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Abstract
The behavior composition problem involves the au-
tomatic synthesis of a controller able to “realize”
(i.e., implement) a desired target behavior speci-
fication by suitably coordinating a set of already
available behaviors. While the problem has been
thoroughly studied, one open issue has resisted a
principled solution: if the target specification is
not fully realizable, is there a way to realize it “at
best”? In this paper we answer positively, by show-
ing that there exists a unique supremal realizable
target behavior satisfying the specification. More
importantly we give an effective procedure to com-
pute such a target. Then, we introduce exogenous
events, and show that the supremal can again be
computed, though this time, into two variants, de-
pending on the ability to observe such events.

1 Introduction
The behavior composition problem amounts to whether a
set of available, though partially controllable, behavior mod-
ules (e.g., smart robotic devices such as automatic blinds and
lights, audio and screen devices, video cameras) can be suit-
ably coordinated (i.e., composed) in a way that it appears as
if a desired but non-existent target behavior (e.g., a house en-
tertainment or surveillance system) is being executed. The
problem is appealing in that with computers now present in
everyday devices like phones, cars and planes or places like
homes, offices and factories, the trend is to build embedded
complex systems from a collection of simple components. In-
deed, the composition problem has been studied in various ar-
eas of computer science, including (web) services [Balbiani
et al., 2008], AI reasoning about action [Sardina et al., 2008;
Stroeder and Pagnucco, 2009; De Giacomo et al., 2013], ver-
ification [Lustig and Vardi, 2009], and robotics [Bordignon
et al., 2007]. From an AI perspective, a behavior refers to
the abstract operational model of a device or program, and is
generally represented as a nondeterministic transition system.

The classical behavior composition task has been exten-
sively investigated in the recent literature (see [De Giacomo et
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al., 2013] for an extensive review). However, one open issue
has resisted principled solutions: if the target specification
is not fully realizable, is there a way to realize it “at best”?
Stroeder and Pagnucco [2009] were the first to highlight this
issue and proposed a search-based method that could even-
tually be adapted to compute approximate solutions “close”
to the perfect one. However, they did not detail what those
“approximations” look like. Then, Yadav and Sardina [2012]
developed an account of “approximate” composition where
the task is to return an alternative target closest to the original
one, but fully solvable. While their proposal, based on the
formal notion of simulation, comes as a principled general-
ization of the classical framework, it did not provide ways to
actually compute such solutions for the general case, but only
for the special case of deterministic behaviors.

In this paper, we present a novel technique to effectively
build the largest realizable fragment—the “supremal”—of a
given target specification for the general composition case
in which available behaviors may be nondeterministic. The
technique relies on two simple and well-known operations
over transition systems (or state models), namely, cross prod-
uct and belief-level state construction. In doing so, we pro-
vide an elegant result on the uniqueness of such fragments.

Then, we investigate—inspired by work on AI reason-
ing about action [Reiter, 2001] and on discrete event sys-
tems [Cassandras and Lafortune, 2006]—the composition
task in the presence of exogenous events. These are special
events that behaviors may spontaneously generate, such as
the light bulb of a projector fusing when turned on. Impor-
tantly, such events are uncontrollable and their occurrence
cannot be disabled. As a result, we obtain a strictly more gen-
eral composition framework. We demonstrate that the supre-
mal realizable target can again be defined and computed.
However, this time, solutions come into two variants, depend-
ing on the ability of the target’s user to observe such events.
If exogenous events can be observed by the user, then the
supremal fragment may be conditional on such events (e.g.,
if the projector’s light bulb fuses, the user may only request
changing the bulb). Otherwise, the supremal ought to be com-
formant to all possible exogenous events that may ensue.

2 Preliminaries
We briefly review the classical composition framework [Sar-
dina et al., 2008; Stroeder and Pagnucco, 2009; De Giacomo



et al., 2013]. We omit wlog the environment for simplicity.

Behavior A behavior represents the operational logic of a
device or a program and it is modeled using a finite transition
system. Formally, a behavior is a tuple B = 〈B,A, b0, %〉,
where:

• B is the finite set of behavior’s states;
• A is the set of actions;
• b0 ∈ B is the initial state;
• % ⊆ B × A × B is the behavior’s transition relation,

where 〈b, a, b′〉 ∈ %, or b a−→ b′ in B, denotes that action
a executed in behavior state b may lead the behavior to
successor state b′.

Observe that since behaviors may be nondeterministic, one
cannot know beforehand what actions will be available to ex-
ecute after an action is performed in a state, as the next set
of applicable actions would depend on the successor state in
which the behavior happens to be in. Hence, we say that non-
deterministic behaviors are only partially controllable. A de-
terministic behavior is one where the successor state is always
uniquely determined—a fully controllable behavior.

Available System The system stands for a collection of be-
haviors that are at disposal. Technically, an available system
is a tuple S = 〈B1, . . . ,Bn〉, where Bi = 〈Bi,Ai, bi0, %i〉,
for i ∈ {1, . . . , n}, is a, possibly nondeterministic, behav-
ior, called an available behavior in the system. To refer to
the behavior that emerges from the joint execution of avail-
able behaviors, the notion enacted system behavior is used in
the literature [De Giacomo et al., 2013]. The enacted system
behavior of a system S is a tuple ES = 〈S,AS , s0, δ〉, where:

• S = B1 × · · · ×Bn is the finite set of ES ’s states; when
s = 〈b1, . . . , bn〉, we denote bi by behi(s), for i ≤ n;

• AS =
⋃n
i=1Ai is the set of actions of ES ;

• s0 = 〈b10, . . . , bn0〉 ∈ S is ES ’s initial state;

• δ ⊆ S×AS×{1, . . . , n}×S is ES ’s transition relation,

where 〈s, a, k, s′〉 ∈ δ, or s
a,k−→ s′ in ES , iff:

– behk(s)
a−→ behk(s′) in Bk; and

– behi(s) = behi(s′), for i ∈ {1, . . . , n} \ {k}.

Target Specification A target behavior specification T =
〈T,AT , t0, %T 〉 is a behavior specification that stands for the
desired, though not directly available, functionality to be ob-
tained. Following in particular [Yadav and Sardina, 2012],
the idea is that the user agent is meant to request transitions
in T in a step-by-step fashion, and the action in the chosen
transition is suitably delegated by a controller to one of the
available behavior of the system.

So, informally, the behavior composition task can be stated
as follows: Given a system S and a target behavior T , is it
possible to (partially) control the available behaviors in S in
a step-by-step manner—by instructing them on which action
to execute next and observing, afterwards, the outcome in the

behavior used—so as to “realize” the desired target behav-
ior. In other words, by adequately controlling the system, it
appears as if one was actually executing the target behavior.

Consider the presentation room scenario depicted in Fig-
ure 1, ignoring all dashed transitions. There are two avail-
able behaviors, a projector BP and a speaker system BA. The
projector allows setting of the SOURCE and WARMUP of the
device in any order, followed by turning it OFF. The speaker
on the other hand can simply be toggled on/off. The question
then is whether these two devices are enough to be able to run
the desired target behavior T . The answer, in this case, is yes.

Exact Compositions via Simulation Though technically
involved, one can formally define when a so-called controller,
a function taking a run of the system and the next action
request and outputting the index of the available behavior
where the action is being delegated, realizes the target behav-
ior; see [De Giacomo and Sardina, 2007; De Giacomo et al.,
2013]. Such controllers are called exact compositions, solu-
tions to the composition problem guaranteeing the complete
realization of the target in the system. In our presentation
room example, there exists an exact composition for target
behavior T in available system 〈BP ,BA〉.

An interesting and much used result links exact compo-
sitions to the formal notion of simulation [Milner, 1971].
A simulation relation captures the behavioral equivalence of
two transition systems. Intuitively, a (transition) system S1

“simulates” another system S2, denoted S2 � S1, if S1 is
able to match all of S2’s moves. Thus, Sardina et al. [2008]
defined a so-called ND-simulation (nondeterministic simula-
tion) relation between (the states of) the target behavior T and
(the states of) the enacted system ES , denoted�ND, and prove
that there exists an exact composition for a target behavior T
on an available system S iff T �ND ES , that is, the enacted
system can ND-simulate the target behavior. While in this
paper we do not really need the details of ND-simulation, the
plain notion of simulation plays a key role, so let us intro-
duce it formally. Let Ti = 〈Si,A, si0, %i〉, where i ∈ {1, 2},
be two transition systems. A simulation relation of T2 by
T1 is a relation Sim ⊆ S2 × S1 such that 〈s2, s1〉 ∈ Sim iff:
∀a, s′2.〈s2, a, s

′
2〉 ∈ %2 ⇒ ∃s′1〈s1, a, s

′
1〉∈ %1∧〈s′2, s′1〉∈Sim.

We say that a state s2 ∈ S2 is simulated by a state s1 ∈ S1

(or s1 simulates s2), denoted s2 � s1, iff there exists a sim-
ulation relation Sim of T2 by T1 such that 〈s2, s1〉 ∈ Sim.
Observe that relation � is itself a simulation relation (of T2

by T1), and in fact, it is the largest simulation relation, in
that all simulation relations are contained in it. We say that a
transition system T1 simulates another transition system T2,
denoted T2 � T1, if it is the case that s20 � s10. Two tran-
sition systems are said to be simulation equivalent, denoted
T1 ∼ T2, whenever they simulate each other.

Approximated Compositions The classical composition
task described above has been extensively studied in the lit-
erature and various extensions—e.g., distributed and multi-
target composition, composition under uncertainty—have
been developed (see [De Giacomo et al., 2013] for a com-
prehensive review). However, such frameworks may prove



insufficient for composition instances admitting no exact so-
lutions (i.e., unsolvable instances)—a mere “no solution” an-
swer may be highly unsatisfactory in many settings.

The first one to concretely deal with this issue was Stroeder
and Pagnucco [2009]. In their work, they claimed that their
search-based method “can easily be used to calculate approx-
imations,” that is, controllers that may not qualify as exact
solutions but come “close” (enough) to them. They argue
approximations are useful when no exact solution exists and
when one is willing to trade faster solutions at the expense
of incompleteness (of target realizability). Nonetheless, the
authors did not provide a semantics of what these “approxi-
mations” are and what “closeness” means, both were left as
important future work.

Later, Yadav and Sardina [2012] looked closer at a com-
position framework that can better accommodate unsolvable
instances. In doing so, however, they proposed to focus on
approximating the target, rather than the controller. To that
end, they defined, based on the notion of simulation, what
they called target approximations, namely, alternative target
behaviors that are “contained” in the original target while en-
joying exact composition solutions. In turn, they defined the
optimal target approximation as that one which is “closest”
possible to the original target (and that is fully realized by
some controller). In fact, they showed that such an optimal
target is unique. They also provided a technique to compute
such a solution, but only for the special case of deterministic
behaviors. Here, we will provide a general technique as well
as the complexity characterization of the problem.

3 Supremal Realizable Target Behavior
We adopt the approach of Yadav and Sardina [2012] to define
the notion of realizable target from a target specification. We
do not call it “approximation” in light of the extension with
exogenous events that we study later. Indeed, once exoge-
nous events are mentioned in the target specification, such a
specification is not directly a target behavior anymore.

Formally, we say that behavior T̃ is a realizable target be-
havior (RTB) of target specification T in system S iff

1. T̃ � T (that is, T̃ is “contained” in T );
2. T̃ �ND ES , i.e, there is an exact composition for T̃ on
S (that is, it is fully realizable).

Notice that we elected “simulation” as the measure for com-
paring target behaviors. In particular if T1 � T2 this means
that an agent can mimic the behavior T1 by suitably choosing
the transitions to traverse in T2. If T1 and T2 are simulation
equivalent (i.e., T1 � T2 and T2 � T1) then the agent can
mimic exactly one behavior using the other one, hence from
the point of view of the agent the two behaviors are identical.

A behavior T̃ is “the” supremal realizable target behavior
(SRTB) of target T on system S iff T̃ is a RTB of T in S and
there is no RTB T̃ ′ such that T̃ ≺ T̃ ′, that is, T̃ is the largest
realizable fragment of T . It can be shown that the SRTB is
unique up to simulation equivalence.

We provide a simple and elegant characterization of SRTB
as follows. Let T1 ∪ T2 = 〈T,A, t10, %〉, where Ti =
〈Ti,Ai, ti0, %i〉 have disjoint states, be the resulting unified

(target) behavior where T2’s initial state is merged with T1’s:
(i) T = T1 ∪ (T2 \ {t20}); (ii) A = A1 ∪ A2; and % =

%1∪%2|t10t20 (%|t′t is relation % with all states t replaced with t′).

Theorem 1 Let T̃1 and T̃2 be two RTB for target specification
T in system S. Then T̃1 ∪ T̃2 is an RTB for T in S too.

In words, RTBs are closed under union. With this in mind,
it is not hard to see that one can build the largest RTB—the
supremal—by taking the union of all realizable targets.

Theorem 2 Let S be a system and T be a target. Then the
SRTB T ∗ of T in S is: T ∗ =

⋃
T̃ is a RTB of T in S T̃ .

Notice that any T̃ which is simulation equivalent to T ∗ is also
“the” SRTB (we focus on semantics not syntax here).

Obviously, it remains to be seen if the SRTB can actu-
ally be computed and represented finitely. This is what we
do next. Our technique to synthesize the SRTB relies on
two simple operations on transition systems, namely, a spe-
cific synchronous product and a conformance enforcing pro-
cedure. Roughly speaking, the technique is as follows:

1. We take the synchronous product of the enacted system
ES and the target T , yielding the structure F〈S,T 〉.

2. We modify F〈S,T 〉 to enforce conformance on its states
which cannot be distinguished by the user of the target.

In fact the second step is needed only when the system in-
cludes nondeterministic available behaviors.

Full enacted system The full enacted system models the
behavior that emerges from joint parallel execution of the
enacted system and the target. Formally, given the enacted
system ES = 〈S,AS , s0, δ〉 for a system S = 〈B1, . . . ,Bn〉
and a target specification T = 〈T,AT , t0, %T 〉, the full en-
acted system of T and S, denoted by T × ES , is a tuple
F〈S,T 〉 = 〈F,AF , f0, γ〉, where:

• F = S × T is the finite set of F〈S,T 〉’s states; when
f = 〈s, t〉, we denote s by sys(f) and t by tgt(f);
• f0 = 〈s0, t0〉 ∈ F , is F〈S,T 〉’s initial state;
• AF = AS ∪ AT (note that we allow for AS 6= AT );
• γ ⊆ F × AF × {1, . . . , n} × F is F〈S,T 〉’s transition

relation, where 〈f, a, k, f ′〉∈γ, or f
a,k−→f ′ in F〈S,T 〉 iff

• tgt(f)
a−→ tgt(f ′) in T ; and

• sys(f)
a,k−→ sys(f ′) in ES .

Observe that the transition relation of the full enacted sys-
tem requires both the enacted system and the target to evolve
jointly: the full enacted system is the synchronous product of
the target specification and the enacted system.

As expected, the synchronous product (once we project out
the indexes {1, . . . , n}) is simulated by both the enacted sys-
tem and the target (i.e., T × ES � ES and T × ES � T ).
If the system includes only deterministic available behavior
the regular simulation T × ES � ES suffices to conclude that
the composition exists (ND-simulation is not needed in this
case) [Sardina et al., 2008] . Hence, by Theorem 2, if avail-
able behaviours are deterministic T × ES is included in, and
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Figure 1: Media room scenario consisting of a projec-
tor, speaker and a target specification (see text for details).
Dashed transitions denote uncontrollable exogenous events.

simulation by, T ∗. The converse can be shown along the line
suggested in [Yadav and Sardina, 2012]. Hence:

Theorem 3 Let S = 〈B1, . . . ,Bn〉 be a deterministic avail-
able system and T = 〈T,AT , t0, %T 〉 a target specification
behavior. Then, F〈S,T 〉 is the SRTB of T in S.

Also from the construction of F〈S,T 〉 we can conclude that
building the SRTB of T in S can be done in exponential time
in the number of behaviors and polynomial in the number of
states in each behavior.

When we consider nondeterministic available modules,
and hence resort to ND-simulation, this is not true anymore.
Indeed, there are examples where T × ES �ND ES does not
hold due to the nondeterminism present in ES . In those cases,
the full enacted system is a sort of target behavior in which
agent transition requests are conditional on the nondetermin-
istic execution of available behaviors. However, the agent
using the target is not meant to have observability on such be-
haviors, and so it cannot decide its request upon such contin-
gencies. Figure 2 shows one such case. Take product T × ES
as a candidate for SRTB. After fulfilling transition request
q0

a−→ q2 using module B1, the next request q2
c−→ q0 can

only be honored if B1 happens to evolve to state b2, but this
is not guaranteed. Therefore, T × ES cannot be realized by
B1 and hence it is not an RTB of T in S.

What we need, is the target to be conformant, i.e., indepen-
dent of conditions on the available behaviors states. Hence
inspired by the literature on planning under uncertainty we
construct a sort of belief states, and in turn, the belief level full
enacted system. The idea behind generating the belief states
is to track the states where the enacted system could evolve.
Given a full enacted system F〈S,T 〉 = 〈F,AF , f0, γ〉 for a
target T = 〈T,AT , t0, %T 〉 and a system S = 〈B1, . . . ,Bn〉
where Bi = 〈Bi,Ai, bi0, %i〉 for i ≤ n, the belief-level full
enacted system is a tuple K〈S,T 〉 = 〈Q,AF , q0, δK〉, where:

• Q = 2(B1×···×Bn) × T is K〈S,T 〉’s set of states; when
q = 〈{s1, . . . , s`}, t〉 ∈ Q we denote {s1, . . . , s`} by
sys(q) and t by tgt(q);
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Figure 2: Instance where full enacted system is not a RTB

• q0 =〈{s0}, t0〉 such that f0 =〈s0, t0〉, is the initial state;
• δK ⊆ Q×A×Q is K〈S,T 〉’s transition relation, where
〈〈S, t〉, a, 〈S′, t′〉〉∈δK iff :

• there exists a set Indx = {〈s1 : k1〉, . . ., 〈s` : k`〉}
such that {s1, . . . , s`} = S; and 〈si, t〉

a,ki−→ 〈s′, t′〉
in F〈S,T 〉 for all i ≤ `; that is, the action a must be
executable from all enacted system states in S; and

• S′ =
⋃
〈s:i〉∈Indx{s′ | 〈〈s, t〉, a, i, 〈s′, t′〉〉 ∈ γ};

that is, S′ should contain all successors of enacted
system states in S resulting from action a.

Observe, K〈S,T 〉 is nondeterministic with respect to target
evolutions and different behavior delegations. Note also that
K〈S,T 〉 can be built in time 2O(|B|n) where |B| is the number
of states of the largest behavior in S, and n is the number
of available behaviors in S. Observe, however, that K〈S,T 〉
can be computed on-the-fly in a step-wise fashion: given the
current belief state q we can generate the next possible states
without looking at any other state in Q.

Next, we show that K〈S,T 〉 is the finite representation of
SRTB T ∗ of target T in system S (see Theorem 2).

Theorem 4 Let S be an available system and T a target
specification behavior. Then, K〈S,T 〉 is the SRTB of T in S.

PROOF (SKETCH). Let T ∗ be the SRTB of T in S. Suppose
T ∗ is not simulated byK〈S,T 〉. Therefore, there exists a finite
trace τ ′ of a RTB T ′ contained in T ∗ whose last transition
cannot be simulated by any trace of K〈S,T 〉. Observe, there
exists a trace τ of T such that τ simulates τ ′. Moreover, there
exists a set of traces Γ in S, induced as a result of realizing
τ ′. Using τ and Γ we construct a trace τK of K〈S,T 〉 such
that, each state τK[i] comprises of τ [i] and set of states Γ[i],
where x[i] denotes the i-th state of trace x, and Γ[i] is the
union of ith state of each trace in Γ. Such a trace τK is a legal
trace of K〈S,T 〉 and simulates τ ′, thereby, contradicting our
assumption. Since, by construction, K〈S,T 〉 is a RTB of T
in S, by definition it is contained in T ∗. Therefore, T ∗ and
K〈S,T 〉 are simulation equivalent.

We note some similarities in the use of belief-level behav-
iors with the work in [De Giacomo et al., 2009] for compo-
sition under partial observability of the available behaviors.
There the controller required to be conformant, here instead
the target behavior must be so.

4 Composition with Exogenous Events
With an effective technique to synthesize the supremal real-
izable target at hand, we now turn to the second contribution



of this paper. Inspired by discrete event systems [Cassan-
dras and Lafortune, 2006] and reasoning about action work
for dynamic systems [Reiter, 2001], we show here how to
accommodate exogenous uncontrollable events into the com-
position framework in a parsimonious manner. In doing so, it
will come clear how robust and elaboration tolerant the defi-
nition of SRTBs and the technique to compute them are.

Let us return to our presentation room example in Fig-
ure 1. Suppose that when the projector’s light bulb is on—
after WARMUP has been executed—it may FUSE anytime and
requires the device to be repaired. Similarly, if a source is
set before warming up the projector, an ERROR may occur
and the projector will need to be RESET. The occurrence
of both events—FUSE and ERROR—is outside the control of
the client or the controller, they occur spontaneously. Hence,
they are akin to exogenous events in reasoning about action
literature [Reiter, 2001] and uncontrollable events in discrete
event systems [Cassandras and Lafortune, 2006].

Next, we extend the classical composition framework from
Section 2 with exogenous events. To that end, we assume that
the set of actions A in a behavior is partitioned into domain
(AC) and exogenous (AU ) events, that is,A = AC ∪AU and
AC ∩ AU = ∅. Furthermore, as standard in discrete event
systems, we assume exogenous events to be deterministic.1

We note that exogenous events play an inherently different
role in available behaviors than nondeterminism. Exogenous
(uncontrollable) events may happen anytime from a relevant
state (e.g., p1 in BP ), which allows modeling of concepts
such as delayed uncertainty. Moreover, whereas nondeter-
minism is not observable to the target’s user (in fact, the user
agent is not even aware of the internal logic of available be-
haviors), exogenous events may be. Hence, the user of the
projector room may be able to observe the light bulb fusing.

When it comes to the target specification, exogenous event
transitions represent those transitions that are accounted—
accepted—by the target but outside the controller of the user
of the target. Thus, when the target is in state t2, it only allows
one exogenous event, namely, event FUSE, whose occurrence
will cause the target to evolve to state t6 where its user is only
allowed to request repairing the projector.

Since the user may be able to observe exogenous events,
we can now consider—unlike standard composition—two
types of composition solutions. Following planning terminol-
ogy, a conditional SRTB is one that assumes the user is able
to observe exogenous events, whereas a conformant SRTB is
one where such events are non-observable to the user.

In this section, we formally define conditional and con-
formant solution concepts and explain how to generalize the
technique developed in Section 3 to compute such solutions.

Enacted and full enacted system The formal definitions
of the enacted system and the full enacted system remain
same, except we assume the action set to be partitioned into
controllable actions and uncontrollable exogenous events. In
addition, given a full enacted system F〈S,T 〉 = 〈F,ACF ∪
AUF , f0, γ〉 for an enacted system ES = 〈S,ACS ∪ AUS , s0, δ〉

1Should this not be the case, we can model the various outcomes
with different uncontrollable exogenous events.

and a target specification T = 〈T,ACT ∪ AUT , t0, %T 〉, we de-
fine set ∆〈S,T 〉 as those states in F〈S,T 〉 from where prohib-
ited exogenous events may fire. Formally,

∆〈S,T 〉={〈s, t〉 | 〈s, α, k, s′〉∈δ, ∀t′〈t, α, t′〉 6∈%T : α∈AUS }.

4.1 Conditional SRTBs
When it comes to formally defining conditional SRTBs, in-
terestingly, the definition of SRTBs from the classical frame-
work (see Section 3) fits as is. However, we need to define
exact solutions in the context of exogenous events. We do
this by extending the ND-simulation relation in the light of
exogenous events.

A transition system T̃ = 〈T̃ , ÃCT ∪ ÃUT , t̃0, %̃T 〉 is a condi-
tional-RTB for a target T = 〈T,ACT ∪AUT , t0, %T 〉 in system S
with enacted system ES = 〈S,ACS ∪AUS , s0, δ〉 iff T̃ � T and
〈t̃0, s0〉 ∈ C where C ⊆ T̃ × S is the conditional simulation
relation of T̃ by ES such that 〈t̃, s〉 ∈ C iff:

1. ∀t̃′ ∀a ∈ ÃCT ∃k ∀s′(〈t̃, a, t̃′〉 ∈ %̃T ⇒ 〈s, a, k, s′〉 ∈ δ)
such that 〈t̃′, s′〉 ∈ C; and

2. ∀α ∈ AUS ,∀k(〈s, α, k, s′〉 ∈ δ ⇒ 〈t̃, α, t̃′〉 ∈ %̃T ) such
that 〈t̃′, s′〉 ∈ C.

The first condition (analogous to ND-simulation) requires
all controllable actions of the RTB to be feasible. The sec-
ond defines how uncontrollable exogenous events should be
treated: since they are uncontrollable, their occurrences must
be allowed in the target. If we want to prevent the occurrence
of some exogenous event this can only be done by cutting
some controllable action ahead of exogenous event’s possible
occurrence. This is related to the notion of controllability in
discrete event systems [Wonham and Ramadge, 1987].

As usual, a conditional RTB is supremal iff it is not strictly
simulated by any other conditional RTB. Consider our me-
dia room example (Figure 1), T̃2 is conditioned on FUSE and
prohibits ERROR. Indeed, while realizing T̃2, it is guaranteed
that ERROR will never occur.

Computing conditional SRTBs When it comes to comput-
ing conditional-SRTBs, we modify the belief level construc-
tion to allow for exogenous events. Notice that exogenous
events are considered to be observable in this case, so we can
use their occurrence to refine the belief states in the belief-
level full enacted system. This leads to the following def-
inition: given a belief level full enacted system K〈S,T 〉 =

〈Q,ACF ∪ AUF , q0, δK〉 for full enacted system F〈S,T 〉 =

〈F,ACF ∪AUF , f0, γ〉, the conditional belief-level full enacted
system is a tuple KC〈S,T 〉 = 〈QC ,ACF ∪ AUF , q0, δ

C
K〉, where:

• QC = Q \ {〈S, t〉 | 〈s, t〉 ∈ ∆〈S,T 〉, s ∈ S}; that is,
prohibited exogenous events should never occur;
• δCK ⊆ Q×A×Q is KC〈S,T 〉’s transition relation, where
〈〈S, t〉, a, 〈S′, t′〉〉∈δCK iff :

• a ∈ ACF and 〈〈S, t〉, a, 〈S′, t′〉〉∈δK ; that is, action
a should be executable from all enacted states; and

• a∈AUF and S′={s′ | 〈〈s, t〉, a, k, 〈s′, t′〉〉∈γ, s∈S};
we revise belief state if an exogenous event occurs.



Next result shows that the conditional belief-level full enacted
system is the SRTB in this context.

Theorem 5 Let S be an available system and T a target
spec. Then, KC〈S,T 〉 is the conditional-SRTB of T in S .

4.2 Conformant SRTBs
Conformant solutions guarantee realizability in absence of
any observation over exogenous events. For example, the
conformant solution T̃1 in Figure 1 contains a very restricted
subset of the target as, if the bulb is fused then the projec-
tor cannot be operated again without a REPAIR. Solutions
of such type are stricter, promising execution irrespective of
which uncontrollable events occur. This provides robustness
in modelling as one can still prevent unacceptable conditions
under non-observability at runtime. We say a RTB to be con-
formant if it does not include any exogenous event, that is,
AUT = ∅. Note, the target specification (problem input) is al-
lowed to have exogenous events, however, a conformant RTB
must have compiled them away. More precisely, a transition
system T̃ = 〈T̃ , ÃCT , t̃0, %̃T 〉 is a conformant-RTB for a target
T = 〈T,ACT ∪ AUT , t0, %T 〉 in system S with enacted system
ES = 〈S,ACS ∪AUS , s0, δ〉 iff T̃ � T and 〈t̃0, s0〉 ∈ Z where
Z ⊆ T̃ ×S is the conformant simulation relation of T̃ by ES
such that 〈t̃, s〉 ∈ Z iff:

1. ∀t̃ ∀a ∃k∀s′(〈t̃, a, t̃′〉 ∈ %̃T ⇒ 〈s, a, k, s′〉 ∈ δ) such
that 〈t̃′, s′〉 ∈ Z;

2. ∀α ∈ AUS , ∀k(〈s, α, k, s′〉 ∈ δ ⇒ 〈t̃, s′〉 ∈ Z); and

3. ∀α ∈ AUS ,∀k(〈s, α, k, s′〉 ∈ δ ∧ 〈t̃, t〉 ∈�⇒〈t, α, t′〉 ∈
%T ) such that 〈t̃, t′〉 ∈�.

The first condition is analogous to the usual ND-simulation
one. The second condition requires occurring of exogenous
events should retain the simulation relation. The third condi-
tion enforces only permitted exogenous events to ever occur
in the system. As usual, a conformant RTB is supremal iff it
is not strictly simulated by any other conformant RTB.

Computing conformant SRTBs Conformant solutions re-
quire realizability guarantee irrespective of any nondetermin-
istic or exogenous evolution. In order to include them in
the belief-level system we first define what we call as the
ε−closure of a state. That is, where all could the system be
as a result of an exogenous event from that state. Formally,
given a full enacted system F〈S,T 〉 = 〈F,ACF ∪ AUF , f0, γ〉
and a state f ∈ F , the ε−closure of f , denoted by ε(f), is
defined recursively as follows:

1. f ∈ ε(f), that is, the state itself is in the closure;

2. ∀α∈ AUF , ∀f ∈ ε(f) (f
α,k−→ f ′ ∈ γ ⇒ f ′ ∈ ε(f)), that

is, all exogenous event reachable states are included; and

3. Nothing else except for 1 and 2 should be in ε(f).

Next, we re-define the belief level full enacted system
to accommodate exogenous events. Here, we consider the
ε−closure in both the initial state and the transition rela-
tion. Given a full enacted system F〈S,T 〉 = 〈F,ACF ∪

AUF , f0, γ〉 for a target T = 〈T,AT , t0, %T 〉 and a system
S = 〈B1, . . . ,Bn〉, the conformant belief-level full enacted
system is a tuple KZ〈S,T 〉 = 〈Q,ACF , q0, δK〉, where:

• Q = 2(B1×···×Bn×T ) \ {S | s ∈ ∆〈S,T 〉, s ∈ S};
• q0 =ε(f0) is KZ〈S,T 〉’s initial state;
• δK ⊆ Q×A×Q, where 〈S, a, S′〉∈δK iff :

• there exists a set Indx = {〈s1 : k1〉, . . ., 〈s` : k`〉}
such that {s1, . . . , s`} = S; si

a,ki−→ s′i in F〈S,T 〉
for all i ≤ `; and for all i, j ≤ ` if tgt(si) = tgt(sj),
then tgt(s′i) = tgt(s′j); and

• S′ =
⋃
〈s:i〉∈Indx{ε(s′)|〈s, a, i, s′〉 ∈ γ}, that is, S′

should contain the ε−closure of all successors of
enacted system states in S resulting from action a.

Note, the belief level full enacted system is now exponen-
tial also on the target states. Observe, if the target specifica-
tion allows all exogenous events at any point then the com-
plexity in regards to the target will no longer be exponential.
Theorem 6 Let S be an available system and T a target
spec. Then, KZ〈S,T 〉 is the conformant-SRTB of T in S.

5 Conclusion and Future work
In this paper, we proved that every classical behavior com-
position problem instance has an optimal supremal solution
(Theorem 2) and that such supremal can be effectively built
using cross-product between transition systems and belief-
level state construction operations combined (Theorem 4).
What is more, borrowing notions from discrete-event systems
and reasoning about action, we showed how to accommodate
exogenous uncontrollable events to obtain a more expressive
composition framework (Section 4). We demonstrated that
the definitions and techniques for supremal fragments can be
adapted to this new framework (Theorems 5 and 6).

Many issues remain to be investigated. First, we aim to
confirm the conjecture that our technique builds SRTBs that
are optimal wrt worst-case complexity, thus implying that
synthesis of supremals is, in general, more difficult than syn-
thesis of exact composition controllers.

Second, our approach to realizing a target specification to
the “best” possible is developed within a strict uncertainty
context. This contrasts with the decision-theoretic approach
of Yadav and Sardina [2011], where they proposed to opti-
mize the expected reward of controllers. It would be interest-
ing to adopt such a quantitative framework focusing on targets
and devising a suitable decision-theoretic notion of SRTBs.

Finally, one may devise approaches that trade optimality
for faster computation, such as restricting realizable target
fragments to merely removing transitions from the original
target specification, bounding its number of states, or com-
puting it in anytime fashion. This paper provides principled
means to assess the quality of such approximate approaches.

We close the paper by noting that there are some interesting
links between behavior composition in AI and work on con-
trollability in discrete event systems [Cassandras and Lafor-
tune, 2006; Sun et al., 2010]. Exploring those links is indeed
worth investigating as it can facilitate synergies between these
two different fields.
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A Proofs
We first define few technical notions required for the proofs.

Given a trace τ = s0
a1−→ · · · an−→ sn, we denote the state si

by τ [i], the label ai by τ〈i〉, and prefix s0
a1−→ · · · ai−→ si by

τ [0, i], where i ≤ n. Given a set of traces Γ, let Pos(Γ, i) =
{s | s = τ [i], τ ∈ Γ} be the function that returns the set of ith

state from all traces in Γ. The function ω(s
a−→ s′,A) takes a

transition s a−→ s′ as input and returns the action a if a ∈ A,
else it returns ε (empty). Let the function act-seq(τ,A) return
the action sequence of τ consisting only of actions included
in A. Formally,

act-seq(s0
a1−→· · · a

n

−→ sn,A) =

ω(s0
a1−→s1,A) · · ·ω(sn−1

an−→ sn,A)

Given a state τ [i] of trace τ let ε(τ, i) be the set of states
reachable from τ [i] by zero or more exogenous events in τ .
Formally,

ε(τ, i) = {s | τ [i]
αi+1−→ · · · αi+`−→ s, αi+j ∈ AX , 0 ≤ j ≤ `}.

Theorem 4 Let S be an available system and T a target
specification behavior. Then, K〈S,T 〉 is the SRTB of T in S.
PROOF. We will prove that K〈S,T 〉 and the SRTB T ∗ of T
in S are simulation equivalent.

Proof for T ∗ � K〈S,T 〉: First, will show that all RTB’s are
simulated by K〈S,T 〉. Let T ′ = 〈T ′,A′, t′0, %′T 〉 be a RTB of
T in S. Assume T ′ 6� K〈S,T 〉, that is, T ′ is not simulated by

K〈S,T 〉. Let τT ′ = t′0
a1−→ · · · an−→ t′n be a trace of T ′ such

that τT ′ cannot be simulated state-wise by any trace ofK〈S,T 〉
and the simulation breaks at a state t′n−1. We show that this is
impossible since, we can build a legal trace of K〈S,T 〉 which
can simulate the entire τ ′.

As T ′ is a RTB of T in S , it holds that T ′ � T (T ′ is
simulated by T ) and T ′ �ND ES (T ′ has an exact solution in
S). Therefore, there exists a trace of T

τT = t0
a1−→ · · · a

n

−→ tn

such that t′i � ti for all i ≤ n;

Let us define ΓS as the maximal set of traces s0
a1,k1−→

· · ·a
n,kn−→ sn of enacted system ES of S, such that:

1. t′i �ND si, i ≤ n, i.e., which copy the target trace τT ′ =

t′0
a1−→ · · · a

n

−→ t′n;
2. they do so through transitions labelled by ai, ki for i ≤ n

such that for any two traces τ1, τ2 ∈ ΓS it is the case that
if τ1[i] = τ2[i], then τ1〈i〉 = τ2〈i〉.

Since, T ′ is realizable in S we know that at least one com-
position exists. Therefore, ΓS will not be empty. Notice that,
because of condition 2 above, there may be several such max-
imal sets. We nondeterministically take one.

Now, consider a trace τK = q0
a1−→ · · · an−→ qn such that

qi = 〈Pos(ΓS , i), τT [i]〉 for all i ≤ n. The idea behind Pos is
to return all states where the enacted system could be in. We
show τK is a legal trace of K〈S,T 〉, that is, it consists of legal
states and transitions. We start by observing that:

• τK[i]=〈{s1, . . ., s`}, t〉, where {s1, . . ., s`}=Pos(ΓS , i)
and t = τT [i], is a legal state of K〈S,T 〉 for all i ≤ n;

• τK[0] is the initial state of K〈S,T 〉.
Then we proceed by induction on n.

• For n = 0, we have that the trace τK[0] consisting only
of the initial state is trivially legal.

• By inductive hypothesis let us assume that q0
a1−→

· · · ai−→ qi (for i < n) is a legal trace of K〈S,T 〉, and

we show that also q0
a1−→ · · · a

i+1

−→ qi+1 is a legal trace
of K〈S,T 〉.

Consider the transition qi
ai+1

−→ qi+1 of τK. Let
Pos(ΓS , i) = {s1, . . . , s`}. Since τ ′ is realizable, there

exists sj
ai+1,ki+1

j−→ s′j in ES for j ≤ ` and ti
ai+1

−→ ti+1

in T . Hence, there exists exactly one set of indices
(see definition of ΓS , condition 2), Indx = {〈s1 :
k1〉, . . . , 〈s` : k`〉}, one per each element in Pos(ΓS , i),

such that 〈s, τT [i]〉 ai+1,ki+1

−→ 〈s′, τT [i+ 1]〉 in F〈S,T 〉
where s ∈ Pos(ΓS , i), s′ ∈ Pos(ΓS , i + 1) and 〈s :

ki+1〉 ∈ Indx. That is, qi
ai+1

−→ qi+1 in K〈S,T 〉.

So, RTB T ′ is simulated by K〈S,T 〉 (once we project out
the indexes {1, . . . , n}), that is, T ′ � K〈S,T 〉. From theo-
rem 1 we know that union of two RTB’s is an RTB, therefore
T ∗ is also a RTB. Consequently, T ∗ � K〈S,T 〉.

To proof K〈S,T 〉 � T ∗, we simply observe that K〈S,T 〉
is an RTB, since by construction, we have K〈S,T 〉 � T and
K〈S,T 〉 �ND ES . Hence K〈S,T 〉 by theorem 1 K〈S,T 〉 is in-
cluded in, and thus simulated by, T ∗.

To proove K〈S,T 〉 � T ∗, we simply observe that K〈S,T 〉
is an RTB, by construction, we have K〈S,T 〉 � T and
K〈S,T 〉 �ND ES . Hence K〈S,T 〉 by theorem 1 K〈S,T 〉 is in-
cluded in, and thus simulated by, T ∗.

Theorem 5 Let S be an available system and T a target
spec. Then, KC〈S,T 〉 is the conditional-SRTB of T in S .

PROOF. We will prove thatKC〈S,T 〉 and the conditional SRTB
T ∗ of T in S are simulation equivalent. The proof is simi-
lar to that of theorem 4 except here we consider exogenous
events.

Proof for T ∗ � KC〈S,T 〉: First, will show that all condi-
tional RTB’s are simulated by KC〈S,T 〉. Let T ′ = 〈T ′,A′C ∪
A′U , t′0, %′T 〉 be a conditional RTB of T in S. Assume
T ′ 6� KC〈S,T 〉, that is, T ′ is not simulated by KC〈S,T 〉. Let

τT ′ = t′0
a1−→ · · · an−→ t′n be a trace of T ′ such that τT ′ can-

not be simulated state-wise by any trace of K〈S,T 〉 and the
simulation breaks at a state t′n−1. We show that this is impos-
sible since, we can build a legal trace of KC〈S,T 〉 which can
simulate the entire τ ′. Note, now the traces can have both
controllable actions and allowed exogenous events.



As T ′ is a RTB of T in S, it holds that T ′ � T (T ′ is
simulated by T ) and T ′ �C ES (T ′ has an exact solution in
S). Therefore, there exists a trace of T

τT = t0
a1−→ · · · a

n

−→ tn
such that t′i � ti for all i ≤ n;

Let us define ΓS as the maximal set of traces s0
a1,k1−→

· · · a
`,k`−→ s`, where ` ≤ n, of enacted system ES of S, such

that:
1. t′i �C si, i ≤ n, i.e., which may be induced while real-

izing the RTB trace τT ′ = t′0
a1−→ · · · a

n

−→ t′n;
2. for all traces τS ∈ ΓS it is the case that

act-seq(τS,AC)=act-seq(τ ′[0, i],AC) for some i ≤ n;
3. they do so through transitions labelled by ai, ki for i ≤ n

such that for any two traces τ1, τ2 ∈ ΓS it is the case
that if τ1[i] = τ2[i], then τ1〈i〉 = τ2〈i〉 for controllable
actions in τ1 and τ2. Since exogenous events are uncon-
trollable, we cannot put any restrictions on them.

Note, since exogenous events are uncontrollable ΓS may in-
clude system traces where the exogenous event may not fire
as per τ ′. That is, for every exogenous event at location i of
τ ′, there will be a system trace exactly of length i. Since, T ′
is realizable in S we know that at least one composition ex-
ists. Therefore, ΓS will not be empty. Notice that, because of
condition 2 above, there may be several such maximal sets.
We nondeterministically take one.

Now, consider a trace τK = q0
a1−→ · · · an−→ qn such that

qi = 〈Pos(ΓS , i), τT [i]〉 for all i ≤ n. The idea behind Pos is
to return all states where the enacted system could be in. We
show τK is a legal trace of KC〈S,T 〉, that is, it consists of legal
states and transitions. We start by observing that:
• τK[i]=〈{s1, . . ., s`}, t〉, where {s1, . . ., s`}=Pos(ΓS , i)

and t = τT [i], is a legal state of KC〈S,T 〉 for all i ≤ n;

• τK[0] is the initial state of KC〈S,T 〉.
Then we proceed by induction on n.
• For n = 0, we have that the trace τK[0] consisting only

of the initial state is trivially legal.

• By inductive hypothesis let us assume that q0
a1−→

· · · ai−→ qi (for i < n) is a legal trace of KC〈S,T 〉, and

we show that also q0
a1−→ · · · a

i+1

−→ qi+1 is a legal trace
of KC〈S,T 〉.

Consider the transition qi
ai+1

−→ qi+1 of τK. Let
Pos(ΓS , i) = {s1, . . . , s`}. Since τ ′ is realizable, there

exists sj
ai+1,ki+1

j−→ s′j in ES for j ≤ ` and ti
ai+1

−→ ti+1

in T . Hence, there exists exactly one set of indices
(see definition of ΓS , condition 2), Indx = {〈s1 :
k1〉, . . . , 〈s` : k`〉}, one per each element in Pos(ΓS , i),

such that 〈s, τT [i]〉 ai+1,ki+1

−→ 〈s′, τT [i+ 1]〉 in F〈S,T 〉
where s ∈ Pos(ΓS , i), s′ ∈ Pos(ΓS , i + 1) and 〈s :

ki+1〉 ∈ Indx. That is, qi
ai+1

−→ qi+1 in KC〈S,T 〉.

So, RTB T ′ is simulated by KC〈S,T 〉 (once we project out
the indexes {1, . . . , n}), that is, T ′ � KC〈S,T 〉. From theo-
rem 1 we know that union of two RTB’s is an RTB, therefore
T ∗ is also a RTB. Consequently, T ∗ � KC〈S,T 〉.

To proof KC〈S,T 〉 � T
∗, we simply observe that KC〈S,T 〉

is an RTB, by construction, we have KC〈S,T 〉 � T and
K〈S,T 〉 �C ES . Hence K〈S,T 〉 by theorem 1 KC〈S,T 〉 is in-
cluded in, and thus simulated by, T ∗.

Theorem 6 Let S be an available system and T a target
spec. Then, KZ〈S,T 〉 is the conformant-SRTB of T in S.

PROOF. We will prove that KZ〈S,T 〉 and the SRTB T ∗ of T
in S are simulation equivalent.

Proof for T ∗ � KZ〈S,T 〉: First, will show that all RTB’s are
simulated by KZ〈S,T 〉. Let T ′ = 〈T ′,A′, t′0, %′T 〉 be a RTB of
T in S. Assume T ′ 6� KZ〈S,T 〉, that is, T ′ is not simulated by

KZ〈S,T 〉. Let τT ′ = t′0
a1−→ · · · an−→ t′n be a trace of T ′ such

that τT ′ cannot be simulated state-wise by any trace ofKX〈S,T 〉
and the simulation breaks at a state t′n−1. We show that this is
impossible since, we can build a legal trace of KZ〈S,T 〉 which
can simulate the entire τ ′.

As T ′ is a RTB of T in S , it holds that T ′ � T (T ′ is
simulated by T ) and T ′ �Z ES (T ′ has an exact composition
in S). Note, this time since T ′ is a conformant RTB, it may
be simulated by more than one trace of T . Therefore, there

exists a set of traces of T such that τ = t0
a1−→ · · · a`−→ t` ∈

ΓT , where ` ≥ n iff:

1. act-seq(τ ′T ,AC) = act-seq(τT ,AC), the sequence of
controllable actions is same; and

2. if t′i � tj , where i ≤ j, i ≤ n, j ≤ `, then either
t′i � tj+1 or t′i+1 � tj+1; the simulation relation is
maintained across exogenous events in the target spec.

Let us define ΓS as the maximal set of traces τS = s0
a1S ,k1−→

· · ·a
m
S ,km−→ sm, where m ≥ n, of enacted system ES of S, such

that:

1. if t′i �Z sj , where i ≤ j, i ≤ n, j ≤ m, then either
t′i �Z sj+1 or t′i+1 �Z sj+1;

2. act-seq(τ ′T ,AC) = act-seq(τS ,AC), the x-enacted sys-
tem traces can copy the RTB trace τ ′;

3. they do so through transitions labelled by ai, ki for i ≤ n
such that for any two traces τ1, τ2 ∈ ΓS it is the case that
if τ1[i] = τ2[i], then τ1〈i〉 = τ2〈i〉.

Note, since only allowed exogenous events occur, the induced
system traces will correspond to the target spec traces in ΓT .
Since, T ′ is realizable in S we know that at least one com-
position exists. Therefore, ΓS will not be empty. Notice that,
because of condition 3 above, there may be several such max-
imal sets. We nondeterministically take one.

We observe that due to exogenous events the enacted sys-
tem traces may be longer in length than the target trace. Given



an action sequence ~a = a1 . . . an and a trace τ1, let τ~a1 denote
the shortest prefix of τ1 such that act-seq(τ~a1 ,AC) = ~a.

Now, consider a trace τK = q0
a1−→ · · · an−→ qn such that

qi = 〈PosZ(ΓS ,ΓT , i)〉 for all i ≤ n where:

PosZ(ΓS ,ΓT , i) =⋃
τ1∈ΓF

{ε(τ1, j) | j = |τ~a1 |,~a = act-seq(τ ′[0, i],AC)}

where,

ΓF = {〈s, t〉 a
1,k1−→ · · · a

m,km−→ 〈s′, t′〉 |
s
a1,k1−→ · · · a

m,km−→ s′ ∈ ΓS , t
a1−→ · · · a

m

−→ t′ ∈ ΓT }.

Observe, since the system evolutions have to match the orig-
inal target specification, ΓF is well defined. The idea behind
PosZ is to return all states where the enacted system could
be in either due to nondeterminism or exogenous events, af-
ter realizing a sequence of domain actions. We show τK is
a legal trace of KZ〈S,T 〉, that is, it consists of legal states and
transitions. We start by observing that:

• τK[i] = 〈{s1, . . ., s`}〉, where {s1, . . ., s`} =
PosZ(ΓS ,ΓT , i), is a legal state of KZ〈S,T 〉 for all
i ≤ n;

• τK[0] is the initial state of KZ〈S,T 〉.

Then we proceed by induction on n.

• For n = 0, we have that the trace τK[0] consisting only
of the initial state is trivially legal.

• By inductive hypothesis let us assume that q0
a1−→

· · · ai−→ qi (for i < n) is a legal trace of KZ〈S,T 〉, and

we show that also q0
a1−→ · · · a

i+1

−→ qi+1 is a legal trace
of KZ〈S,T 〉.

Consider the transition qi
ai+1

−→ qi+1 of τK. Let
PosZ(ΓS ,ΓT , i) = {s1, . . . , s`}. Since τ ′ is realizable,

there exists sj
ap+1,kp+1

j−→ s′j in ES for j ≤ `, p ≥ i and

ti
ap+1

−→ tp+1 in T . Hence, there exists exactly one set
of indices (see definition of ΓS , condition 2), Indx =
{〈s1 : k1〉, . . . , 〈s` : k`〉}, one per each element in

PosZ(ΓS ,ΓT , i), such that 〈s〉 a
p+1,kp+1

−→ 〈s′〉 in F〈S,T 〉
where s ∈ PosX(ΓS ,ΓT , i), s′ ∈ PosX(ΓS ,ΓT , i + 1)
and 〈s : kp+1〉 ∈ Indx. Note, we consider ε−closure
when evolving to successor belief state, in align with the

definition of KZ〈S,T 〉. That is, qi
ai+1

−→ qi+1 in KZ〈S,T 〉.

Note that by construction of KZ〈S,T 〉, the last condition of
the conformant simulation definition is automatically satis-
fied.

So, RTB T ′ is simulated by KZ〈S,T 〉 (once we project out
the indexes {1, . . . , n}), that is, T ′ � KZ〈S,T 〉. From theo-
rem 1 we know that union of two RTB’s is an RTB, therefore
T ∗ is also a RTB. Consequently, T ∗ � KZ〈S,T 〉.

To prove KZ〈S,T 〉 � T
∗, we simply observe that KZ〈S,T 〉

is an RTB, since by construction, we have KZ〈S,T 〉 � T and
KZ〈S,T 〉 �Z ES . Hence KZ〈S,T 〉 by theorem 1 KZ〈S,T 〉 is in-
cluded in, and thus simulated by, T ∗.


