
July 24, 2012 11:28 WSPC/S0218-8430 111-IJCIS 1250002

International Journal of Cooperative Information Systems
Vol. 21, No. 2 (2012) 111–139
c© World Scientific Publishing Company
DOI: 10.1142/S0218843012500025

VERIFICATION OF CONJUNCTIVE
ARTIFACT-CENTRIC SERVICES

GIUSEPPE DE GIACOMO∗, RICCARDO DE MASELLIS†
and RICCARDO ROSATI‡

Dipartimento di Ingegneria Informatica Automatica e Gestionale
Sapienza Università di Roma

Via Ariosto 25, 00185 Rome, Italy
∗degiacomo@dis.uniroma1.it
†demasellis@dis.uniroma1.it

‡rosati@dis.uniroma1.it

An artifact-centric service is a stateful service that holistically represents both the data
and the process in terms of a (dynamic) artifact. An artifact is constituted by a data
component, holding all the data of interest for the service, and a lifecycle, which specifies
the process that the service enacts. In this paper, we study artifact-centric services
whose data component is a full-fledged relational database, queried through (first-order)
conjunctive queries, and the lifecycle component is specified as sets of condition-action
rules, where actions are tasks invocations, again based on conjunctive queries. Notably,
the database can evolve in an unbounded way due to new values (unknown at verification
time) inserted by tasks. The main result of the paper is that verification in this setting
is decidable under a reasonable restriction on the form of tasks, called weak acyclicity,
which we borrow from the recent literature on data exchange. In particular, we develop
a sound, complete and terminating verification procedure for sophisticated temporal
properties expressed in a first-order variant of µ-calculus.

Keywords: Business artifacts; verification; conjunctive queries.

1. Introduction

In the past years, the so called artifact-centric approach to modeling workflows
and services has emerged, with the fundamental characteristic of considering both
data and processes as first-class citizens in service design and analysis.1–6 In such
an approach, the key elements of services are artifacts, which are business-relevant
entities evolving over time. Artifacts are constituted by (i) a data component, which
is used to hold the relevant information to be manipulated by the service, and (ii)
the lifecycle formed by the invokable (atomic) tasks and a process based on them.
Executing a task has effects on the data manipulated by the service, on the service
state, and on the information exchanged with the external world. The process spec-
ifies a sequencing of the task invocations, thus characterizing the dynamic behavior
of the service.

111

http://dx.doi.org/10.1142/S0218843012500025

July 24, 2012 11:28 WSPC/S0218-8430 111-IJCIS 1250002

112 G. De Giacomo, R. De Masellis & R. Rosati

The holistic view of data and processes together aims at avoiding the notori-
ous discrepancy between data modeling and process modeling of more traditional
approaches that consider these two aspects separately. Conversely, by treating both
aspects as first-class citizens, the artifact-centric approach ultimately promises to
lead to a greater efficiency, especially in dealing with business transformation.7,8

From a formal point of view, artifact-centric services deeply challenge the verifi-
cation community by requiring simultaneous attention to both data and processes.
Indeed, on the one hand, they deal with full-fledged processes and require analysis
in terms of verification of sophisticated temporal properties.9 On the other hand,
the presence of possibly unbounded data10 makes the usual analysis based on model
checking of finite-state systems impossible in general, since, when data evolution is
taken into account, the whole system becomes infinite-state.

In this paper, we study a family of artifact-centric services whose task spec-
ification is based on the notion of conjunctive queries. Taking the core concepts
from recent proposals by Hull et al.,4,7,11 we consider an artifact as formed by a
data component, which describes its static part, and by a lifecycle, which character-
izes the dynamic aspects. In our framework, the data component is a full-fledged
relational database, and the lifecycle is specified, in a declarative way, as a set
of condition-action rules. Conditions are evaluated on the current snapshot of the
artifact, i.e. the current state of the database. Actions are task invocations, that
query the current snapshot and generate the next one, possibly introducing new
existential values representing inputs from the outside world. Since such values are
yet unknown at analysis time, they are represented as nulls. Similar to the context
of semantic web services,12 and deeply rooted in the literature on Reasoning about
Actions in AI,13 here the behavior of tasks is characterized using pre-conditions
and effects (or post-conditions). However, the key point of our proposal is that
both pre-conditions and effects are expressed as conjunctive queries.

This implies that: (i) we query only positive information in the current state of
the artifact (negation is not allowed in conjunctive queries), and (ii) we do not get
disjunctive information as the effect of executing a task, though we get existential
values, i.e. nulls, as the result of introducing unknown input from outside. The
latter, (ii), assures that the state generated by the execution of a task is still a
relational database, even if it contains nulls. Such an assumption can often be made,
and, in particular, in all those applications in which we have (almost) complete
information on the result of executing a task. Instead, the former, (i), might be a
restriction in practice: it limits the way we can formulate queries on the current
state and hence the way we can specify tasks. It is certainly of interest to introduce
negation in the query language to specify tasks. Indeed, Ref. 14 moves the first
step in this direction by extending the approach presented here to full first-order
queries in pre-conditions of tasks. However, this extension requires a much more
sophisticated technical development that hides the core technique we propose here.
Concentrating on conjunctive queries allows for exposing, in the cleanest and most
elegant way, the very idea at the base of the approach, that is, the correspondence

July 24, 2012 11:28 WSPC/S0218-8430 111-IJCIS 1250002

Verification of Conjunctive Artifact-Centric Services 113

between tasks execution and data exchange and data integration.15,16 Research
in these fields has deeply investigated the mapping between databases expressed
through correspondences between conjunctive queries, consisting of the so-called
tuple-generating dependencies (tgds) in the database jargon.10 In a nutshell, the
core idea of our work is to consider the current state of data, and their state after
the performance of a task, as two databases related through a set of tgds. This view
allows us to leverage on conditions that guarantee finite chase of tgds,15,17–20 to get
decidability results even for very powerful verification languages.

On top of such a framework, we introduce a powerful verification logic based
on a first-order variant of µ-calculus21–24 to express temporal properties. µ-calculus
is well known to be more expressive than virtually all temporal logics used in
verification, including CTL, LTL, CTL*, PDL, and many others. For this reason,
our results for µ-calculus immediately carry over to all these other logics, giving us
a very robust approach.

The main result of the paper is that the resulting setting, while quite expres-
sive and inherently infinite-state, admits decidable verification under a reasonable
restriction on the form of the effects of tasks, called weak acyclicity.15 The crux
of the result is that conjunctive queries are unable to distinguish between homo-
morphic equivalent databases: this can be exploited to bound the number of dis-
tinguishable artifact states. Thus, we can reduce verification to model checking of
a finite-state transition system, which acts as a faithful abstraction of the original
artifact.

The rest of the paper is organized as follows. Section 2 introduces our artifacts
based on conjunctive queries. Sections 3 and 4 illustrate the execution of artifacts,
and the verification formalism for such executions. Section 5 presents our main
results, including the decidability of weakly acyclic artifacts. Section 6 discusses
related work. Finally, Sec. 7 concludes the paper.

2. Conjunctive Artifacts

Conjunctive artifact-centric services are services based on the notion of artifact,
which thus merges data and processes in a single unit. More precisely, an artifact
is composed by the following three components:

• The artifact data component, which captures the information manipulated by
the artifact. In our case such a component is a relational database. States of the
service correspond to states of the database.
• The set of artifact tasks, which is the set of atomic actions that manipulate

artifact data. A characteristic aspect of our study is that such tasks are specified
in terms of dependencies between conjunctive queries (see below).
• The artifact lifecycle, which specifies the actual process of the artifact in terms

of tasks that can be executed at each state. Technically, it is specified in terms
of condition-action rules, where the conditions are again based on conjunctive
queries.

July 24, 2012 11:28 WSPC/S0218-8430 111-IJCIS 1250002

114 G. De Giacomo, R. De Masellis & R. Rosati

Formally, an artifact is a tuple A = 〈D, T , C〉, where:

• D = 〈S, I0〉 is an artifact data component formed by the data schema S and the
initial artifact data instance I0;
• T is a set of tasks; and
• C is a lifecycle, i.e. a set of condition-action rules.

Next, we define each artifact component in detail.

Artifact data component. An artifact data component D = 〈S, I0〉 is formed
by an artifact data schema S and an initial artifact instance I0 conforming to such
a schema. The artifact data schema S is a relational schema formed by a finite set
of relational (predicate) symbols R1, . . . ,Rn, each one with an associated arity, and
a finite or countably infinite set of constant symbols c = c1, c2,

An artifact data instance, or simply instance (including the initial one I0), over
the schema S is a standard first-order interpretation with a fixed interpretation
domain. More precisely, a data instance is a pair I = 〈∆, ·I〉 where:

• ∆ is a countably infinite domain, fixed a priori and shared by every data instance.
We partition ∆ into two countable infinite disjoint sets const(∆) and ln(∆), and
we use the first set, called constants, to interpret constant symbols, while the
second set, called labeled nulls, is used to interpret existentials (see later);
• ·I is an interpretation function that associates:

— to each constant symbol c, a constant cI ∈ const(∆) such that for each
c1, c2 ∈ const(∆) if c1 �= c2 then cI1 �= cI2, namely we adopt the Unique Name
Assumption. Furthermore, we require that every interpretation interprets con-
stants in the same way, that is, given any two interpretations I and I ′, we
have that cIn = cI

′
n for each constant symbol cn. Thus, we blur the distinction

between constant symbols and constants in const(∆);
— to each m-ary relation symbol Ri a finite m-ary relation RI

i ⊆ ∆m.

Intuitively, an artifact data instance is alike a relational database instance, since
the function ·I lists all tuples belonging to each relation.

An expression Ri(d1, . . . , dm) is called (with a little abuse of terminology) a fact.
We say that a fact belongs to an interpretation I iff d = 〈d1, . . . , dm〉 ∈ RI

i , so we
can characterize the interpretation function ·I through the set of its facts (notice
that such a set is finite). Following the database literature,10 we call active domain
∆̄I of an instance I the set of domain elements appearing in the facts of I.

Example 2.1. Consider a scenario that concerns a bank which provides services
to its customers, such as loans or money transfers. Every service the institution
provides has a distinct cost, that has to be paid in advance by customers that
asked for it. A customer may inquire for the provision of a service: the service first
has to be approved by a supervisor, then it is paid by the customer, and finally it

July 24, 2012 11:28 WSPC/S0218-8430 111-IJCIS 1250002

Verification of Conjunctive Artifact-Centric Services 115

is provisioned by the bank. Moreover, there are special “premier customers” that
do not need supervisor approval. The artifact schema S consists of the following
relation symbols:

• Customer(custSsn,name), which contains customers information;
• Service(servCode, cost), which contains information about the different types of

services that the bank offers to its customers;
• ServiceClaimed(servCode, custSsn), which keeps track of information of services

requested by clients;
• Examined(servCode, spvName, outcome), which contains the names of supervi-

sors in charge of evaluating customers’ claims;
• Payment(servCode, custSsn, amount), which contains information about service

payments;
• ServiceProvided(servCode, custSsn), which holds the services which have been

provided;
• PremierMember(custSsn), which contains the customers that reach the “premier”

status;
• Account(accId, custSsn,maxWithdrawal , creditCard), which holds information

about bank accounts.

As artifact data instance we have an instantiation of the above relations. Namely,
an instance I0 can be:

• CustomerI0 = {〈337505, JohnSmith〉, 〈125232,MaryStewart〉}, and
• ServiceI0 = {〈L057, 100〉, 〈L113, 150〉, 〈C002, 50〉},

and all other relations are empty.

In order to query data instances, we use conjunctive queries that are a special
class of first-order formulas, widely used in databases, corresponding to relational
algebra select-project-join queries. Formally, a conjunctive query is a formula cq of
the form:

∃y.body(y,x),

where body is a conjunction of atoms (i.e. atomic formulas) involving constant
symbols, existentially quantified variables y and free variables x.

Intuitively, a conjunctive query returns, as answer, the domain elements (both
constants and nulls) that, when substituted to the free variables, make the formula
true in the instance. More formally, given an artifact instance I = 〈∆, ·I〉, the
answer to a conjunctive query cq(x) with free variables x, over I, denoted by cq(x)I

is defined as:

cq(x)I = {η | 〈I, η〉 |= cq(x)},

where η : x → ∆ is an assignment for the free variables. In fact, as usual in the
database literature,10 we see assignments η simply as tuples of domain elements to
be substituted to the free variables.

July 24, 2012 11:28 WSPC/S0218-8430 111-IJCIS 1250002

116 G. De Giacomo, R. De Masellis & R. Rosati

The notion of homomorphism25 indeed plays a key role in our setting, so we
remind its definition here. Given two instances I1 = 〈∆, ·I1 〉 and I2 = 〈∆, ·I2〉 over
the same schema S, a homomorphism from I1 to I2, denoted by h : I1 → I2, is a
function from ∆ to ∆ such that:

(i) for every constant c ∈ const(∆), we have that h(c) = c;
(ii) for every 〈d1, . . . , dm〉 ∈ RI1

i , we have that 〈h(d1), . . . , h(dm)〉 ∈ RI2
i .

Two instances I1 and I2 are homomorphically equivalent, written I1
h= I2, if there

exist two homomorphisms h1 : I1 → I2 and h2 : I2 → I1.
A homomorphism h : I1 → I2 preserves the interpretation of constants const(∆)

but not of labeled nulls ln(∆) in I1, which are mapped in a non-injective way, either
to constants or nulls, in I2. In other words, a homomorphism interprets nulls of I1
as existential values.

The characterizing property of conjunctive queries from the semantical point of
view is that they are invariant under homomorphic equivalence.10 That is, if two
data instances I and I ′ are homomorphic, then each boolean (without free variables)
conjunctive query cq produces exactly the same (boolean) answer: cq(x)I = cq(x)I

′
.

The existential interpretation of labeled nulls given by homomorphisms suggests
a different way of answering conjunctive queries, that essentially sees the set of facts
in the interpretation as a theory where all nulls are treated as existential variables.
To make this notion precise, given an interpretation I we define the (infinite) set WI

of all interpretations I ′ = 〈∆, ·I′〉 over S such that there exists an homomorphism
h : I → I ′. Then, we define the Certain Answers of a conjunctive query cq as:

certI(cq) =
⋂

I′∈WI

cqI
′
,

that is, the certain answers to a query are all those tuples of elements in I that are
returned by the query in every interpretation I ′ such that there exists an homomor-
phism h : I → I ′. It is easy to see that such tuples can only be formed by constants
in const(∆) that appear in the active domain of I, since these are the only elements
in the answers that are preserved by homomorphism. Intuitively, when using cer-
tain answers we consider the current instance as representative of several possible
instances, and therefore, we return the tuples that make the query true in all such
instances. Alternatively, it can be shown that the certain answers correspond to the
tuples of constants such that, when substituted to the free variables of the query,
would make the resulting query logically implied by the theory constituted by a
single conjunctive query formed by the logical AND of all facts in I, considering all
labeled nulls as existentially quantified variables.

In our framework, we assume that the user can pose arbitrary conjunctive
queries to the current instance, but require them to be evaluated through certain
answers. In this way, we become independent of the particular null values occurring
in the data instance, since they are not returned as answers, though they can still
be used as witnesses of existentially quantified variables. On the other hand, when

July 24, 2012 11:28 WSPC/S0218-8430 111-IJCIS 1250002

Verification of Conjunctive Artifact-Centric Services 117

we evolve the artifact by executing a task, we do consider null values in the current
instance as legitimate elements to be propagated to the next state according to the
task effects.

Artifact tasks. Executing a task over an instance results in a new instance, which
is specified by the task effects. The formalization of an effect is borrowed from
the database and data exchange literature, in particular from the notion of tuple
generating dependencies (tgds).10,15 An effect specification ξ over a schema S is a
formula of the form:

∃y.φ(x,y, c) → ∃w.ψ(x,w,d)

where φ and ψ are conjunctions of atoms over S; x, y, w denote sets of variables
and c,d denote set of constants occurring in φ and ψ. We call the left-hand side
of ξ the premise, and the right-hand side the conclusion. Notice that both the
premise and the conclusion are conjunctive queries. Formally, let I = 〈∆, ·I〉 be
an artifact instance over the schema S, and ξ = ∃yφ(x,y, c) → ∃wψ(x,w,d) an
effect specification. The result of enacting effect specification ξ on I, is the set of
facts ξ(I) defined as follows:

Let η = (∃y φ(x,y, c))I , be the answer to the query ∃yφ(x,y, c) in I,
then for each ηi ∈ η we proceed as follows: For each atoms Ri(x,w,d)
occurring in ψ, we include in ξ(I) a new fact RI′

i (x,w,d)|ψηi
, obtained by

substituting every variable in x with the corresponding element given by
the assignment ηi, and every variable in w with a fresh (not appearing
elsewhere) labeled null � ∈ ln(∆).

Intuitively, the left-hand side of the effect, acting like a query, selects domain
elements, both constants and null values, from the active domain of the current
instance; while the right-hand side builds the resulting instance by inserting such
domain elements in the relations of its atoms, and by possibly introducing fresh
labeled nulls as witnesses of the existential variables in the query.

A task T for a schema S is specified as a set ξ = {ξ1, . . . , ξn} of effect speci-
fications. The result of executing task T on I, denoted by I ′ = do(T, I), is a new
instance I ′ = 〈∆, ·IT 〉 on the same schema S, obtained as the union of the enact-
ments of each effect specification. Namely I ′ = 〈∆, ·I′〉 where the interpretation
function ·I′ is characterized by the facts

⋃
ξ∈ξ ξ(I).

Let us make some key observations on such tasks. First, we observe that the
role of the existential quantification on the two sides of an effect specification is
very different. The existential quantification on the left-hand side is the usual one
used in conjunctive queries, which projects out variables used only to make joins.
Instead, the existential quantification on the right-hand side is used as a witness of
values that should be chosen by the user when executing the effect. In other words,
the choice function used for assigning witnesses to the existential variables on the
right-hand side should be in the hands of the user. Here, since we do not have such a

July 24, 2012 11:28 WSPC/S0218-8430 111-IJCIS 1250002

118 G. De Giacomo, R. De Masellis & R. Rosati

choice at hand, we introduce a fresh null, to which we assign an existential meaning
through homomorphism.

The second observation is that we do not make any persistence (or frame13)
assumption in our formalization. In principle, at every move, we substitute the
whole old data instance with a new one. On the other hand, it should be clear that
we can easily write effect specifications that copy big chunks of the old instance
into the new one. For instance, Ri(x) → Ri(x) copies the whole extension of a
relation Ri.

Example 2.2. Continuing our previous example, we now turn to the available
tasks. As syntactic sugar, we include some input parameters (the symbols between
parentheses after the task name). In order to execute a task, its parameters must
be instantiated with constants as specified by the condition-action rules that form
artifact lifecycle (see below). The tasks in our domain are the following:

• ClaimService(custSsn, servCode), with effects:

{∃x, y.Customer(custSsn, x) ∧ Service(servCode, y)→
ServiceClaimed(servCode, custSsn),

copyFrame}.

This task models the choice of the customer custSsn to apply for the provision of
a new service of type servCode. Since the resulting instance is a completely new
one consisting of tuples specified by the task effects, we need to explicitly “copy”
all facts that we do not require to be dropped after the task execution. This
is done by effects of the form R(x1, . . . , xn) → R(x1, . . . , xn) for each relation
R ∈ S. We denote collectively such copying effects as copyFrame. Intuitively, the
result of firing task Claim service(cust ssn, serv code) on an instance I results
in a new instance I ′ that not only contains I, but also includes the new tuple
ServiceClaimed(custSsn, servCode) provided that the premise is satisfied by I,
otherwise I ′ = I.
• MakePayment(custSsn, servCode, amount) with effects:

{ServiceClaimed(servCode, custSsn)→
Payment(servCode, custSsn, amount),

copyFrame}.

This task models the payment operation performed by a customer for a service
that has been previously requested, i.e. the resulting instance may include the
tuple Payment(custSsn, servCode, amount).
• GrantApproval(servCode) with effects:

{∃x.ServiceClaimed(servCode, x) →
∃ z.Examined(servCode, z, “approved ”),

copyFrame}.

July 24, 2012 11:28 WSPC/S0218-8430 111-IJCIS 1250002

Verification of Conjunctive Artifact-Centric Services 119

This task represents the approval of a service that has been requested, by includ-
ing (according to its effects) the fact Examined(servCode, �, “approved ”) where
� is a fresh labeled null that models a possible supervisor.
• ProvideServices() with effects:

{∃ v, z.ServiceClaimed(x, y) ∧ Examined(x, v, “approved ”) ∧
Payment(x, y, z) ∧ Service(x, z)→ ServiceProvided(x, y),
copyFrame}.

This task models the delivery of all services that have had explicitly approved by
a supervisor and that were already paid.
• QuickService() with effects:

{∃ z.ServiceClaimed(x, y) ∧ Payment(x, y, z) ∧ PremierMember(y)→
ServiceProvided(x, y),

copyFrame}.

This task delivers all the services for which the correct amount was paid and that
have been requested by a premier customer.
• AwardPremierStatus() with effects:

{∃ y, t, u, w, z.Customer(x, y) ∧ ServiceProvided(z, x) ∧
Account(u, x, w, t)→ PremierMember(x),

copyFrame}.

This task awards the premier status to all customers holding a bank account who
applied for the provision of a service that had already been accepted.

Artifact lifecycle. The artifact lifecyle is defined in terms of condition-action
rules, that specify, for every instance, which tasks can be executed. A (condition-
action) rule for a schema S is an expression � of the form π 	→ T where π is a
precondition and T is a task. The precondition is a closed formula over S defined
according to the following syntax:

π ::= cq | ¬π | π1 ∧ π2,

where cq is a boolean conjunctive query. Preconditions are arbitrary boolean combi-
nations of boolean conjunctive queries interpreted under the certain answer seman-
tics, namely we define the semantic relation artifact instance I logically implies
precondition π, written I � π, by induction on the structure of the precondition, as
follows:

I � cq iff certI(cq) = true

I � ¬π iff I � π

I � π1 ∧ π2 iff I � π1 and I � π2.

In order to execute a task T on an instance I,

July 24, 2012 11:28 WSPC/S0218-8430 111-IJCIS 1250002

120 G. De Giacomo, R. De Masellis & R. Rosati

Given a condition-action rule π 	→ T and an instance I, if I logically implies
precondition π, then the task T is executable and, if it is executed, it generates a
new instance I ′ according to T ’s effects.

Observe that, while we disallow negation in task effects so as to exploit the
theory of conjunctive queries, in the condition-action rules we allow for it, but
in order to do so we actually require conditions to be based on certain answers
of conjunctive queries. In this way in conditions, we are only composing (using
the booleans) the results of the conjunctive queries, and hence two homomorphic
equivalent instances are guaranteed to satisfy the same conditions. Notice also that
negation in this way becomes a sort of (stratified) “negation-as-failure”.26

Example 2.3. The artifact lifecycle of our running example is specified by the
following condition-action rules:

(CustSsn, servCode) 	→ ClaimService(CustSsn, servCode)

(CustSsn, servCode, amount) 	→ MakePayment(CustSsn, servCode, amount)

(ServCode) 	→ GrantApproval(ServCode)
∃x, y, v, w.Payment(x, y, w) ∧ Service(x,w) ∧ RequestExamined(x, v, “approved ”) 	→
ProvideServices()
∃x, y, w.Payment(x, y, w) ∧ Service(x,w) ∧ PremierMember(y) 	→ QuickService()
∃x, y, u, w, t. ServiceProvided(x, y) ∧ Account(u, y, w, t) 	→ AwardPremierStatus().

Again, we use parameters (occurring as free variables above) as syntactic sugar for
a much larger set of condition-action rules obtained by instantiating the parameters
to constants from a finite set. For example, such a set may contain all constants
from the initial data instance of the artifact specified below, plus some extra ones
used for convenience, e.g. to represent some predetermined amounts of money to
be use for the parameter amount.

3. Conjunctive Artifact Execution

Let us consider an artifact A = 〈D, T , C〉, with data component D = 〈S, I0〉 where
S is the artifact data schema and I0 is the initial artifact data instance. Moreover,
let I be the set of all possible instances over S.

Artifact execution tree. We can describe all possible executions of an artifact A
by the so-called execution tree of A. The execution tree is a tuple TA = 〈Σ, σ0, L,Tr〉
where Σ is the set of states (or nodes), σ0 is the root, L : Σ → I is a labeling of
the states with data instance, and Tr ⊆ I × T × I is the transition relation that
determines the successor nodes to the current one. We use the notation σ

T=⇒ σ′

for 〈σ, T, σ′〉 ∈ Tr .
The set Σ of states, its labeling L and the set Tr of transitions are defined

inductively as follows:

• the root is σ0 ∈ Σ, with L(σ0) = I0;

July 24, 2012 11:28 WSPC/S0218-8430 111-IJCIS 1250002

Verification of Conjunctive Artifact-Centric Services 121

• given a state σ for each task T ∈ T such that there exists a rule � = π 	→ T such
that L(σ) � π, add a state σ′T ∈ Σ with L(σ′T) = do(T, I) (i.e. L(σ′T) is the data
instance obtained by applying T to L(σ)) and a transition σ T=⇒ σ′T .

Notice that, in the execution tree, each state correspond to the full history that has
generated it starting from the initial state, i.e. there is a correspondence between a
state and the path that connects it to the root. Also, given a state σ we have one
T -successor for each task T executable in L(σ).

Observe that, in constructing the execution tree, we have a certain freedom in
labeling the states, since in generating new data instance do(T, I) from the current
one I, we are free to choose any fresh labeled null for the existential variables in
the right-hand side of the effects specifications. However, all such instances are
equivalent modulo nulls renaming. Given two instances I1 = 〈∆, ·I1〉 and I2 =
〈∆, ·I2〉 over the same schema S, a nulls renaming from I1 to I2, denoted by r :
I1 → I2 is an injective homomorphism, i.e. a function such that:

(i) for every constant c ∈ const(∆) we have that r(c) = c;
(ii) for every couple of different labeled nulls �1, �2 ∈ ln(∆) we have that r(�1) �=

r(�2) and
(iii) for every 〈d1, . . . , dm〉 ∈ RI1i , we have that 〈r(d1), . . . , r(dm)〉 ∈ RI2i .

Two instances I1 and I2 are equivalent modulo nulls renaming, denoted by I1
mnr= I2

iff they are isomorphic, i.e. iff there exists a nulls renaming r : I1 → I2 such that its
inverse r−1 is a null renaming from I2 to I1. Hence, modulo nulls renaming, there
exists a single execution tree TA for an artifact A.

Artifact transition systems and bisimulation. The execution tree is a special
case of a so-called transition system. A transition system for A is a tuple AA =
〈Σ, σ0, L,Tr〉 where (i) Σ is the (possibly infinite) set of states; (ii) σ0 is the initial
state; (iii) L : Σ→ I is a labeling function that associates to each state in Σ a data
instance in I. (iv) Tr ⊆ I × T × I is the transition relation.

Not all transition systems for an artifact A represent the same behavior as the
execution tree. To capture which transition systems do, we need to formally capture
equivalences between transition systems. To this aim, we make use of the notion of
bisimulation.27 In formally detailing such a notion, we consider that the user can
only query data instances through conjunctive queries, evaluated to return certain
answers.

Given two transition systems for the same artifact A, A1 = 〈Σ1, σ0,1, L1,Tr1〉
and A2 = 〈Σ2, σ0,2, L2,Tr2〉, a bisimulation is a relation B ⊆ Σ1 × Σ2 such that
〈σ1, σ2〉 ∈ B implies that:

(i) for every conjunctive query cq we have that certL1(σ1)(cq) = certL2(σ2)(cq);
(ii) if σ1

T=⇒ σ′1 then there exists σ′2 such that σ2
T=⇒ σ′2 and 〈σ′1, σ′2〉 ∈ B;

(iii) if σ2
T=⇒ σ′2 then there exists σ′1 such that σ1

T=⇒ σ′1 and 〈σ′1, σ′2〉 ∈ B.

July 24, 2012 11:28 WSPC/S0218-8430 111-IJCIS 1250002

122 G. De Giacomo, R. De Masellis & R. Rosati

We say that two states σ1 and σ2 are bisimilar, denoted as σ1 ∼ σ2, if there
exists a bisimulation B such that 〈σ1, σ2〉 ∈ B. Two transition systems A1 =
〈Σ1, σ0,1, L1,Tr1〉 and A2 = 〈Σ2, σ0,2, L2,Tr2〉 are bisimilar if σ0,1 ∼ σ0,2.

With the notion of bisimulation at hand, we can state that any transition system
that is bisimilar to the execution tree represents the behavior of the artifact. We
can exploit this fact to perform verification on a transition system that is more
manageable than the execution tree. We will do so later: first, we introduce a
suitable verification formalism.

4. Verification Formalism

We turn to verification of conjunctive artifact-centric services. To specify dynamic
properties we use µ-calculus,23,28 one of the most powerful temporal logics for which
model checking has been investigated, and indeed is able to express both linear
time logics, as LTL, and branching time logics such as CTL or CTL*.9 The main
characteristic of µ-calculus is the ability of expressing directly least and greatest
fixpoints of (predicate-transformer) operators formed using formulas relating the
current state to the next one. By using such fixpoint constructs, one can easily
express sophisticated properties defined by induction or co-induction. This is the
reason why virtually all logics used in verification can be considered as fragments
of µ-calculus. From a technical viewpoint, µ-calculus separates local properties,
i.e. properties asserted on current state or states that are immediate successors of
the current one, from properties that talk about states that are arbitrarily far.24

The latter are expressed through the use of fixpoints. Such a separation is very
convenient for theoretical investigation, and indeed makes µ-calculus the language
of choice for much theoretical work.23 On the other hand, from a practitioner point
of view, expressing properties using directly fixpoint can be cumbersome and, in
most applications, simpler logics like CTL or LTL are preferred. For a thorough
introduction to µ-calculus, we refer the reader to Stirling’s book28 which looks at
µ-calculus both from the theoretical and from the practical point of view. The
choice of using µ-calculus in our investigation allows for immediately transferring
the results obtained to simpler logics like LTL, CTL, CTL*, etc.

Specifically, we introduce a variant of µ-calculus, called µL, that conforms to
the basic assumption of our formalism: the use of conjunctive queries and certain
answers to talk about data instances. This intuitive requirement can be made for-
mal as follows: µL must be invariant with respect to the notion of bisimulation
introduced above.

Given an artifact A = 〈S, T , C〉, the verification formulas of µL for A have the
following form:

Φ ::= cq | ¬Φ |Φ1 ∧ Φ2 | [T]Φ | 〈T 〉Φ |µZ.Φ | νZ.Φ |Z,

where cq is a boolean conjunctive query (interpreted through certain answers) over
the artifact schema and Z is a predicate variable symbol.

July 24, 2012 11:28 WSPC/S0218-8430 111-IJCIS 1250002

Verification of Conjunctive Artifact-Centric Services 123

The symbols µ and ν can be considered as quantifiers, and we make use of
notions of scope, bound and free occurrences of variables, closed formulas, etc.,
referring to them. For formulas of the form µZ.Φ and νZ.Φ, we require the syntactic
monotonicity of Φ w.r.t. Z: Every occurrence of the predicate variable Z in Φ must
be within the scope of an even number of negation signs. In µ-calculus, given the
requirement of syntactic monotonicity, the least fixpoint µZ.Φ and the greatest
fixpoint νZ.Φ always exist. In order to define the meaning of such formulas, we
resort to interpretations that are transition systems. Let A = 〈Σ, σ0, L,Tr〉 be a
transition system for A with initial data instance I0, and let V be a predicate
valuation on A, i.e. a mapping from the predicate variables to subsets of the states
in A. Then, we assign meaning to µ-calculus formulas by associating to A and V
an extension function (·)A

V , which maps µ-calculus formulas to subsets of I. The
extension function (·)A

V is defined inductively as follows:

(cq)A
V = {σ ∈ Σ | certL(σ)(cq)},

(Z)A
V = V(Z) ⊆ Σ,

(¬Φ)A
V = Σ− (Φ)A

V ,

(Φ1 ∧Φ2)A
V = (Φ1)A

V ∩ (Φ2)A
V ,

(〈T 〉Φ)A
V = {σ ∈ Σ | ∃σ′. σ T=⇒ σ′ and σ′ ∈ (Φ)A

V},

([T]Φ)A
V = {σ ∈ Σ | ∀σ′. σ T=⇒ σ′ implies σ′ ∈ (Φ)A

V},

(µZ.Φ)A
V =

⋂
{E ⊆ Σ | (Φ)A

V[Z←E] ⊆ E},

(νZ.Φ)A
V =

⋃
{E ⊆ Σ | E ⊆ (Φ)A

V[Z←E]}.

Intuitively, (·)A
V assigns to the various constructs of µ-calculus the following

meaning:

• The boolean connectives have the expected meaning.
• The extension of 〈T 〉Φ includes the states σ such that starting from σ, there is

an execution of task T that leads to a successor state σ′ included in the exten-
sion of Φ.
• The extension of [T]Φ includes the states σ such that starting from σ, each

execution of task T leads to some successor state σ′ included in the extension
of Φ.
• The extension of µZ.Φ is the smallest subset Eµ of Σ such that, assigning the

extension Eµ to Z, the resulting extension of Φ is contained in Eµ. That is, the
extension of µX.Φ is the least fixpoint of the operator λE .(Φ)A

V[Z←E] (here V [Z ←
E] denotes the predicate valuation obtained from V by forcing the valuation of Z
to be E).
• Similarly, the extension of νZ.Φ is the greatest subset Eν of Σ such that, assigning

the extension Eν to Z, the resulting extension of Φ contains Eν . That is, the
extension of νZ.Φ is the greatest fixpoint of the operator λE .(Φ)A

V[Z←E].

July 24, 2012 11:28 WSPC/S0218-8430 111-IJCIS 1250002

124 G. De Giacomo, R. De Masellis & R. Rosati

In expressing temporal properties using µL below, we use the following abbre-
viations: 〈−〉Φ .=

∨
T∈T 〈T 〉Φ and [−]Φ .=

∧
T∈T [T]Φ, where T is the set of all

tasks of the artifact. In this way, we can talk about all next states (resulting from
every possible task execution) or about some next states resulting from certain task
executions.

With this abbreviations at hand, it is easy to express natural temporal properties
such as “eventually a local property φ holds in all runs” (a liveness property):

µZ.φ ∨ [−]Z,

or “always a local property φ holds (in all runs)” (a safety property):

νZ.φ ∧ [−]Z.

By the way, notice that the negation of νZ.φ∧ [−]Z is not µZ.φ∨ [−]Z but instead
µZ.φ∨〈−〉Z which expresses that eventually φ holds along some (but not necessarily
all) runs.

Coming back to the first formula, µZ.φ∨ [−]Z can be seen as the “smallest solu-
tion” of the equation: Z = φ ∨ [−]Z that is the smallest predicate that substituted
to the variable Z makes the equation true. More formally, µZ.φ ∨ [−]Z denotes in
every interpretation (i.e. transition system) A, the least fixpoint of the operator
λE .(φ∨ [−]Z)A

V[Z←E], i.e. the smallest set Eµ of states of A that makes the equation
Eµ = (φ ∨ [−]Z)A

V[Z←Eµ] true. Similarly, νZ.φ ∧ [−]Z can be seen as the “greatest
solution” of the equation Z = φ ∧ [−]Z, or more precisely, in every interpretation
A the greatest fixpoint of the operator λE .(φ∧ [−]Z)A

V[Z←E], i.e. the greatest set Eν
of states of A that makes the equation Eν = (φ ∧ [−]Z)A

V[Z←Eν] true.
The reasoning problem we are interested in is model checking: verify whether a

µL closed formula Φ holds in an artifact A with initial data instance I0. Formally,

such a problem is defined as checking whether L(σ0) ∈ I ∈ (Φ)T
I0
A

V (where V is
any valuation, since Φ is closed), that is, whether Φ is true in the root of the A
execution tree.

On the other hand, we know that there are several transition systems that are
bisimilar to the execution tree TI0A . The following theorem states that the formula
evaluation in µL is indeed invariant w.r.t. bisimilarity, so we can equivalently check
any such transition system.

Theorem 4.1. Let A1 and A2 be two bisimilar transition systems. Then, for every
pair of states σ1 and σ2 such that σ1 ∼ σ2 (including the initial ones), for all
formulas Φ of µL, we have that σ1 ∈ (Φ)A1

V iff σ2 ∈ (Φ)A2
V .

Proof. The proof is analogous to the standard proof of bisimulation invari-
ance of µ-calculus,24 though taking into account our specific definition of bisim-
ulation, which makes use of conjunctive queries and certain answers as their
evaluation.

July 24, 2012 11:28 WSPC/S0218-8430 111-IJCIS 1250002

Verification of Conjunctive Artifact-Centric Services 125

In particular, if for some reason we can get a transition system that is bisimilar
to the execution tree and is finite, then we can apply the following theorem.

Theorem 4.2. Checking a µL formula Φ over a finite transition system AA =
〈Σ, σ0, L,Tr〉 can be done in time

O((|A| · |Φ|)k),

where |A| = |Σ| + |Tr |, i.e. the number of states plus the number of transitions of
A, |Φ| is the size of formula Φ (in fact, considering conjunctive queries as atomic),
and k is the number of nested fixpoints, i.e. fixpoints whose variables are one within
the scope of the other.

Proof. It suffices to use the standard µ-calculus model checking algorithms,23 with
the proviso that for atomic formulas we use the computation of certain answers of
conjunctive queries.

Example 4.1. Let us consider again our running example with initial artifact
data instance I0 of Example 2.1 where CustomerI0 = {〈337505, JohnSmith〉,
〈125232,MaryStewart〉}, ServiceI0 = {〈L057, 100〉, 〈L113, 150〉, 〈C002, 50〉}, and
all other relations are empty. The following liveness property asks if it is possible to
obtain the provision of any service at all, i.e. if by executing tasks we can eventually
get to a state where some service has been provided:

µZ.

(
∃x, y.ServiceProvided(x, y) ∨

∨
T∈T
〈−〉Z

)
.

The formula is actually true, for example a state where ServiceProvided

(L057, 337505) holds can be reached from the initial state through the following
sequence of tasks: ClaimService(337505, L057), MakePayment(337505, L057, 100),
GrantApproval(L057) and finally ProvideServices().

Next, consider the safety property asking whether every possible reachable
instance will always contain the information that the service L113 has been paid
and provided:

νZ.

(
∃x, y, z.Payment(L113, x, y) ∧ ServiceProvided(L113, z)∧

∧
T∈T

[−](Z)

)
.

This is trivially false, since in the initial instance I0 there is no payment for any
service.

As a last example, we look at a fairness property, expressing that it is always
true that eventually a service is provided:

νZ1.(µZ2.((∃x1, x2, x3.Service(x1, x2)

∧ServiceProvided(x1, x3)) ∨ 〈−〉Z2) ∧ [−]Z1).

This is not the case, because there is an (infinite) path in the execution tree, e.g. the
one obtained by repeating forever action GrantApproval(L113), that passes through

July 24, 2012 11:28 WSPC/S0218-8430 111-IJCIS 1250002

126 G. De Giacomo, R. De Masellis & R. Rosati

states in which ∃x1, x2, x3.Service(x1, x2, x3) ∧ ServiceProvided(x1, x3) will never
hold.

More sophisticated temporal properties, such as strong forms of fairness, are
also easily expressible in µL.

5. Decidability of Weakly Acyclic Conjunctive Artifacts

In this section, we study decidability of verification in conjunctive artifacts. First,
observe that, so far, we do not have a concrete technique for the verification problem,
since the model checking results in Theorem 4.2 only apply to finite structures. In
fact, as a consequence of the undecidability of the implication problem for tgds (see
e.g. Ref. 10), it is obvious that, without any restrictions on effect specifications,
model checking in our setting is undecidable. Addressing sufficient conditions for
decidability is the purpose of this section. We start by introducing the notion of exe-
cution transition system and showing its relationship with the notion of execution
tree of an artifact.

Execution transition system. Given an artifact A = 〈D, T , C〉 with ini-
tial artifact data instance I0, we define the execution transition system SA =
〈Σs, σ0,s, Ls,Trs〉 inductively as follows:

• σ0,s ∈ Σ and such that Ls(σ0,s) = I0;
• for all instances σ ∈ Σs and for each task T ∈ T such that there exists a rule
� = π 	→ T such that Ls(σ) � π, let I ′ = do(T, Ls(σ)) be data instance resulting
from the execution of task T in Ls(σ) then:

— if there exists an instance σ′ ∈ Σs such that Ls(σ′)
h= I ′ then add the transi-

tion σ T=⇒ σ′ to Trs;
— if such a state does not exists, then add the a new state σI′ to Σ with Ls(σI′) =

I ′ and add the transition edge σ T=⇒ σI′ to Trs.

Theorem 5.1. Let A = 〈D, T , C〉 be an artifact with initial data instance I0. Then,
the execution tree TA,Io = 〈Σt, σ0,t, Lt,Tr t〉 is bisimilar to the execution transition
system SA,I0 = 〈Σs, σ0,s, Ls,Trs〉.

Proof. Let us consider the bisimulation relation Bts = {〈σt, σs〉 | σt ∈ Σt ∧ σs ∈
Σs ∧ Ls(σs) h= Lt(σt)}. This is the relation formed by couples of states of the
two transition systems such that their labeling data instances are homomorphically
equivalent. We show that Bts is a bisimulation (according to our definition). Indeed
consider 〈σs, σt〉 ∈ Bts. Then:

(i) For each cq, since Ls(σs)
h= Lt(σt) we have that certLs(σs)(cq) = certLt(σt)(cq)

from the definition of certain answers and homomorphical equivalence.

July 24, 2012 11:28 WSPC/S0218-8430 111-IJCIS 1250002

Verification of Conjunctive Artifact-Centric Services 127

(ii) If σt
T=⇒ σ′t then there is a rule � = π 	→ T and Lt(σt) � π. Since Ls(σs)

h=
Lt(σt) then (i) Ls(σs) � π as well, so σs

T=⇒ σ′s moreover it is easy to see that
Lt(σ′t)

h= Ls(σ′s) by considering definition of executing a task.
(iii) Symmetric to the previous case.

Finally observe that since Lt(σ0,t) = Ls(σ0,s) = I0 we trivially get that 〈σ0,s,

σ0,t〉 ∈ Bts.

This theorem basically allow us to make use of the execution transition sys-
tem rather than an execution tree for our verification tasks, taking advantage of
Theorem 4.1. In other words, the certain answer semantics give us the freedom
of using equivalence classes of homomorphically equivalent instances for the pur-
pose of verification. Notice, however, that this theorem is not sufficient to achieve
a decidability result, since the number of states in the execution transition system
is bounded only by the number of homomorphically non-equivalent data instances,
which is infinite in general. In the following, we concentrate on conditions that
guarantee its finiteness.

Inflationary approximate. Artifacts can both increase and decrease the size of
the data stored in the data component as tasks are executed. For the develop-
ment below, it is convenient to disregard the possibility of erasing data, so as to
have a sort of abstraction of the original artifact in which the information mono-
tonically increases only. To do so we introduce what we call here the inflationary
approximate of an artifact, which is indeed a variant of the original one in which,
essentially, information only increases. Notice that we are not interested in any way
to the actual behavior, i.e. transition system of the inflationary approximate. We
are interested only in the fact that the inflationary approximate gives us an upper
bound on the data instances constituting the state of the transition system of the
original artifact. In particular, if such a bound is finite, we get that also the states
of the original transition system are finite, and hence finite state model checking
techniques can be applied for the verification of the original artifact.

Given an artifact A = 〈D, T , C〉 let us introduce A+ = 〈D, T +,
〉, the inflation-
ary approximate of the artifact A, that differs from A in the fact that every effect
T+ ∈ T + copies all the fact and because the rules are of the form � =
 	→ T+

for every task T+, namely it is always possible to execute a task. Let I be the set
of possible interpretation over S, in the following we will make use of two different
functions: the first one, f : T ×I → I, is defined as f(T, I) = do(T, I), so it computes
the usual result of executing a task on I; while the second one, g : T + × I → I,
is the inflationary approximate of the first one: g(T+, I) = do(T+, I), that is, it
generates the result of executing the inflationary task T+ on I. Notice that no
contradiction can arise since effects of tasks, being based on conjunctive queries,
are only positive. In this setting, the need of comparing instances that disagree on

July 24, 2012 11:28 WSPC/S0218-8430 111-IJCIS 1250002

128 G. De Giacomo, R. De Masellis & R. Rosati

names of labeled nulls raises. To do so we make use again of the notion of nulls
renaming introduced in Sec. 3.

Given two instances I1 and I2, we say that I1 is contained in I2 modulo nulls

renaming, written as I1
mnr
⊆ I2, if there exists a nulls renaming r : I1 → I2.

Let A = 〈D, T , C〉 be an artifact, and A+ = 〈D, T +,
〉 be its inflationary
approximate, we introduce, for every task T+, Igood = {I0 ∪ g(T+, I) | I ⊆ Igood}.
Now we define the instance ImaxI0

=
⋂
{Igood | Igood = {I0 ∪ g(T+, I) | I ⊆ Igood}}.

Notice also that, as an immediate consequence of its definition, we get that
g(T, ImaxI0

) = ImaxI0
, since ImaxI0

is a fixpoint, indeed, the least fixpoint.29

Lemma 5.1. Let A = 〈D, T , C〉 be an artifact with initial data instance I0, and
let ImaxI0

be as above. Then for every task T+ and for every sequence of instances

I0, . . . , In such that Ii+1 = g(T+, Ii), we have that Ii
mnr
⊆ ImaxI0

, for i = 0, . . . , n.

Proof. By induction on the number i of application of the g function.

Base case: Trivial, by definition of ImaxI0
we have that I0

mnr
⊆ ImaxI0

.

Inductive case: We show that for every task T , if Ii+1 = g(T, Ii), then Ii+1

mnr
⊆ ImaxI0

.
Recalling that g is inflationary, we have that it is also monotonically increasing,
namely, for every task T and instance I, we have that I ⊆ g(T, I). Since by inductive

hypothesis Ii
mnr
⊆ ImaxI0

, we get that for every task T+, Ii+1 = g(T+, Ii)
mnr
⊆ ImaxI0

holds.

Lemma 5.2. Let A = 〈D, T , C〉 be an artifact with initial data instance I0, and let
ImaxI0

be as above. Then for every task T ∈ T and for every sequence of instances

I0, . . . , In, such that Ii+1 = f(T, Ii), we have that Ii
mnr
⊆ ImaxI0

, for i = 0, . . . , n.

Proof. By induction on the length n of application of the f function.

Base case: Trivial, by definition of ImaxI0
we have that I0

mnr
⊆ ImaxI0

.

Inductive case: For the sake of readability, we split the proof in two parts: We first

show that (i) for every task T and couple of instances If , Ig such that If
mnr
⊆ Ig, we

have that f(T, If)
mnr
⊆ g(T, Ig) and then that (ii) for every task T , if I ′ = f(T, I),

then I ′
mnr
⊆ ImaxI0

. Starting from (i), for every task T ∈ T , let us use I ′f = f(T, If) and
I ′g = g(T+, Ig), we show how to construct a nulls renaming r : I ′f → I ′g. Notice that
I ′f = I ′f,old∪I ′f,new , namely, I ′f is made up by some facts that may be copied from If ,

and some new facts. On the other hand, I ′g = Ig∪I ′g,new . Since, I ′f,old
mnr
⊆ Ig we have,

by definition, that r : I ′f,old → Ig. We now extend r in order to cover I ′f,new . Any

new fact RI
′
f
i (x,w,d)|ψηi

∈ I ′f,new comes from an effect specification ∃y.φ(x,y, c) →
∃w.ψ(x,w,d), and since the set ηf = (∃y.ψ(x,y, c))If are computed over the

instance If
mnr
⊆ Ig, we have that (with abuse of notation) ηf

mnr
⊆ ηg with

July 24, 2012 11:28 WSPC/S0218-8430 111-IJCIS 1250002

Verification of Conjunctive Artifact-Centric Services 129

ηg = (∃y.ψ(x,y, c))Ig . Hence, for every value �i,f introduced in I ′f,new in a cer-
tain position of the schema, we have a correspondent value �i,g in I ′g,new in the
same position. We then extend the identity r with r(�i,f) = �i,g for each i and
r(dj) = dj for every new constant dj ∈ d introduced by effects. It is easy to verify
that r : I ′f → I ′g is indeed a nulls renaming by construction. We now prove (ii): By

inductive hypothesis we have I
mnr
⊆ ImaxI0

, from Lemma 5.1 we have that, for evert

task T ∈ T , g(T+, I)
mnr
⊆ ImaxI0

, from (i) that f(T, I)
mnr
⊆ g(T, I), and therefore, by

transitivity, we get the claim.

We have thus showed that the data instances of inflationary approximate bounds
the data instances of the original artifact. The next step is to find conditions that
guarantee finiteness of the data instances themselves. To do so, we resort to the
literature on boundedness of data exchange and the condition of weak acyclicity
defined there. Before continuing, we briefly summarize such notions in the para-
graph below.

Boundedness of data exchange and weak acyclicicy. The data exchange
problem address the issue of translating and restructuring data from one logical
schema, called source schema to a new one, the target schema. Technically, the
source and the target schema are related through a set of dependencies, called
source-to-target dependencies, that, intuitively, formalize how to restructure data
in the “new” schema, while the so-called set of target-to-target dependencies is used
to represent constraints on the target schema. Both these dependencies have the
form of containment (or implication) between conjunctive queries. Dependencies of
this form are called tuple-generating dependencies, or tgds. The problem of data
exchange is then the following: given an instance of the source schema, materialize
an instance over the target schema by chasing, i.e. recursively applying all tgds as
many times as possible. However, in principle there is no guarantee that chasing
will ever finish. In fact, roughly speaking, tgds generate databases that include new
“unknown” values (i.e. labeled nulls). For example, a dependency may express the
constraint on the new database that “Every employee is involved in a project”
without telling us which project. Clearly, problems arise when such labeled null
values are used for generating new ones, therefore creating a sort of loop that makes
the resulting instance infinite. In order to avoid this obstacle, restriction on the form
of tgds allowed have been proposed, so as to enforce the so-called weak acyclicity,
meaning that, intuitively, dependencies should not generate values in a cyclic way,
hence guaranteeing the termination of the chase and a finite resulting instance.15

Notice that weak acyclicity is only a sufficient condition to obtain such a result, and
lately several generalization of the condition have been proposed.17–20 In this paper,
we stick to the original definition of weak acyclicity for simplicity, but we stress that
all the results that we are presenting hold also for more general conditions that
guarantee the termination of the chase and the finiteness of the resulting instance.

July 24, 2012 11:28 WSPC/S0218-8430 111-IJCIS 1250002

130 G. De Giacomo, R. De Masellis & R. Rosati

Weakly acyclic artifacts. After this intermezzo, we are now ready to define suf-
ficient conditions on artifact, corresponding to the above notion of weak acyclicity,
that guarantee that the instances of inflationary approximate, and thus the original
artifact, are indeed finite.

Roughly speaking, the above lemmas guarantee that every possible instance
that can be produced from I0 by applying in every possible way f and g functions is
bounded by the least fixpoint ImaxI0

. Notice however that ImaxI0
is infinite in general,

so, in order to get decidability, we need a finite bound on ImaxI0
. To get such condition

we exploit results from Ref. 15 on weakly-acyclic tgds. Weak-acyclicity is a syntactic
notion that involves the so-called dependency graph of the set of tgds TG. Informally,
a set TG of tgds is weakly-acyclic if there are no cycles in the dependency graph
of TG involving “existential” relation positions. The key property of weakly-acyclic
tgds is that chasing a data instance with them (i.e. applying them in all possible
way) generates a set of facts (a database) that is finite. Formally, given an artifact
A = 〈D, T , C〉, the dependency graph (that is a directed graph) is constructed as
follows: (i) for every relation symbol Ri ∈ S there is a node (called position) for
every pair (Ri, att) where att is an attribute in Ri and (ii) add edges as follows: for
every action ξ = ∃ y.φ(x,y, c) → ∃w.ψ(x,w,d) and for every x ∈ x that occurs in
ψ: for every occurrence of x in φ in position p:

• for every occurrence of x in ψ in position p′ add an edge p → p′ (if it does not
already exist);
• in addition, for existential variable wi ∈ w and for every occurrence of wi in ψ

in position p′′ add a special edge p ∗−→ p′′ (if it does not already exists).

We say that A is weakly acyclic if the dependency graph of the effect specifica-
tions in T contains no cycles going trough special edges. Notice that if A is weakly
acyclic, its inflationary approximate A+ is weakly acyclic as well.

Example 5.1. It is easy to see that the artifact in our running example is weakly
acyclic. To verify this, we build the dependency graph associated to it, shown in
Fig. 1, and we check that there are no cycles going through special edges. In our
case there is a single special edge, which is denoted by a dashed arrow, and indeed
such an edge is not involved in any cycle.

We would like to exploit the result of Ref. 15. In order to do so, we show that
inflationary executing a task is equivalent to a sequence of chase steps. Here, we give
a brief definition of chase step (more details in Ref. 15). We first define the notion
of homomorphism from a conjunctive formula ∃ y.φ(x,y, c) to an instance I as a
mapping h from the variables x ∪ y to const(∆) ∪ ln(∆) such that for every atom
Ri(x1, . . . , xn) of φ, the fact Ri(h(x1), . . . , h(xn)) is in I. Now we are ready to define
a chase step: Let I be an instance, ξ = ∃ y.φ(x,y, c) → ∃w.ψ(x,w,d) an effect
specification, i.e. a tgd, and h an homomorphism from ∃ y.φ(x,y, c) to I such that
there is no extension of h to an homomorphism h′ from ∃ y.φ(x,y, c)∧∃w.ψ(x,w,d)
to I. We say that ξ can be applied to I with homomorphism h. Let I ′ be the union

July 24, 2012 11:28 WSPC/S0218-8430 111-IJCIS 1250002

Verification of Conjunctive Artifact-Centric Services 131

Fig. 1. Dependency graph of the running example.

of I with the set of facts obtained by: (a) extending h to h′ such that each variable
in y is assigned a fresh labeled null, followed by (b) taking the image of the atoms
of ψ under h′. We say that the result of applying ξ to I with h is I ′, and we write
I

ξ,h−→ I ′. To conclude, a chase sequence of I0 with a set ξ of effect specifications,
namely, tgds, is a sequence (finite or infinite) of chase step Ii

ξi,hi−→ Ii+ 1 with
i = 0, 1, . . . , and ξi ∈ ξ.

We are now ready to define a correspondence between the enactment of a task
and a chase sequence.

Lemma 5.3. Let A be an artifact, A+ = 〈D, T +,
〉 its inflationary approximate,

and I, J two instances such that I mnr= J . For every task T+ ∈ T + if I T+

=⇒ I ′, then

there exists a chase sequence (possibly empty) J
ξi,hi−→, . . . , ξj ,hj−→ J ′ with ξi, . . . , ξj ∈

T + such that I ′ mnr= J ′.

Proof. Recall that enacting a task in T+ ∈ T + at state σ such that Ls(σ) = I,
that is, execute the g(T+, I) function, is inflationary, and so is the chase step: so, the
resulting instance, say I ′, is I ′ = I ∪ I ′new where I ′new is the set of “new” facts just
added by T+. Nevertheless, I ′new may be the empty set. In this case, the enactment
of a task can still be performed (resulting in g(T+, I) = I) while the chase step
cannot be performed (no chase step involving tgds in T+ can be performed, since
every homomorphism from φ to J can be extended from φ ∧ ψ). This is a simple
consequence of the definition of chase step, g function and execution transition
system. But if I ′new = ∅, no new facts are added, and so no chase step are needed.
Stepping back to the general and more interesting case, by definition of execution
of a task, I ′new is made up by facts of the form ψI

′
i (x,w,d)|ηi,j for each effect

July 24, 2012 11:28 WSPC/S0218-8430 111-IJCIS 1250002

132 G. De Giacomo, R. De Masellis & R. Rosati

specification ξi = ∃y.φi(x,y, c) → ∃w.ψi(x,w,d) in T+ and each assignment
ηi,j ∈ ηi where ηi = ∃y.φi(x,y, c)I . Since I mnr= J , there exists r : I → J . For
each ηi,j let us consider the function hi,j built in this way: (i) for each x ∈ x (resp.
y ∈ y) such that ηi,j(x) = c (resp. ηi,j(y) = c) with c ∈ const(∆), hi,j(x) = ηi,j(x)
(resp. hi,j(y) = ηi,j(y)); (ii) for each x ∈ x (resp. y ∈ y) such that ηi,j(x) = � (resp.
ηi,j(y) = �) with � ∈ ln(∆), hi,j(x) = r(ηi,j(x)) (resp. hi,j(y) = r(ηi,j(y))). We
have that hi,j is actually an homomorphism from the set of variables x, y in φi to
the instance J . Since the set of new facts coming from effect ξi can be identified by
the couple 〈ξi, ηi,j〉, let us informally write I ′new = {〈ξ1, η1,1〉, . . . , 〈ξn, ηn,m〉}.

Now we show that J
ξ1,h1,1−→ , . . . ,

ξn,hn,m−→ J ′ is the chase step sequence we need
in order to get the claim (with each hi,j obtained from ηi,j and r as before). Let
us label such tuples (and resulting instances) with consecutive numbers. We get
J

0−→ J1
1−→, . . . , p−→ J ′. We prove by induction that, in any instance Ji with

0 ≤ i < p it is possible to perform the i+ 1-th chase step, and then that I ′ mnr= J ′.
Base case: Since 〈ξ1, η1,1〉 is in Inew this means that h1,1 is an homomorphism

from variables in ψ1 to J and that it cannot be extended to an homomorphism
φ1 ∧ ψ1 to J (otherwise 〈ξ1, η1,1〉 would not result in a new fact in I ′). So the first
chase step can be executed.

Inductive case: By inductive hypothesis every (and only) chase steps labeled
with numbers less than i have been executed (I0

0−→ J1
1−→ J2

2−→ · · · i−→ Ji+1).
Now we prove that it is possible to perform Ji+1

i+1−→ Ji+2. If the couple labeled
with i+1, say, 〈ξi+1, ηi+1,j〉, is in I ′new this means that hi+1,j is an homomorphism
from variables in ψi+1 to J and that it cannot be extended to an homomorphism
φi+1 ∧ ψi+1 to J . Since the chase is inflationary, we have that hi+1,j is also an
homomorphism from ψi+1 to Ji+1, and moreover, by inductive hypothesis, the
i + 1-th couple has not been used in a previous chase step, so hi+1,j cannot be

extended from φi+1 ∧ ψi+1 to Ji+1, so the chase step Ji+1
ξi+1,ηi+1,j−→ Ji+2 can be

performed. Since J ′ = J ∪ J ′new and, by construction, I ′new
mnr= J ′new, we get that

I ′
mnr= J ′.

Lemma 5.4. Let A = 〈D, T , C〉 be a weakly acyclic artifact with initial data
instance I0, and A+ = {D, T , C} its inflationary approximate. Then the fixpoint
ImaxI0

has finite cardinality.

Proof. Let SA+ = 〈Σs, σ0,s, Ls, T rs〉 the execution transition system of A+.
Roughly speaking, SA+ is the transition system obtained by applying the g func-
tion in every possible way, and generating instances that are homomorphically non-

equivalent only. We show that for every sequence σ0,s
Ti=⇒ · · · Tj=⇒ σn,s, there exists

a sequence of chase steps I0
ξi,hi−→, . . . , ξj ,hj−→ Im, where I0 = Ls(σ0,s) and ξi · · · ξj are

tgds in T +, such that Ls(σi,s)
mnr= Ij . By induction on the number of enactment

of tasks. Base case: Trivial, since the equality modulo nulls renaming is reflexive.

July 24, 2012 11:28 WSPC/S0218-8430 111-IJCIS 1250002

Verification of Conjunctive Artifact-Centric Services 133

Inductive case: By inductive hypothesis, there exists a k ≤ n and a p ≤ m such that
Ls(σk,s)

mnr= Ip. We show that if σk,s
T=⇒ σk+1,s then there exists a sequence of

chase step Ip,
ξi,hi−→ · · · ξj ,hj−→ Ip+� such that Ls(σk+1,s)

mnr= Ip+�. This is guaranteed
from Lemma 5.3.

We proved that every instance generated by the execution transition system
is equal modulo nulls renaming to an instance generated by a sequence of chase
step. By results in Ref. 15 we have that if effect specifications in T + are weakly
acyclic, then there exists a polynomial in the size of the initial instance I0 that
bounds the length, and so the size, of every chase sequence of I0 with T +. Since
two instances that are equals modulo nulls renaming have also the same size, results
in Ref. 15 also apply to our (inflationary) execution transition system, so ImaxI0

has
finite cardinality.

Theorem 5.2. Let A = 〈D, T , C〉 be a weakly acyclic artifact with initial data
instance I0. Then, for every formula Φ of µL, verifying that Φ holds in A with
initial data instance I0 is decidable.

Proof. By Theorems 5.1 and 4.1, we can perform model checking of Φ on the
execution transition system for A. Now, by Lemma 5.2, we have that all data
instances that can be assigned to the states of the execution transition system
for A must be subsets of ImaxI0

. By Lemma 5.4, we get that ImaxI0
has a finite

cardinality. This implies that execution transition system is finite and Theorem 4.2
can be applied.

As mentioned above, all these results can be readily extended to generalization
of the weak acyclicity condition as those proposed in Refs. 17–20.

Finally, we briefly comment on the significance of weak acyclic conditions (the
original one as well as its extensions mentioned above). We argue that the restriction
is not too severe, and that in most real cases artifacts are indeed weakly acyclic or
can be transformed into weakly acyclic ones at cost of redesign. Our argumentation
is grounded on the following observation: if an artifact is not weakly acyclic, then
it will repeatedly generate new values from the old ones. Such values will depend
on a chain of previous values of unbounded length. But this means that current
values depend on old values that are arbitrarily far in the past, and moreover on
an unbounded number of such old values. Notice that, if such a number can be
bounded, then, in principle, the artifact can be rewritten into a weakly acyclic
one. While such unbounded system exists in theory, e.g. Turing machines, where
the artifact data component is the tape, most services, which are naturally more
abstract than Turing machines, will not require such an unboundedness in practice.
On the other hand, while we believe that most services can be rewritten into weakly
acyclic ones, how to systematically to this transformation is an issue that requires
further studies.

July 24, 2012 11:28 WSPC/S0218-8430 111-IJCIS 1250002

134 G. De Giacomo, R. De Masellis & R. Rosati

6. Related Work

A common pattern in computer science is the constantly increasing complexity of
systems, therefore a main challenge is to provide formalisms, techniques, and tools
that will enable the efficient design of correct and well-functioning systems despite
their complexity. Hence, verification of programs, processes, protocols and hardware
has been recognized as one of the most important branches of computer science,
and therefore largely analyzed.9,30–33 With the growth, in the last fifteen years
or so, of formal grounds for business workflows and service management, verifica-
tion of services business processes, and Petri nets based process models, attracted
the attention of the scientific community, because in the aforementioned systems
dynamic properties, such as no deadlocks or existence of a proper completion, are
of extreme interest from a practical point of view, and very challenging from a
theoretical one.34–36

Model checking has been a major breakthrough in verification.9,37 Most model
checking techniques require the dynamic system to verify to be finite-state, since
they verify properties by systematically exhaustive exploration of the mathemat-
ical model that describes the system. Typically symbolic techniques are used to
reduce the cost of the state space exploration.38 Often, even if finite, the systems’
state spaces are in practice too large, and require the use of smart abstraction
techniques, such as symmetry abstraction, abstract interpretation, symbolic simu-
lation and abstraction refinement, to make such analysis very effective in practice.39

Notice that most abstraction techniques give rise to so-called false-negative, i.e. the
verification fails on the abstracted system but the property is true in the real one.
We can see the technique presented here as a faithful form of abstraction (i.e. with
no false negatives), where we suitably abstract several null values into one through
the notion of homomorphic equivalence, though mantaining soundness and com-
pleteness of verification.

Some verification techniques, including model checking, deal also with infinite-
state systems. In fact, infinite-state systems often occur in the practice, and their
verification is certainly of great practical interest. For instance, any recursive
program is potentially infinite-state, due to the possibly unbounded grow of the
stack.40,41 A number of solutions have been proposed to deal with state infinite-
ness. Many of them are based on identifying interesting classes of transition sys-
tems, definable by suitable formalisms, and some respective classes of decidable
properties. For example, decidability results for general infinite-state mathematical
structures are shown in Refs. 42 and 43. Such structures are called well-structured
transition systems and consist in a finite control part operating on an infinite data
domain satisfying well-founded preorder. Decidability is guaranteed for a restricted
class of properties such as control state reachability, eventuality formulas, and simu-
lation between a finite automaton and a well-structured transition system. Interest-
ingly, special kinds of Petri nets, rewrite systems, communicating state machines,
pushdown automata and other systems fall in the general category of well-structured

July 24, 2012 11:28 WSPC/S0218-8430 111-IJCIS 1250002

Verification of Conjunctive Artifact-Centric Services 135

transition systems, hence the above mentioned properties are decidable. Other
results obtain decidability by suitable manipulation of basic transition systems,
such as transductions,44 tree-iteration,45 and unfoldings, that can be intuitively
thought of as operations that build transition systems out of transition systems, by
preserving some regularities that can be exploited by the verification algorithms.
Another approach is regular model checking,46–48 a uniform paradigm for algorith-
mic verification of several classes of parameterized and infinite-state systems. In
this account system states are captured by strings of arbitrary length over a finite
alphabet, and the transition relation is given by a regular, length-preserving rela-
tion on strings, usually represented by a finite-state transducer. The fundamental
problem of computing the set of reachable states from a given initial configura-
tion, or reachability analysis, is tackled by using two complementary techniques: an
automata-theoretic construction, and a fixpoint computation.

Artifact-based systems are in general infinite-state, due to the presence of
unbounded data. The distinctive feature of artifacts is the presence, in each state,
of data with an explicit possibly rich structure, such as relational databases con-
sidered here. This induces the necessity of a corresponding rich query language
such as first-order logic, SQL or conjunctive queries, for querying the state. Mixing
such a rich query capability on the current state with the evolution given by the
lifecycle, makes artifacts infinite-state systems of a different nature with respect to
the ones mentioned above. The proposals in this setting have been sparse, since
they require knowledge of both dynamic systems and databases, but the issue is
increasingly attracting interest lately. In Ref. 49, decidability results for verify-
ing temporal properties over artifact systems are shown, and they are obtained
by abstraction and by bounding the size of the so-called deployed instances. The
work reported in Refs. 50 and 51 share the general setting with our approach but
differs in the conditions required to obtain decidability. Such conditions are not
based on conjunctive queries, but on some decidability results of certain formulas
of a first-order variant of linear time temporal logic.52,53 Another relevant work is
that on SPOCUS relational transducers,54 where decidability is obtained through
results on inflationary Datalog. The work on service composition according to the
COLOMBO model55 is also related to the present approach. There, decidability
is obtained through symbolic abstraction on data and the requirement that pro-
cesses are input bounded (i.e. take only a bounded number of new values, similar
to our Skolem functions, taken from input). Work on formal analysis of forms of
artifact-centric processes has also been reported in Refs. 4, 7, 56 and 57. In Ref. 7,
the authors check whether an artifact modified by services successful completes or
if there are dead-end paths, and decidability is obtained posing restrictions on ser-
vices, such as trivial, i.e. true, or not negative preconditions. In Ref. 4, the problem
of checking whether one artifact-centric workflow may emulate the possible behav-
iors of another one is shown, and decidability is guaranteed if the infinite domain
of artifacts’ attributes is ordered. Verification of more general properties, expressed
in a CTL-like language are analyzed in Refs. 56 and 57. Unfortunately, decidability

July 24, 2012 11:28 WSPC/S0218-8430 111-IJCIS 1250002

136 G. De Giacomo, R. De Masellis & R. Rosati

for the full language is obtained by bounding the domain, and for unbounded (but
yet ordered) domain only a fragment of the original language is decidable. Finally,
among the various Petri net based business process models, colored Petri nets (see
Ref. 58) is the one that takes into account data: every token has a value from a
(possibly infinite) domain. Such a powerful formalism is used for verification pur-
poses, e.g. protocol verification, but again, data are abstracted or trivially bounded,
making all markings, i.e. net configurations, finite. The results presented here are
not subsumed by (nor subsume) any of the above results.

7. Conclusion

In this paper, we have introduced conjunctive artifact-based services, a class of ser-
vices which pose balanced attention to both data (here a full-fledged relational
database) and processes (acting on the database) and guarantees decidability
through a suitable use of conjunctive queries in specifying task pre-conditions and
post-conditions. The approach presented here actually opens a new lode for research
in the area, based on the connection with the theory of dependencies in databases
that has been so fruitful in data exchange and data integration in recent years.15,16

We are currently looking at extending this approach in several directions. First,
we are interested in including negation in the preconditions of tasks effects and in
the condition-action rules that form the lifecycle, as well as task parameters that
are more than syntactic sugar, as in the case presented here. First results on this
are presented in Ref. 14. Interestingly, introducing negation rises the issue of a
suitable treatment of assertions determining equalities, such as key assertions on
relations forming the data component. This brings about several subtleties that
we intend to explore. Looking at several interacting artifacts together is also of
interest. The result presented here can be extended easily to such a case if the
artifacts in the system are known initially and remain the same along the whole
execution of the entire system. If, instead, new artifacts can be created and old ones
can be destroyed along the execution of the system, then being able to bound the
total number of artifact simultaneously active becomes a crucial issue that require
further studies. Finally, we are also interested in exploring the case in which the
data model of the artifact is not simply a database but an ontology with both
explicit and implicit information extracted by logical inference. This would give
rise to a sort of semantic artifacts, which, akin to semantic services, abstract from
the details of how the information is stored and manipulated. The first steps in this
direction are shown in Ref. 59.

Acknowledgments

We would like to thank our friend Piero Cangialosi that contributed to earlier ver-
sions of the paper, and Diego Calvanese and Yves Lesperance for insightful discus-
sions. This work has been supported by the EU Project FP7-ICT ACSI (257593).

July 24, 2012 11:28 WSPC/S0218-8430 111-IJCIS 1250002

Verification of Conjunctive Artifact-Centric Services 137

References

1. A. Nigam and N. S. Caswell, Business artifacts: An approach to operational specifi-
cation, IBM Syst. J. 42(3) (2003) 428–445.

2. R. Hull, Artifact-centric business process models: Brief survey of research results and
challenges, in OTM Conferences (2) (2008), pp. 1152–1163.

3. D. Cohn and R. Hull, Business artifacts: A data-centric approach to modeling business
operations and processes, IEEE Data Eng. Bull. 32(3) (2009) 3–9.

4. D. Calvanese, G. De Giacomo, R. Hull and J. Su, Artifact-centric workflow dominance,
in ICSOC/ServiceWave (2009), pp. 130–143.

5. W. M. P. van der Aalst, P. Barthelmess, C. A. Ellis and J. Wainer, Proclets: A
framework for lightweight interacting workflow processes, Int. J. Cooperative Inf. Syst.
10(4) (2001) 443–481.

6. S. Abiteboul, P. Bourhis, A. Galland and B. Marinoiu, The axml artifact model, in
TIME (2009), pp. 11–17.

7. K. Bhattacharya, C. E. Gerede, R. Hull, R. Liu and J. Su, Towards formal analy-
sis of artifact-centric business process models, in Proc. Int. Conf. Business Process
Management (2007), pp. 288–304.

8. K. Bhattacharya, R. Guttman, K. Lyman, F. F. H. III, S. Kumaran, P. Nandi, F. Y.
Wu, P. Athma, C. Freiberg, L. Johannsen and A. Staudt, A model-driven approach
to industrializing discovery processes in pharmaceutical research, IBM Syst. J. 44(1)
(2005) 145–162.

9. E. M. Clarke, O. Grumberg and D. A. Peled, Model Checking (The MIT Press,
Cambridge, MA, USA, 1999).

10. S. Abiteboul, R. Hull and V. Vianu, Foundations of Databases (Addison-Wesley,
1995).

11. C. Fritz, R. Hull and J. Su, Automatic construction of simple artifact-based business
processes, in ICDT (2009), pp. 225–238.

12. S. Sohrabi, N. Prokoshyna and S. A. McIlraith, Web service composition via generic
procedures and customizing user preferences, in International Semantic Web Confer-
ence (2006), pp. 597–611.

13. R. Reiter, Knowledge in Action: Logical Foundations for Specifying and Implementing
Dynamical Systems (The MIT Press, 2001).

14. B. B. Hariri, D. Calvanese, G. De Giacomo, R. De Masellis and P. Felli, Foundations
of relational artifacts verification, in BPM (2011), pp. 379–395.

15. R. Fagin, P. G. Kolaitis, R. J. Miller and L. Popa, Data exchange: Semantics and
query answering, Theor. Comput. Sci. 336(1) (2005) 89–124.

16. M. Lenzerini, Data integration: A theoretical perspective, in PODS (2002), pp. 233–
246.

17. A. Deutsch, A. Nash and J. B. Remmel, The chase revisited, in PODS (2008), pp. 149–
158.

18. M. Meier, M. Schmidt and G. Lausen, On chase termination beyond stratification,
Proc. VLDB 2(1) (2009) 970–981.

19. B. Marnette, Generalized schema-mappings: From termination to tractability, in
PODS (2009), pp. 13–22.

20. B. Marnette and F. Geerts, Static analysis of schema-mappings ensuring oblivious
termination, in ICDT (2010), pp. 183–195.

21. D. C. Luckham, D. M. R. Park and M. Paterson, On formalised computer programs,
J. Comput. Syst. Sci. 4(3) (1970) 220–249.

22. D. M. R. Park, Finiteness is mu-ineffable, Theor. Comput. Sci. 3(2) (1976) 173–181.

July 24, 2012 11:28 WSPC/S0218-8430 111-IJCIS 1250002

138 G. De Giacomo, R. De Masellis & R. Rosati

23. E. A. Emerson, Model checking and the mu-calculus, in Descriptive Complexity and
Finite Models (1996), pp. 185–214.

24. J. Bradfield and C. Stirling, Modal mu-calculi, in Handbook of Modal Logic, Vol. 3
(Elsevier, 2007), pp. 721–756.

25. A. K. Chandra and P. M. Merlin, Optimal implementation of conjunctive queries in
relational data bases, in STOC (1977), pp. 77–90.

26. K. L. Clark, Negation as failure, in Logic and Data Bases (1977), pp. 293–322.
27. R. Milner, An algebraic definition of simulation between programs, in IJCAI (1971),

pp. 481–489.
28. C. Stirling, Modal and Temporal Properties of Processes (Springer-Verlag, New York,

2001).
29. A. Tarski, A lattice-theoretical fixpoint theorem and its applications, Pac. J. Math.

5(2) (1955) 285–309.
30. B. W. Boehm and V. R. Basili, Software defect reduction top 10 list, IEEE Comput.

34(1) (2001) 135–137.
31. D. A. Peled, D. Gries and F. B. Schneider (eds.), Software Reliability Methods

(Springer-Verlag, New York, 2001).
32. D. V. Horn and M. Might, Abstracting abstract machines, in ICFP (2010), pp. 51–62.
33. M. Felleisen, R. B. Findler and M. Flatt, Semantics Engineering with PLT Redex

(MIT Press, 2009).
34. M. Weske, Business Process Management: Concepts, Languages, Architectures

(Springer, 2007).
35. M. Castellanos, F. Casati, M. Sayal and U. Dayal, Challenges in business process

analysis and optimization, in TES (2005), pp. 1–10.
36. W. M. P. van der Aalst, Challenges in business process management: Verification of

business processing using petri nets, Bullet. EATCS 80 (2003) 174–199.
37. B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci and P. Schnoe-

belen, Systems and Software Verification: Model-Checking Techniques and Tools, 1st
edn. (Springer Publishing Company, Incorporated, 2010).

38. R. E. Bryant, Symbolic boolean manipulation with ordered binary-decision diagrams,
ACM Comput. Surv. 24(3) (1992) 293–318.

39. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu and H. Veith, Counterexample-guided
abstraction refinement for symbolic model checking, J. ACM 50(5) (2003) 752–794.

40. O. Burkart, D. Caucal, F. Moller and B. Steffen, Verification of infinite structures, in
Handbook of Process Algebra (Elsevier Science, 2001).

41. P. Bouyer, A. Petit and D. Thérien, An algebraic approach to data languages and
timed languages, Inf. Computation 182(2) (2003) 137–162.

42. P. A. Abdulla, K. Cerans, B. Jonsson and Y.-K. Tsay, General decidability theorems
for infinite-state systems, in Logic in Computer Science (1996), pp. 313–321.

43. A. Finkel and P. Schnoebelen, Well-structured transition systems everywhere! Theor.
Comput. Sci. 256 (2001) 63–92.

44. B. Courcelle, Monadic second-order definable graph transductions: A survey, Theor.
Comput. Sci. 126(1) (1994) 53–75.

45. I. Walukiewicz, Monadic second-order logic on tree-like structures, Theor. Comput.
Sci. 275(1–2) (2002) 311–346.

46. A. Bouajjani, B. Jonsson, M. Nilsson and T. Touili, Regular model checking, in Proc.
16th Int. Conf. Computer Aided Verification (2000), pp. 403–418.

47. B. Jonsson and M. Nilsson, Transitive closures of regular relations for verifying
infinite-state systems, in TACAS (2000), pp. 220–234.

July 24, 2012 11:28 WSPC/S0218-8430 111-IJCIS 1250002

Verification of Conjunctive Artifact-Centric Services 139

48. A. Bouajjani, P. Habermehl and T. Vojnar, Abstract regular model checking, in Proc.
16th Int. Conf. Computer Aided Verification (2004), pp. 372–386.

49. F. Belardinelli, A. Lomuscio and F. Patrizi, Verification of deployed artifact systems
via data abstraction, in ICSOC 2011, pp. 142–156.

50. A. Deutsch, R. Hull, F. Patrizi and V. Vianu, Automatic verification of data-centric
business processes, in ICDT (2009), pp. 252–267.

51. E. Damaggio, A. Deutsch and V. Vianu, Artifact systems with data dependencies and
arithmetic, in ICDT (2011), pp. 66–77.

52. M. Spielmann, Verification of relational transducers for electronic commerce, J. Com-
put. Syst. Sci. 66(1) (2003) 40–65.

53. M. Spielmann, Automatic verification of abstract state machines, in CAV (1999),
pp. 431–442.

54. S. Abiteboul, V. Vianu, B. S. Fordham and Y. Yesha, Relational transducers for
electronic commerce, J. Comput. Syst. Sci. 61(2) (2000) 236–269.

55. D. Berardi, D. Calvanese, G. De Giacomo, R. Hull and M. Mecella, Automatic com-
position of transition-based semantic web services with messaging, in Proc. VLDB
(2005), pp. 613–624.

56. C. E. Gerede, K. Bhattacharya and J. Su, Static analysis of business artifact-centric
operational models, in SOCA (2007), pp. 133–140.

57. C. E. Gerede and J. Su, Specification and verification of artifact behaviors in business
process models, in ICSOC (2007), pp. 181–192.

58. K. Jensen and L. M. Kristensen, Coloured Petri Nets — Modelling and Validation of
Concurrent Systems (Springer, 2009).

59. B. B. Hariri, D. Calvanese, G. De Giacomo and R. De Masellis, Verification of
conjunctive-query based semantic artifacts, in Description Logics (2011).

