
Linear Temporal Logic and Linear Dynamic Logic on Finite Traces

Giuseppe De Giacomo
Sapienza Università di Roma

Roma, Italy
degiacomo@dis.uniroma1.it

Moshe Y. Vardi
Rice University,

Houston, TX, USA
vardi@cs.rice.edu

Abstract
In this paper we look into the assumption of in-
terpreting LTL over finite traces. In particular we
show that LTLf , i.e., LTL under this assumption, is
less expressive than what might appear at first sight,
and that at essentially no computational cost one
can make a significant increase in expressiveness
while maintaining the same intuitiveness of LTLf .
Indeed, we propose a logic, LDLf for Linear Dy-
namic Logic over finite traces, which borrows the
syntax from Propositional Dynamic Logic (PDL),
but is interpreted over finite traces. Satisfiability,
validity and logical implication (as well as model
checking) for LDLf are PSPACE-complete as for
LTLf (and LTL).

1 Introduction
Several research areas of AI have been attracted by the sim-
plicity and naturalness of Linear Time Logic (LTL) [33] for
temporal specification of the course of actions of an agent
or a system of agents [17]. In particular in reasoning about
actions and planning, LTL is often used as a specification
mechanism for temporally extended goals [2; 13; 11; 31;
18], for constraints on plans [2; 3; 20], and for expressing
preferences and soft constraints [5; 6; 38].

Quite often, especially in the context of temporal con-
straints and preferences, LTL formulas are used to express
properties or constraints on finite traces of actions/states;
in fact, this can be done even if the standard semantics
of LTL is defined on infinite traces [33]. Similarly, in the
area of Business Process Specification and Verification [43;
32], variants of LTL are used to specify processes declara-
tively, but these variants are interpreted over finite traces. Yet,
there has been little discussion in the AI literature about the
differences arising from interpreting LTL over finite or infinite
traces.

In this paper we look into case where LTL is interpreted
over finite traces. In particular we show that LTL, in this case,
is less expressive than what might appear at first sight, and
that at essentially no cost one can make a significant increase
in expressiveness while maintaining the same intuitiveness of
LTL interpreted over finite traces.

Specifically, we recall that LTL interpreted over finite traces
has the expressive power of First Order Logic (FOL) over fi-

nite ordered traces and that of star-free regular expressions
[14; 30; 34; 46]. We also notice that Monadic Second Order
Logic (MSO) over finite ordered traces is expressively equiv-
alent to regular expressions and finite-state automata [9; 16;
42]. In other words, regular expressions and finite-state au-
tomata properly subsume LTL over finite traces.

This observation raises the question of why one restricts
oneself to LTL over finite traces instead of adopting a more ex-
pressive formalism such as regular expressions or finite state
automata. We believe that one key obstacle is that regular ex-
pressions and finite-state automata are perceived as too pro-
cedural and possibly low level to be an attractive specification
formalisms. We propose here an extension of LTL over finite
traces that has the same expressive power as MSO over finite
traces, while retaining the declarative nature and intuitive ap-
peal of LTL. Our logic, is called LDLf for Linear Dynamic
Logic over finite traces. It is an adaptation of LDL, intro-
duced in [44], which is interpreted over infinite traces. Both
LDL and LDLf borrows the syntax from Propositional Dy-
namic Logic (PDL) [19], but are interpreted over traces.

We show how to immediately capture an LTL formula as
an equivalent LDLf formula, as well as how to capture a reg-
ular expression or finite-state automata-based specification
as an LDLf formula. We then show that LDLf shares the
same computational characteristics of LTL [45]. In particu-
lar, satisfiability, validity and logical implication (as well as
model checking) are PSPACE-complete (with potential expo-
nentiality depending only on the formula in the case of model
checking). To do so we resort to a polynomial translation of
LDLf formulas into alternating automata on finite traces [8;
12; 27], whose emptiness problem is known to be PSPACE-
complete [12]. The reduction actually gives us a practical
algorithm for reasoning in LDLf . Such an algorithm can be
implemented using symbolic representation, see, e.g.,[7], and
thus promises to be quite scalable in practice, though we leave
this for further research.

2 Linear Time Logic on Finite Traces (LTLf)
Linear Temporal Logic (LTL) over infinite traces was origi-
nally proposed in Computer Science as a specification lan-
guage for concurrent programs [33]. The variant of LTL in-
terpreted over finite traces that we consider is that of [5; 20;
32; 43; 46], called here LTLf . Such a logic uses the same
syntax as that of the original LTL. Namely, formulas of LTLf
are built from a set P of propositional symbols and are closed

under the boolean connectives, the unary temporal operator◦
(next-time) and the binary temporal operator U (until):

ϕ ::= A | (¬ϕ) | (ϕ1 ∧ ϕ2) | (◦ϕ) | (ϕ1 U ϕ2)

with A ∈ P .
Intuitively, ◦ϕ says that ϕ holds at the next instant,

ϕ1 U ϕ2 says that at some future instant ϕ1 will hold and un-
til that point ϕ2 holds. Common abbreviations are also used,
including the ones listed below.
• Standard boolean abbreviations, such as true , false , ∨

(or) and→ (implies).
• Last , which stands for ¬◦true , and denotes the last in-

stant of the sequence. Notice that in LTL over infinite
traces Last , which in that case is equivalent to ◦false
is indeed always false. When interpreted on finite traces
however it becomes true exactly at the last instant of the
sequence.
• 3ϕwhich stands for true U ϕ, and says that ϕwill even-

tually hold before the last instant (included).
• 2ϕ, which stands for ¬3¬ϕ, and says that from the cur-

rent instant till the last instant ϕ will always hold.
The semantics of LTLf is given in terms of LTf -

interpretations, i.e., interpretations over a finite traces denot-
ing a finite sequence of consecutive instants of time. LTf -
interpretations are represented here as finite words π over
the alphabet of 2P , i.e., as alphabet we have all the pos-
sible propositional interpretations of the propositional sym-
bols in P . We use the following notation. We denote the
length of a trace π as length(π). We denote the positions,
i.e. instants, on the trace as π(i) with 0 ≤ i ≤ last , where
last = length(π) − 1 is the last element of the trace. We
denote by π(i, j) the segment (i.e., the subword) obtained
from π starting from position i and terminating in positon
j, 0 ≤ i ≤ j ≤ last .

Given an LTf -interpretation π, we inductively define when
an LTLf formula ϕ is true at an instant i (for 0 ≤ i ≤ last),
in symbols π, i |= ϕ, as follows:
• π, i |= A, for A ∈ P iff A ∈ π(i).
• π, i |= ¬ϕ iff π, i 6|= ϕ.
• π, i |= ϕ1 ∧ ϕ2 iff π, i |= ϕ1 and π, i |= ϕ2.
• π, i |= ◦ϕ iff i < last and π, i+1 |= ϕ.
• π, i |= ϕ1 U ϕ2 iff for some j such that i ≤ j ≤ last ,

we have that π, j |= ϕ2 and for all k, i ≤ k < j, we
have that π, k |= ϕ1.

A formula ϕ is true in π, in notation π |= ϕ, if π, 0 |= ϕ. A
formula ϕ is satisfiable if it is true in some LTf -interpretation,
and is valid, if it is true in every LTf -interpretation. A formula
ϕ logically implies a formula ϕ′, in notation ϕ |= ϕ′ if for
every LTf -interpretation π we have that π |= ϕ implies π |=
ϕ′. Notice that satiability, validity and logical implication are
all immediately mutually reducible to each other.
Theorem 1. [37] Satisfiability, validity, and logical implica-
tion for LTLf formulas are PSPACE-complete.

Proof. PSPACE membership follows from PSPACE com-
pleteness of LTL on infinite traces [37]. Indeed, it is easy to

reduce LTLf satisfiability into LTL (on infinite traces) satisfi-
ability as follows: (i) introduce a proposition “Tail”; (ii) re-
quire that Tail holds at 0 (Tail); (iii) require that Tail stays
true until it fails and then stay failed (TailU 2¬Tail); (iv)
translate the LTLf formula into an LTL formulas as follows:
• t(P) 7→ P
• t(¬ϕ) 7→ ¬t(ϕ)
• t(ϕ1 ∧ ϕ2) 7→ t(ϕ1) ∧ t(ϕ2)
• t(◦ϕ) 7→ ◦(Tail ∧ t(ϕ))
• t(ϕ1 U ϕ2) 7→ (ϕ1)U(Tail ∧ t(ϕ))

PSPACE-hardness can be obtained adapting the original hard-
ness proof for LTL on infinite trace in [37]. Here, however, we
show it by observing that we can easily reduce (propositional)
STRIPS planning, which is PSPACE-complete [10] into LTLf
satisfiability. The basic idea is to capture in LTLf runs over
the planning domain (the plan itself is a good run). We can do
this as follows. For each operator/action A ∈ Act with pre-
condition ϕ and effects

∧
F∈Add(A) F ∧

∧
F∈Del(A) ¬F we

generate the following LTLf formulas: (i) 2(◦A→ϕ): that is,
always if next action A as occurred (denoted by a proposition
A) then now ϕ must be true; (ii) 2(◦A→◦(

∧
F∈Add(A) F ∧∧

F∈Del(A) ¬F)), that is, when A as occurs, its effects are
true; (iii) 2(◦A→ ∧

F 6∈Add(A)∪Del(A)(F ≡ ◦F)), that is,
everything that is not in the add or delete list ofA remains un-
changed, this is the so called the frame axiom [29]. We then
say that at every step one and only one action is executed:
2((
∨
A∈ActA) ∧ (

∧
Ai,Aj∈Act,Ai 6=Aj

Ai → ¬Aj)). We en-
code the initial situation, described with a set of propositions
Init that are initially true, as the formula (that holds at the
beginning of the sequence):

∧
F∈Init F ∧

∧
F 6∈Init ¬F . Fi-

nally, given a goal ϕg we require it to eventually hold: 3ϕg .
Then a plan exists iff the conjunction of all above formula
is satisfiable. Indeed if it satisfiable there exists a sequence
where eventually ϕg is true and such sequence is a run over
the planning domain.

Notice that in the proof above we encoded STRIPS effects
in LTLf , but it is equally easy to encode successor state ax-
ioms of the situation calculus (in the propositional case and
instantiated to single actions) [36]. For the successor state
axiom F (do(A, s)) ≡ ϕ+(s) ∨ (F (s) ∧ ¬ϕ−(s)) we have:

2(◦A→ (◦F ≡ ϕ+ ∨ F ∧ ¬ϕ−).

However, precondition axioms Poss(A, s) ≡ ϕA(s) can
only be captured in the part that says that if A happens then
its precondition must be true:

2(◦A→ ϕA).

The part that says that if the precondition ϕA holds that action
A is possible cannot be expressed in linear time formalisms
since they talk about the runs that actually happen not the one
that are possible. See, e.g., the discussion in [11].

While, as hinted above, LTLf is able to capture the runs
of an arbitray transition system by expressing formulas about
the current state and the next, when we consider more sophis-
ticated temporal properties, LTLf on finite traces presents us
with some surprises. To see this, let us look at some classical
LTL formulas and their meaning on finite traces.
• “Safety”: 2ϕ means that always till the end of the trace
ϕ holds.

• “Liveness”: 3ϕ means that eventually before the end of
the trace ϕ holds. By the way, the term “liveness” is
not fully appropriate, since often the class of the live-
ness properties is mathematically characterized exactly
as that of those properties that cannot be checked within
any finite length run. Refer, e.g., to Chapter 3 of [4] for
details.
• “Response”: 23ϕ means that for any point in the trace

there is a point later in the trace where ϕ holds. But this
is equivalent to say that the last point in the trace satis-
fies ϕ, i.e., it is equivalent to 3(Last ∧ ϕ). Notice that
this meaning is completely different from the meaning
on infinite traces and cannot be considered a “fairness”
property as “response” is in the infinite case.
• “Persistence”: 32ϕ means that there exists a point in

the trace such that from then on till the end of the trace
ϕ holds. But again this is equivalent to say that the
last point in the trace satisfies ϕ, i.e., it is equivalent
to 3(Last ∧ ϕ).

In other words, no direct nesting of eventually and always
connectives is meaningful in LTLf . In contrast, in LTL of infi-
nite traces alternation of eventually and always have different
meaning up to three level of nesting, see, e.g., Chapter 5 of
[4] for details. Obviously, if we nest eventually and always
indirectly, through boolean connectives, we do get interesting
properties. For example, 2(ψ→ 3ϕ) does have an interest-
ing meaning also for finite traces: always, before the end of
the trace, if ψ holds then later ϕ holds.

3 LTLf to FOL

Next we show how to translate LTLf into first-order logic
(FOL) over finite linear order sequences1. Specifically, we
consider a first-order language that is formed by the two bi-
nary predicates succ and < (which we use in the usual infix
notation) plus equality, a unary predicate for each symbol in
P and two constants 0 and last . Then we restrict our interest
to finite linear ordered FOL interpretation, which are FOL in-
terpretations of the form I = (∆I , ·I), where the domain is
∆I = {0, . . . , n} with n ∈ IN, and the interpretation function
·I interprets binary predicates and constants in a fixed way:
• succI = {(i, i+ 1) | i ∈ {0, . . . , n− 1}},
• <I= {(i, j) | i, j ∈ {0, . . . , n} and i < j},
• =I= {(i, i) | i ∈ {0, . . . , n}},
• 0I = 0 and lastI = n.

In fact, succ, =, 0 and last can all be defined in terms of <.
Specifically:
• succ(x, y)

.
= (x < y) ∧ ¬∃z.x < z < y;

• x = y
.
= ∀z.x < z ≡ y < z;

• 0 can be defined as that x such that ¬∃y.succ(y, x), and
last as that x such that ¬∃y.succ(x, y).

For convenience we keep these symbols in the language. Also
we use the usual abbreviation x ≤ y for x < y ∨ x = y.

1More precisely monadic first-order logic on finite linearly or-
dered domains, sometimes denoted as FO[<].

In spite of the obvious notational differences, it is easy
to see that finite linear ordered FOL interpretations and
LTf -interpretations are isomorphic. Indeed, given an LTf -
interpretation π we define the corresponding finite FOL in-
terpretation I = (∆I , ·I) as follows: ∆I = {0, . . . , last}
(with last = length(π) − 1); with the obvious predefined
predicates and constants interpretation, and, for each A ∈ P ,
its interpretation is AI = {i | A ∈ π(i)}. Conversely,
given a finite linear ordered FOL interpretation I = (∆I , ·I),
with ∆I = {0, . . . , n}, we define the corresponding LTf -
interpretation π as follows: length(π) = n + 1; and for
each position 0 ≤ i ≤ last , with last = n, we have
π(i) = {A | i ∈ AI}.

We can then use a translation function fol(ϕ, x) that given
an LTLf formula ϕ and a variable x returns a corresponding
FOL formula open in x. We define fol() by induction on the
structure of the LTLf formula:
• fol(A, x) = A(x)

• fol(¬ϕ, x) = ¬fol(ϕ, x)

• fol(ϕ ∧ ϕ′, x) = fol(ϕ, x) ∧ fol(ϕ′, x)

• fol(◦ϕ, x) = ∃y.succ(x, y) ∧ fol(ϕ, y)

• fol(ϕU ϕ′, x) = ∃y.x ≤ y ≤ last ∧ fol(ϕ′, y)∧∀z.x ≤
z < y → fol(ϕ, z)

Theorem 2. Given an LTf -interpretation π and a corre-
sponding finite linear ordered FOL interpretation I, we have

π, i |= ϕ iff I, [x/i] |= fol(ϕ, x)

where [x/i] stands for a variable assignment that assigns to
the free variable x of fol(ϕ, x) the value i.

Proof. By induction on the LTLf formula.

In fact also the converse reduction holds, indeed we have:
Theorem 3 ([21]2). LTLf has exactly the same expressive
power of FOL.

4 Regular Temporal Specifications (REf)
We now introduce regular languages, concretely represented
as regular expressions or finite state automata [24; 26], as a
form of temporal specification over finite traces. In particular
we focus on regular expressions.

We consider as alphabet the set propositional interpreta-
tions 2P over the propositional symbols P . Then REf expres-
sions are defined as follows: % ::= ∅ | P | %1 + %2 | %1; %2 |
%∗, where P ∈ 2P and ∅ denotes the empty language. We
denote by L(%) the language recognized by a REf expression
% (L(∅)) = ∅). In fact, it is convenient to introduce some
syntactic sugar and redefine REf as follows:

% ::= φ | %1 + %2 | %1; %2 | %∗

where φ is a propositional formula that is an abbreviation for
the union of all the propositional interpretations that satisfy
φ, that is φ =

∑
P|=φ P (∅ is now abbreviated by false).

2Specifically, this result is a direct consequence of Theorem 2.2
in [21] on “discrete complete models”, which include finite se-
quences. That theorem strengthen an analogous one in [25] by
avoiding the use of past operators.

Notice that we interpret these expressions (with or without
abbreviations) over the same kind of LTf -interpretations used
for LTLf . Namely, we say that a REf expression is satisfied
by an LTf -interpretation π if π ∈ L(%), we say that % is true at
instant i if π(i, last) ∈ L(%), we say that % is satisfied beween
i, j if π(i, j) ∈ L(%).

Here are some interesting properties that can be expressed
using REf as a temporal property specification mechanism.

• “Safety”: ϕ∗, which is equivalent to 2φ, and means that
always, until the end of the trace, ϕ holds.
• “Liveness”: true∗;ϕ; true∗, which is equivalent to the

LTLf formula 3ϕ, and means that eventually before the
end of the trace ϕ holds.
• “Conditional response”: true∗; (¬ψ + true∗;ϕ), which

is equivalent to 2(ψ→3ϕ), and means that always be-
fore the end of the trace if ψ holds then later ϕ holds.
• “Ordered occurrence”: true∗;ϕ1; true∗;ϕ2; true∗ that

says ϕ1 and ϕ2 will both happen in order.
• “Alternating sequence”: (ψ;ϕ)∗ that means that ψ and
ϕ, not necessarily disjoint, alternate for the whole se-
quence starting with ψ and ending with ϕ.
• “Pair sequence”: (true; true)∗ that means that the se-

quence is of even length.
• “Eventually on an even path ϕ”: (true; true)∗;ϕ; true∗,

i.e., we can constrain the path fulfilling the eventuality to
satisfy some structural (regular) properties, in particular
in this case that of (true; true)∗.

The latter three formulas cannot be expressed in LTLf . More
generally, the capability of requiring regular structural prop-
erties on paths, is exactly what is missing from LTLf , as noted
in [47].

Next, we consider monadic second-order logic MSO over
bounded ordered sequences, see e.g., Chapter 2 of [26]. This
is a strict extension of the FOL language introduced above,
where we add the possibility of writing formulas of the form
∀X.ϕ and ∃X.ϕ where X is a monadic (i.e., unary) pred-
icate variable and ϕ may include atoms whose predicate is
such variable. Binary predicates and constants remain exactly
those introduced above for FOL. The following classical re-
sult clarifies the relationship between REf and MSO, see e.g.,
[41] or Chapter 2 of [26].
Theorem 4 ([9; 16; 42]). REf has exactly the same expressive
power of MSO.

Notice that MSO is strictly more expressive that FOL on
finite ordered sequences.
Theorem 5 ([40]). The expressive power of FOL over finite
ordered sequences is strictly less than that of MSO.

Recalling Theorem 3, this immediately implies that:
Theorem 6. REf is strictly more expressive than LTLf .

In fact this theorem can be refined by isolating which sort
of REf expressions correspond to LTLf . These are the so-
called star-free regular expressions (aka, counter-free regular
languages) [30], which are the regular expressions obtained
as follows:

% ::= φ | %1 + %2 | %1; %2 | %

where % stands for the complement of %, i.e., L(%) =
(2P)∗/L(%). Star-free regular expressions are strictly less
espressive then REf since they do not allow for unrestrictedly
expressing properties involving the Keene star ∗, which ap-
pears implicitly only to generate the universal language used
in complementation.

Note, however, that several REf expressions involving ∗
can be rewritten by using complementation instead, includ-
ing, it turns out, all the ones that correspond to LTLf proper-
ties.

Here are some examples of REf expressions, which are in-
deed star-free.

• (2P)∗ = true∗ is in fact star-free, as it can be expressed
as false

• true∗;φ; true∗ is star-free, as true∗ is star-free.

• φ∗ for a propositional φ is also star-free, as it is equiva-
lent to true∗;¬φ; true∗.

A classical result on star-free regular expression is that:

Theorem 7 ([30]). Star-free REf have exactly the same ex-
pressive power of FOL.

Hence, by Theorem 3, we get the following result, see [14;
34; 46].

Theorem 8. LTLf has exactly the same expressive power of
star-free REf .

5 Linear-time Dynamic Logic (LDLf)
As we have seen above, LTLf is strictly less expressive that
REf . On the other hand, REf is often consider too low level
as a formalism for expressing temporal specifications. For
example, REf expressions miss a direct construct for nega-
tion, for conjunction, and so forth (to see these limiting fac-
tors, one can try to encode in REf the STRIPS domain or the
successor state axioms coded in LTLf in Section 2). So it is
natural to look for a formalism that merges the declarative-
ness and convenience of LTLf with the expressive power of
REf . This need is considered compelling also from a practi-
cal point of view. Indeed, industrial linear time specification
languages, such as Intel ForSpec [1] and the standard PSL
(Property Specification Language) [15], enhance LTL (on in-
finite strings) with forms of specifications based on regular
expressions.

It may be tempting to simply add directly complementa-
tion and intersection to REf , but it is known that such ex-
tensions result in very high complexity; in particular, the
nonemptiness problem (corresponding to satisfiability in our
setting) for star-free regular expressions in nonelementary,
which means that the complexity cannot be bounded by any
fixed-height stack of exponentials [39].

Here we follow another approach and propose a tempo-
ral logic that merges LTLf with REf in a very natural way.
The logic is called LDLf , Linear Dynamic Logic of Finite
Traces, and adopts exactly the syntax of the well-know logic
of programs PDL, Propositional Dynamic Logic, [19; 22;
23], but whose semantics is given in terms of finite traces.
This logic is an adaptation of LDL, introduced in [44], which,
like LTL, is interpreted over infinite traces.

Formally, LDLf formulas are built as follows:

ϕ ::= A | ¬ϕ | ϕ1 ∧ ϕ2 | 〈ρ〉ϕ
ρ ::= φ | ϕ? | ρ1 + ρ2 | ρ1; ρ2 | ρ∗

where A denotes an atomic proposition in P; φ denotes a
propositional formulas over the atomic propositions in P; ρ
denotes path expressions, which are REf expressions over
propositional formulas φ, with the addition of the test con-
struct ϕ? typical of PDL; and ϕ stand for LDLf formulas
built by applying boolean connectives and the modal connec-
tives 〈ρ〉ϕ. Tests are used to insert into the execution path
checks for satisfaction of additional LDLf formulas. We use
the usual boolean abbreviations as well as the abbreviation
[ρ]ϕ for ¬〈ρ〉¬ϕ.

Intuitively, 〈ρ〉ϕ states that, from the current instant, there
exists an execution satisfying the REf expression ρ such that
its last instant satisfies ϕ. While [ρ]ϕ states that, from the
current instant, all executions satisfying the REf expression ρ
are such that their last instant satisfies ϕ.

As for the semantics of LDLf , for an LTf -interpretation π,
we inductively define when an LDLf formula ϕ is true at an
instant i ∈ {0, . . . , last}, in symbols π, i |= ϕ, as follows:
• π, i |= A, for A ∈ P iff A ∈ π(i)

• π, i |= ¬ϕ iff π, i 6|= ϕ

• π, i |= ϕ ∧ ϕ′ iff π, i |= ϕ and π, i |= ϕ′

• π, i |= 〈ρ〉ϕ iff for some j such that i ≤ j ≤ last , we
have that (i, j) ∈ R(ρ, π) and π, j |= ϕ

where the relationR(ρ, s) is defined inductively as follows:
• R(φ, s) = {(i, i+ 1) | π(i) |= φ} (φ propositional)
• R(ϕ?, s) = {(i, i) | π, i |= ϕ}
• R(ρ1 + ρ2, s) = R(ρ1, s) ∪R(ρ2, s)

• R(ρ1; ρ2, s) = {(i, j) | exists k such that (i, k) ∈
R(ρ1, s) and (k, j) ∈ R(ρ2, s)}
• R(ρ∗, s) = {(i, i)}∪{(i, j) | exists k such that (i, k) ∈
R(ρ, s) and (k, j) ∈ R(ρ∗, s)}

Theorem 9. LTLf can be translated into LDLf in linear time.

Proof. We prove the theorem constructively, by exhibiting a
translation function f form LTLf to LDLf

• f (A) = A

• f (¬ϕ) = ¬f (ϕ)

• f (ϕ1 ∧ ϕ2) = f (ϕ1) ∧ f (ϕ2)

• f (◦ϕ) = 〈true〉f (ϕ)

• f (ϕ1 U ϕ2) = 〈f(ϕ1)∗〉f (ϕ2)

It is easy to see that for every LTf -interpretation π, we have
π, i |= ϕ iff π, i |= f (ϕ).

Theorem 10. REf can be translated into LDLf in linear time.

Proof. We prove the theorem constructively, by exhibiting a
translation function g form REf to LDLf (here Last stands for
[true]false):

g(%) = 〈%〉Last .
It is easy to see that π, i |= % iff π(i, last) ∈ L(%) iff for some
i ≤ j ≤ last , we have that (i, j) ∈ R(%, π) and π, j |= Last
iff π, i |= 〈%〉Last .

The reverse direction also hold:

Theorem 11. LDLf can be translated into REf .

It is possible to translate LDLf directly into REf , via struc-
tural induction, but the direct translation is non-elementary,
in general, since each occurrence of negation requires an ex-
ponential complementation construction. Below we demon-
strate an elementary (doubly exponential) translation that pro-
ceeds via alternating automata.

Theorems 10, 11, and 4, allow us to characterize the ex-
pressive power of LDLf .

Theorem 12. LDLf has exactly the same expressive power of
MSO.

For convenience we define an equivalent semantics for
LDLf , which we call doubly-inductive semantics. Its main
characteristic is that it looks only at the current instant and at
the next, and this will come handy in the next section. Specifi-
cally, for an LTf -interpretation π, we inductively define when
an LDLf formula ϕ is true at an instant i ∈ {0, . . . , last}, in
symbols π, i |= ϕ, as follows:

• π, i |= A, for A ∈ P iff A ∈ π(i).

• π, i |= ¬ϕ iff π, i 6|= ϕ

• π, i |= ϕ ∧ ϕ′ iff π, i |= ϕ and π, i |= ϕ′

• π, i |= 〈φ〉ϕ iff i < last and π(i) |= φ and π, i+1 |= ϕ
(φ propositional)

• π, i |= 〈ψ?〉ϕ iff π, i |= ψ ∧ π, i |= ϕ

• π, i |= 〈ρ1 + ρ2〉ϕ iff π, i |= 〈ρ1〉ϕ ∨ 〈ρ2〉ϕ
• π, i |= 〈ρ1; ρ2〉ϕ iff π, i |= 〈ρ1〉〈ρ2〉ϕ
• π, i |= 〈ρ∗〉ϕ iff π, i |= ϕ, or i < last and π, i |=
〈ρ〉〈ρ∗〉ϕ and ρ is not test-only.

We say that ρ is test-only if it is a REf expression whose atoms
are only tests ψ?.

Theorem 13. The two semantics of LDLf are equivalent.

Proof. By mutual induction on the structure of the LDLf for-
mulas and the length of the LTf -interpretation.

6 LDLf to AFW

Next we show how to reason in LDLf . We do so by resort-
ing to a direct translation of LDLf formulas to alternating au-
tomata on words (AFW) [8; 12; 27]. We follow here the no-
tation of [45]. Formally, an AFW on the alphabet 2P is a tuple
A = (2P , Q, q0, δ, F), where Q is a finite nonempty set of
states, q0 is the initial state, F is a set of accepting states,
and δ is a transition function δ : Q × 2P → B+(Q), where
B+(Q) is a set of positive boolean formulas whose atoms are
states of Q. Given an input word a0, a1, . . . an−1, a run of an
AFW is a tree (rather than a sequence) labelled by states of the
AFW such that (i) the root is labelled by q0; (ii) if a node x at
level i is labelled by a state q and δ(q, ai) = Θ, then either Θ
is true or some P ⊆ Q satisfies Θ and x has a child for each
element in P ; (iii) the run is accepting if all leaves at depth
n are labeled by states in F . Thus, a branch in an accepting
run has to hit the true transition or hit an accepting state after
reading all the input word a0, a1, . . . , an−1.

Theorem 14 ([8; 12; 27]). AFW are exactly as expressive as
REf .

It should be noted that while the translation from REf to
AFW is linear, the translation from AFW to REf is doubly ex-
ponential. In particular every AFW can be translated into a
standard nondeterministic finite automaton (NFA) that is ex-
ponentially larger than the AFW. Such a translation can be
done on-the-fly while checking for nonemptiness of the NFA
which, in turn, can be done in NLOGSPACE. Hence, we get
the following complexity characterization for nonemptiness
(the existence of a word that leads to acceptance) of AFW’s.

Theorem 15 ([12]). Nonemptiness for AFW is PSPACE-
complete.

We now show that we can associate with each LDLf for-
mula ϕ an AFW Aϕ that accept exactly the traces that make
ϕ true. The key idea in building the AFW Aϕ is to use “sub-
formulas” as states of the automaton and generate suitable
transitions that mimic the doubly-inductive-semantics of such
formulas. Actually we need a generalization of the notion of
subformulas, which is known as the Fisher-Ladner closure,
first introduced in the context of PDL [19]. The Fisher-Ladner
closure CLϕ of an LDLf formula ϕ is a set of LDLf formulas
inductively defined as follows:

ϕ ∈ CLϕ
¬ψ ∈ CLϕ if ψ ∈ CLϕ and ψ not of the form ¬ψ′
ϕ1 ∧ ϕ2 ∈ CLϕ implies ϕ1, ϕ2 ∈ CLϕ
〈ρ〉ϕ ∈ CLϕ implies ϕ ∈ CLϕ
〈φ〉ϕ ∈ CLϕ implies φ ∈ CLϕ (φ is propositional)
〈ψ?〉ϕ ∈ CLϕ implies ψ ∈ CLϕ
〈ρ1; ρ2〉ϕ ∈ CLϕ implies 〈ρ1〉〈ρ2〉ϕ ∈ CLϕ
〈ρ1 + ρ2〉ϕ ∈ CLϕ implies 〈ρ1〉ϕ, 〈ρ2〉ϕ ∈ CLϕ
〈ρ∗〉ϕ ∈ CLϕ implies 〈ρ〉〈ρ∗〉ϕ ∈ CLϕ

Observe that the cardinality of CLϕ is linear in the size of ϕ.
In order to proceed with the construction of the AFW Aϕ,

we put LDLf formulas ϕ in negation normal form nnf (ϕ)
by exploiting abbreviations and pushing negation inside as
much as possible, leaving negations only in front of proposi-
tional symbols. Note that computing nnf (ϕ) can be done in
linear time. So, in the following, we restrict our attention to
LDLf formulas in negation normal form, i.e., LDLf formulas
formed according to the following syntax:

ϕ ::= A | ¬A | (ϕ1 ∧ ϕ2) | (ϕ1 ∨ ϕ2) | 〈ρ〉ϕ | [ρ]ϕ
ρ ::= φ | ϕ? | (ρ1 + ρ2) | (ρ1; ρ2) | (ρ∗).

We assume that all the formulas in CLϕ are in negation nor-
mal form as well. Also, for convenience, we assume to have a
special proposition Last which denotes the last element of the
trace. Note that Last can be defined as: Last ≡ [true]false .

Then, we define the AFW Aϕ associated with an LDLf for-
mula ϕ as Aϕ = (2P ,CLϕ, ϕ, δ, {}) where (i) 2P is the al-
phabet, (ii) CLϕ is the the state set, (iii) ϕ is the initial state
(iv) δ is the transition function defined as follows:

δ(A,Π) = true if A ∈ Π
δ(A,Π) = false if A 6∈ Π
δ(ϕ1 ∧ ϕ2,Π) = δ(ϕ1,Π) ∧ δ(ϕ2,Π)
δ(ϕ1 ∨ ϕ2,Π) = δ(ϕ1,Π) ∨ δ(ϕ2,Π)

δ(〈φ〉ϕ,Π) =

{
ϕ if Π |= φ (φ propositional)
false if Π 6|= φ

δ(〈ψ?〉ϕ,Π) = δ(ψ,Π) ∧ δ(ϕ,Π)
δ(〈ρ1 + ρ2〉ϕ,Π) = δ(〈ρ1〉ϕ,Π) ∨ δ(〈ρ2〉ϕ,Π)
δ(〈ρ1; ρ2〉ϕ,Π) = δ(〈ρ1〉〈ρ2〉ϕ,Π)

δ(〈ρ∗〉ϕ,Π) =

{
δ(ϕ,Π) if ρ is test-only
δ(ϕ,Π) ∨ δ(〈ρ〉〈ρ∗〉ϕ,Π) o/w

δ([φ]ϕ,Π) =

{
ϕ if Π |= φ (φ propositional)
true if Π 6|= φ

δ([ψ?]ϕ,Π) = δ(nnf (¬ψ),Π) ∨ δ(ϕ,Π)
δ([ρ1 + ρ2]ϕ,Π) = δ([ρ1]ϕ,Π) ∧ δ([ρ2]ϕ,Π)
δ([ρ1; ρ2]ϕ,Π) = δ([ρ1][ρ2]ϕ,Π)

δ([ρ∗]ϕ,Π) =

{
δ(ϕ,Π) if ρ is test-only
δ(ϕ,Π) ∧ δ([ρ][ρ∗]ϕ,Π) o/w

Theorem 16. The state-size of Aϕ is linear in the size of ϕ.

Proof. Immediate, by inspecting the construction ofAϕ.

Theorem 17. Let ϕ be an LDLf formula and Aϕ the corre-
sponding AFW. Then for every LTf interpretation π we have
that π |= ϕ iff Aϕ accepts π.

Proof. By induction on the length of the LTf interpretation π.
We exploit the fact that the runs of Aϕ over π follow closely
the doubly-inductive semantics of the LDL formula ϕ.

By Theorems 11 and 14 , we get LDLf is exactly as expres-
sive as REf and hence as MSO (cf. Theorem 12). Note that
as the translation from LDLf to AFW is linear, and the trans-
lation from AFW to REf is doubly exponential, the translation
from LDLf to REf is doubly exponential.

From Theorems 15 and 17 we finally get a complexity
characterization of reasoning in LDLf .
Theorem 18. Satisfiability, validity, and logical implication
for LDLf formulas are PSPACE-complete.

Proof. By Theorem 17, satisfiability of an LDLf formula (to
which validity and logical implication can be reduced) corre-
spond to checking nonemptiness of the corresponding AFW,
hence, by Theorems 15 and 16, we get the claim.

7 Conclusion
In this paper we have analyzed LTLf over finite traces, and
devised a new logic LDLf , which shares the naturalness and
same computational properties of LTLf , while being substan-
tially more powerful. Although we do not detail it here, in
LDLf it is also possible to capture finite executions of pro-
grams expressed (in propositional variant, e.g., on finite ob-
ject domains, of) high-level AI programming languages such
as GOLOG [28], which also are used to constraint finite se-
quences [6]. We have focused on satisfiability, validity and
logical implication, but analogous results are immediate for
model checking as well: both LTLf and LDLf are PSPACE-
complete with potential exponentiality depending only on the
formula and not on the transition system be checked. As fu-
ture work, we plan focus on automated synthesis [35], re-
lated to advanced forms of Planning in AI. Notice that, de-
terminization, which is notoriously difficult step for synthesis
in the infinite-trace setting, becomes doable in practice in the
finite-trace setting. So, in principle, we can develop effective
tools for unrestricted synthesis for LDLf .

References
[1] R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg,

T. Kanza, A. Landver, S. Mador-Haim, E. Singerman,
A. Tiemeyer, M. Y. Vardi, and Y. Zbar. The forspec tempo-
ral logic: A new temporal property-specification language. In
TACAS, 2002.

[2] F. Bacchus and F. Kabanza. Planning for temporally extended
goals. In AAAI, 1996.

[3] F. Bacchus and F. Kabanza. Using temporal logics to express
search control knowledge for planning. Artif. Intell., 116(1-
2):123–191, 2000.

[4] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT
Press, 2008.

[5] M. Bienvenu, C. Fritz, and S. A. McIlraith. Planning with
qualitative temporal preferences. In KR, 2006.

[6] M. Bienvenu, C. Fritz, and S. A. McIlraith. Specifying and
computing preferred plans. Artif. Intell., 175(7-8):1308–1345,
2011.

[7] R. Bloem, A. Cimatti, I. Pill, M. Roveri, and S. Semprini. Sym-
bolic implementation of alternating automata. Implementation
and Application of Automata, LNCS 4094, 2006.

[8] J. A. Brzozowski and E. L. Leiss. On equations for regular
languages, finite automata, and sequential networks. Theor.
Comput. Sci., 10:19–35, 1980.

[9] J. R. Büchi. Weak second-order arithmetic and finite automata.
Zeit. Math. Logik. Grund. Math., 6:66–92, 1960.

[10] T. Bylander. The computational complexity of propositional
STRIPS planning. Artif. Intell., 69(1-2):165–204, 1994.

[11] D. Calvanese, G. De Giacomo, and M. Y. Vardi. Reasoning
about actions and planning in LTL action theories. In KR,
2002.

[12] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alterna-
tion. Journal of the ACM (JACM), 28(1), Jan. 1981.

[13] G. De Giacomo and M. Y. Vardi. Automata-theoretic approach
to planning for temporally extended goals. In ECP, 1999.

[14] V. Diekert and P. Gastin. First-order definable languages. In
Logic and automata: history and perspectives. Amsterdam
University Press, 2008.

[15] C. Eisner and D. Fisman. A practical introduction to PSL.
Springer-Verlag New York Inc, 2006.

[16] C. C. Elgot. Decision problems of finite automata design and
related arithmetics. Trans. Amer. Math. Soc., 98:21–52, 1961.

[17] R. Fagin, J. Halpern, Y. Moses, and M. Y. Vardi. Reasoning
about Knowledge. MIT Press, 1995.

[18] P. Felli, G. De Giacomo, and A. Lomuscio. Synthesizing agent
protocols from LTL specifications against multiple partially-
observable environments. In KR, 2012.

[19] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of
regular programs. J. Comput. Syst. Sci., 18:194–211, 1979.

[20] A. Gabaldon. Precondition control and the progression algo-
rithm. In KR, 2004.

[21] D. M. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the tem-
poral analysis of fairness. In POPL, 1980.

[22] D. Harel. Dynamic logic. In Handbook of Philosophical Logic,
D. Reidel Publishing Company, 1984.

[23] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press,
2000.

[24] J. E. Hopcroft and J. D. Ullman. Introduction to automata
theory, languages, and computation. Addison-Wesley, 1979.

[25] H. Kamp. On tense logic and the theory of order. PhD thesis,
UCLA, 1968.

[26] B. Khoussainov and A. Nerode. Automata theory and its ap-
plications. Birkhauser, 2001.

[27] E. L. Leiss. Succint representation of regular languages by
boolean automata. Theor. Comput. Sci., 13:323–330, 1981.

[28] H. J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. Scherl.
GOLOG: A logic programming language for dynamic do-
mains. J. of Logic Programming, 31:59–84, 1997.

[29] J. McCarthy and P. J. Hayes. Some philosophical problems
from the standpoint of aritificial intelligence. Machine Intelli-
gence, 4:463–502, 1969.

[30] R. McNaughton and S. Papert. Counter-Free Automata. MIT
Press, 1971.

[31] F. Patrizi, N. Lipovetzky, G. D. Giacomo, and H. Geffner.
Computing infinite plans for LTL goals using a classical plan-
ner. In IJCAI, 2011.

[32] M. Pešić, D. Bošnački, and W. van der Aalst. Enacting declar-
ative languages using LTL: avoiding errors and improving per-
formance. Model Checking Software, 2010.

[33] A. Pnueli. The temporal logic of programs. In FOCS, 1977.
[34] A. Pnueli, O. Lichtenstein, and L. Zuck. The Glory of The

Past. Logics of Programs: Brooklyn, June 17-19, 1985,
193:194, 1985.

[35] A. Pnueli and R. Rosner. On the synthesis of a reactive module.
In POPL, 1989.

[36] R. Reiter. Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT Press,
2001.

[37] A. P. Sistla and E. M. Clarke. The complexity of propositional
linear temporal logics. J. ACM, 32(3):733–749, July 1985.

[38] S. Sohrabi, J. A. Baier, and S. A. McIlraith. Preferred expla-
nations: Theory and generation via planning. In AAAI, 2011.

[39] L. J. Stockmeyer and A. Meyer. Cosmological lower bound
on the circuit complexity of a small problem in logic. J. ACM,
49(6):753–784, 2002.

[40] W. Thomas. Star-free regular sets of ω-sequences. Information
and Control, 42(2):148–156, 1979.

[41] W. Thomas. Languages, Automata, and Logic. Handbook of
formal languages: beyond words, 1997.

[42] B. Trakhtenbrot. Finite automata and monadic second order
logic. Siberian Math. J, 3:101–131, 1962. Russian; English
translation in: AMS Transl. 59 (1966), 23-55.

[43] W. M. P. van der Aalst, M. Pešić, and H. Schonenberg. Declar-
ative workflows: Balancing between flexibility and support.
Computer Science - Research and Development, Mar. 2009.

[44] M. Y. Vardi. The rise and fall of linear time logic In 2nd Int’l
Symp. on Games, Automata, Logics and Formal Verification,
2011.

[45] M. Y. Vardi. An automata-theoretic approach to linear tem-
poral logic. In Logics for Concurrency: Structure versus Au-
tomata, LNCS 1043, 1996.

[46] T. Wilke. Classifying discrete temporal properties.
STACS,1999.

[47] P. Wolper. Temporal logic can be more expressive. Information
and Control, 56(1/2):72–99, 1983.

