are interested in the following verification
problem: Υσ0

S , σ0 |= Φ.

EXAMPLE 5.1. Consider the contract of Example 3.4. As-
sume that T contains the axiom MyGoldCust v MyCust, where

(Q`)
Υ
v,V = {σ ∈ Σ | T , σ, inst, v |= Q`}

(¬Φ)Υ
v,V = Σ \ (Φ)Υ

v,V

(Φ1 ∧ Φ2)Υ
v,V = (Φ1)Υ

v,V ∩ (Φ2)Υ
v,V

(∃x.LIVE(x) ∧ Φ)Υ
v,V = {σ ∈ Σ | ∃d ∈ ADOM(σ).σ ∈ (Φ)Υ

v[x/d],V
}

(LIVE(~x) ∧ 〈−〉Φ)Υ
v,V = {σ ∈ Σ | ~x/~d ∈ v implies ~d ⊆ ADOM(σ)

and ∃σ′.σ ⇒ σ′ and σ′ ∈ (Φ)Υ
v,V }

(LIVE(~x) ∧ [−]Φ)Υ
v,V = {σ ∈ Σ | ~x/~d ∈ v implies ~d ⊆ ADOM(σ)

and ∀σ′.σ ⇒ σ′ implies σ′ ∈ (Φ)Υ
v,V }

(Z)Υ
v,V = V (Z)

(µZ.Φ)Υ
v,V =

⋂
{E ⊆ Σ | (Φ)Υ

v,V [Z/E]
⊆ E}

Figure 2: Semantics of µLECQ`
p

MyGoldCust denotes the gold customers of a seller. The following
µLECQ`

p property models that, for every delivery base-level com-
mitment instance a seller has towards one of its gold customers,
there must exist a run where the instance persists in the system un-
til it is eventually satisfied.

νZ.(∀s, c, i.DeliveryC(s, c, active, i) ∧MyGoldCust@s(c)
→ µY.(DeliveryC(s, c, sat, i)) ∨ (LIVE(s, c, i) ∧ 〈−〉Y )) ∧ [−]Z

5.1 State Boundedness and Decidability
The number of states of Υσ0

S is in general infinite, and verifi-
cation of (even propositional) temporal properties of simple forms
(e.g., reachability) turns out to be undecidable [2, 6]. This calls
for identifying interesting classes of DACMASs for which verifica-
tion is decidable. Recently, the notion of state-bounded system has
been proposed in the context of both data-aware business processes
[2] and MASs [3], as an interesting condition that ensures decid-
ability of verification for rich first-order temporal properties, while
reflecting naturally occurring working assumptions in real-world
systems. Intuitively, state-boundedness allows for encountering in-
finitely many different data during the evolution of the system, pro-
vided that such data do not accumulate in a single state.

We take this general notion and adapt it to DACMASs. In par-
ticular, a DACMAS is state-bounded if, for every agent active in
the system, there exists a bound on the number of data items si-
multaneously stored in its ABox. Since the ABox of inst stores the
names of the active agents, this implicitly bounds also the number
of simultaneously active agents. Observe, however, that the overall
number of data items (and hence also agents) encountered across
and along the runs of the system can still be infinite. With this
notion in place, we are able to prove the key result of this paper:

THEOREM 5.1. Verifying state-bounded DACMASs against
µLECQ`

p properties is decidable and reducible to finite-state model
checking.

PROOF SKETCH. The crux is to encode a state-bounded DAC-
MAS S into a state-bounded Data-Centric Dynamic System
(DCDS) D [2], and the µLECQ`

p property Φ of interest into a µLp
property [2]. The encoding is done by flattening S as follows:
1. We compile away the TBox T by (i) rewriting all ECQ` con-
tained in S and in the formula using the inclusion assertions
of T [4, 5] (maintaining the location arguments unaltered), and
(ii) rewriting the disjointness and key assertions in T into denial
constraints to be checked over the data [5], and adding these to D.
2. We unify all the ABoxes at the different agents into a single re-
lational database where every relation has an additional parameter
that denotes the name of the agent. Accordingly, we reformulate



the queries obtained at the previous step into this new vocabulary.
Φ is in this way translated into a property Φ′ that belongs to µLp.
3. We use events with parameters of S as actions for D. The com-
municative rules will formulate the process, which controls when
actions can be executed and over which parameters, while the up-
date rules will formulate the action specifications. For each event,
we group the effects involved in the corresponding update rules,
reformulating each effect

[q+] ∧Q−  add{A1, . . . , An}, del{D1, . . . , Dm}

into the equivalent set of “singleton” effects

[q+] ∧Q− ∧Qr  add{A1} · · · [q+] ∧Q− ∧Qr  add{An}
[q+] ∧Q− ∧Qr  del{D1} · · · [q+] ∧Q− ∧Qr  del{Dm}

where Qr is the condition contained in the update rule from which
the effect is extracted. We then translate all the obtained singleton
effects into corresponding DCDS effects. The main difficulty is
dealing with add and delete lists, instead of a complete reconstruc-
tion of the resulting data store required by DCDS. As for deletions,
for every relation R in the vocabulary of the database, each single-
ton deletion effect ei related to R is fetched, where

ei = [q+
i (~p, ~x)] ∧Q−i (~p, ~x) ∧Qr(~p) del{R(~y)}

and ~y is contained in ~p ∪ ~x. Notice that, in D, the free variables
ofQr correspond by construction to the parameters ~p of the action.
From such rules, the following unique effect is produced, to main-
tain all those tuples in R that are not deleted by any of the deletion
effects (resembling a frame axiom for R):

[R(~z)]∧¬
∨
ei

(q+
i (~p, ~x′)∧Q+

i (~p, ~x′)∧Qr(~p)∧eq ′(~z, ~y)) R(~z)

where (i) eq(~z, ~y) denotes the transitive symmetric closure of the
component-wise equality between ~z and ~y, (ii) the vector of vari-
ables ~x′ is obtained from ~x by replacing each variable x with the
variable of ~z that is equated to x via eq(~z, ~y), and (iii) eq ′(~z, ~y)
is the conjunction of equalities obtained from eq(~z, ~y) by filtering
away those equalities that contain a variable not in ~z ∪ ~p. Sin-
gleton addition effects are instead simply kept unaltered in the ob-
tained specification. This respects the fact that in DACMAS addi-
tions have priority over deletions: if the same fact is asserted to be
deleted and added at the same time, the deletion DCDS effect does
not transfer the tuple, but the addition DCDS effect does it.
The encoding is correct, in the sense that D faithfully reproduces
the execution semantics of S. Specifically, S and σ0 verify Φ if and
only ifD (and the initial state corresponding to σ0) verify Φ′. Also,
S is state-bounded if and only ifD is state-bounded. [2] shows that
verification of µLp properties over state-bounded DCDSs is de-
cidable, and reducible to conventional, finite-state model checking.
This is done by constructing a faithful, abstract transition system
that verifies the same µLp properties of the original one. Thanks
to the correctness of the encoding, this abstraction can be used to
faithfully verify properties of S as well.

6. CONCLUSION
DACMASs are readily implementable in standard technolo-

gies such as JADE (which supports dynamic agent creation) and
lightweight ontologies. Observe that a system execution requires
polynomial time at each step (actually logspace w.r.t. the data, as
any system based on relational databases). Only offline verification
of the system is (as usual) exponential in the representation. Our
framework complements that of [7], which employs data-aware
commitments to monitor a system execution and track the state of
commitment instances, but cannot be exploited for static analysis.

We have shown here how to encode DACMASs into DCDSs,
so as to lift the key decidability results in [2] on verification of
state-bounded DCDSs, to the case of state-bounded DACMASs.
State-boundedness is a semantic condition that is undecidable to
check [2]. Sufficient syntactic conditions over the action effects
that ensure state boundedness are proposed in [2]. Such conditions
can, in principle, be lifted to DACMASs as well. This is matter
of ongoing work. We also consider extending our framework with
the possibility of checking epistemic properties, in the line of [3].
Notice that, if instead of relying on the µ-calculus, we rely on CTL,
we can relax the persistence requirement in the logic, as in [3].

Acknowledgements. This research has been partially supported by
the EU IP Project Optique (Scalable End-user Access to Big Data),
grant agreement n. FP7-318338, and by the Sapienza Award 2013
“SPIRITLETS: SPIRITLET–based Smart spaces”.

7. REFERENCES
[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F.

Patel-Schneider, editors. The Description Logic Handbook:
Theory, Implementation and Applications. Cambridge
University Press, 2003.

[2] B. Bagheri Hariri, D. Calvanese, G. De Giacomo,
A. Deutsch, and M. Montali. Verification of relational
data-centric dynamic systems with external services. In Proc.
of the 32nd ACM SIGACT SIGMOD SIGART Symp. on
Principles of Database Systems (PODS), 2013.

[3] F. Belardinelli, A. Lomuscio, and F. Patrizi. An abstraction
technique for the verification of artifact-centric systems. In
Proc. of the 13th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR), pages 319–328, 2012.

[4] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and
R. Rosati. EQL-Lite: Effective first-order query processing
in description logics. In Proc. of the 20th Int. Joint Conf. on
Artificial Intelligence (IJCAI), pages 274–279, 2007.

[5] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and
R. Rosati. Data complexity of query answering in description
logics. Artificial Intelligence, 195:335–360, 2013.

[6] D. Calvanese, G. De Giacomo, M. Montali, and F. Patrizi.
Verification and synthesis in description logic based dynamic
systems. In Proc. of the 7th Int. Conf. on Web Reasoning and
Rule Systems (RR), pages 50–64. Springer, 2013.

[7] F. Chesani, P. Mello, M. Montali, and P. Torroni.
Representing and monitoring social commitments using the
event calculus. J. of Autonomous Agents and Multi-Agent
Systems, 27(1):85–130, 2013.

[8] A. K. Chopra and M. P. Singh. Multiagent Systems: A
Modern Approach to Distributed Artificial Intelligence,
chapter Agent Communication, pages 101–141. The MIT
Press, 2013.

[9] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
checking. The MIT Press, 1999.

[10] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo,
M. Lenzerini, and R. Rosati. Linking data to ontologies. J. on
Data Semantics, X:133–173, 2008.

[11] M. P. Singh. Formalizing communication protocols for
multiagent systems. In Proc. of the 20th Int. Joint Conf. on
Artificial Intelligence (IJCAI), pages 1519–1524, 2007.

[12] M. P. Singh, A. K. Chopra, and N. Desai.
Commitment-based service-oriented architecture. IEEE
Computer, 42(11):72–79, 2009.

[13] C. Stirling. Modal and Temporal Properties of Processes.
Springer, 2001.


