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ABSTRACT

In this paper we study the issue of service composition, for services that export a
representation of their behavior in the form of a finite deterministic transition system.
In particular, given a specification of the target service requested by the client as a finite
deterministic transition system, the problem we face is how we can exploit the computa-
tions of the available services for realizing the computations of the target service. While
ways to tackle such a problem are known, in this paper we present a new technique
that is based on the notion of simulation, which is still optimal from the computational
complexity point. Notably, such a technique, opens up the possibility of devising com-
position in a “just-in-time” fashion. Indeed, we show that, by exploiting simulation, it

is actually possible to implicitly compute all possible compositions at once, and delay
the choice of the actual composition to run-time.

1. Introduction

Service Oriented Computing (SOC) is the computing paradigm that utilizes ser-

vices as fundamental elements for realizing distributed applications/solutions. Ser-

vices are self-describing, platform-agnostic computational elements that are advo-

cated to support rapid, low-cost and easy composition of loosely coupled distributed

applications [2, 36, 24]. From a practical point of view, services are modular appli-

cations that can be described, published, located and invoked over a network: any

piece of code and any application component deployed on a system can be wrapped

and transformed into a network-available service. Interestingly, description of ser-

vices are quite high level: typically, services –or, better said, the computations they

provide– are described in terms of finite state transition systems [21].

The availability of high level descriptions of the computations provided by a

service opens the possibility of composing services in an automatic way, with the

aim of realizing target computations. Indeed, while formal analysis and synthesis
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of full fledged programs is still considered prohibitive, once we focus on high level

descriptions of the programs several verification and synthesis techniques developed

in various areas of Computer Science become exploitable for automatic composition

of services. As a result automatic service composition has been investigated in

several contexts: services seen as atomic actions, e.g., [1], by relying on AI Planning

research [16]; services seen as information providers, e.g., [25], by relying on data

integration work [34, 18, 22]; services seen as complex processes that can engage in

a variety of conversations, e.g., [28, 23, 9, 7], by relying, at least implicitly, on the

literature on process synthesis [29, 35, 33].

In this paper, we look at the latter context. In particular, we look at one of the

most intriguing service composition proposals, known as the Roman Model [5, 7]. In

such a proposal, available services are characterized by their conversational behav-

ior, compactly represented as finite transition systems. The goal of the composition

task is to realize a new service specified by the client –again, as a finite transition

system– by combining those computation fragments the available services provide.

In other words, the Roman Model envisions a kind of “service integration sys-

tem” which makes available a pool of virtual building blocks to clients. By making

use of such virtual blocks, a client can write its own service as a high-level program,

abstractly represented by a finite transition system. Actually, virtual blocks are

not implemented directly, but made available through the service composition. The

actual services available to the system are themselves formally described as high

level programs, built out of such virtual blocks. Such a description can be consid-

ered as a mapping from concrete service to virtual blocks of the integration system.

The idea is to exploit the reverse of such mapping in order to automatically get a

realization of the virtual blocks. Obviously, each available service places constraints

on how the virtual blocks can be used, and the composition must be compatible

with such constraints in order to actually exist.

Observe that in the Roman Model [5, 7], the available services are required to

be deterministic, so as to capture their full controllability, in the sense that given

a state and an action the result of the action on the service is a unique state. In

other words, through actions the client can fully control the state transitions of

the available services. Extensions of the Roman Model to nondeterministic, i.e.,

not fully controllable, available services have also been studied [4, 12] but are not

subject of current paper. Also, the target service is required to be deterministic

but for a different reason: to capture the full specification of the required composed

target behavior. Indeed, nondeterminism at the level of target would correspond to

a loose specification of the target itself, that is, instead of specifying a single target

service to realize, a set of equally acceptable target services are specified (through

nondeterminism), leaving the choice of which to realize to the composition system.

Loose specifications of the target service have been studied in [6], and will not be

considered further in this paper. It is worth mentioning that the Roman Model

has been adapted and extended in several other directions. For example, in [14]

look-head on the actions selected by the client of the target services are considered;

in [15] composition services so as to realize batch sequences of actions is studied for
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various extensions of Roman Model; in [4] a framework based on the Roman Model,

but that deals with data and explicit message exchange, is considered; finally, in

[30] extensions of the Roman Model are investigated in the case a solution based

on an orchestrator (see later) that mediates among the services is infeasible. Here

as mentioned above here we do not deal with any of the above extensions, and

concentrate on the basic proposal of [5, 7].

The main composition synthesis technique developed on the Roman Model is

based on a reduction to satisfiability of a Propositional Dynamic Logic [19] formula.

Such a reduction is polynomial and this gives an EXPTIME-upper-bound on the

problem [5, 7]. EXPTIME-hardness of the problem was recently shown by Muscholl

and Walukiewicz [27].

In this paper we look again at such form of composition, but from a very different

perspective, building on the following observation: a composition exists if and only

if a simulation relation [26] exists from the target to the (nondeterministic) transi-

tion system formed by the asynchronous product of the available service transition

systems. This observation was made several times by the authors of the paper in

workshop and tutorials [11, 8, 10], and it was also informally discussed in Daniela

Berardi’s PhD thesis [3], even if not fully worked out in a publication yet. The

connection with simulation was also independently observed in [17], and although

simulation is not explicitly mentioned, it is also related to the formal treatment of

the extensions of the Roman model proposed in [14].

Once this observation is acquired we can develop a new technique for synthesiz-

ing composition, based on computing the maximal simulation and verifying whether

the initial states of the target transition system and the asynchronous product of

available transition systems are in the simulation. Such a computation is polyno-

mial in the size of the target transition system and polynomial in the size of the

asynchronous product of the available transition systems. As a result, the new

technique is again in EXPTIME in the size of the available transition systems.

Besides these basic results, we show that synthesizing composition using sim-

ulation has a very interesting property: the maximal simulation contains enough

information to allow for extracting every possible composition, through a suitable

choice function. This property opens the possibility of devising composition in a

“just-in-time” fashion: we compute the maximal simulation a priori then, equipped

with such a simulation, we start executing the composition, choosing the next step

in the composition according to criteria that can depend on information that is

available only at run-time (actual availability of services, network communication

problems or cost, etc.). Indeed, it suffices that the next step chosen for execu-

tion leads to service states that remain within the simulation relation. All in all,

we believe that the synthesis technique proposed here provides the formal basis for

building compositions that are reactive, i.e., able to deal with events that may occur

at run-time.

The rest of the paper is organized as follows. First, in Section 2 and 3 we

recall the notions of services and composition originally presented in [5, 7]. In

Section 4 we show the relationship between this kind of composition and simulation.

3



In particular, we show how simulation can be used to check for the existence of

composition in an optimal way from the computational complexity point of view.

Also, at the end of the section, we make some remarks on the significance of this

result in the context of simulation, where it closes a long standing open problem. In

Section 5, we investigate the possibility of using simulation for actually synthesizing

compositions, and we show how it can be used as a sort of precomputation that

allows for generating composition in a “just-in-time” fashion at run-time. Finally,

Section 6, concludes the paper.

2. Services as Transition Systems

In this section, we present the basic framework of our approach, starting from

the description of services as finite transition systems (TSs). Besides these, further

notions, which indeed characterize our approach, are introduced in order to formal-

ize the intuitions exploited in the synthesis technique. The following paragraphs

provide a detailed description of each notion, along with the ideas behind them.

Services Intuitively, a service is a software artifact characterized by its behavior,

that is, the potential evolutions resulting from its interaction with some external

system, such as a client service. A service is a program intended to interact with

a client, whose interactions are expected to be conformant with a given behavior.

More precisely, at each step, (i) the service presents the client a choice of available

actions, according to its current state, (ii) the client instructs the service to execute

one of them, (iii) the service executes it, moves to successor state and goes back

to (i). Client-service interactions can be stopped, but does not have to, whenever

the service is in a “final” state. Indeed, services that never terminate, thus offering

a continuous interaction, are quite conceivable [7]. Also notice that, a service in

general could start in an initial state that is not final, i.e., once started it needs to

perform some action to get to a final state and terminate legally.

Since our technique aims at combining services in order to produce a desired

behavior, a formal description of the above service behavior is needed. In this

paper, a service (behavior) is represented by a finite deterministic transition system

TS = 〈A, S, s0, δ, F 〉, where:

• A is the finite alphabet of actions;

• S is the finite set of states;

• s0 is the initial state;

• δ is the transition function (where δ(s, a) = s′ is represented by: s →a s′);

• F is the set of final states.

Roughly speaking, a transition system looks like a state machine able to execute,

according to the state it is in, actions taken from a shared alphabet A. However, its

semantics is profoundly different. Consider the two transition systems in Figure 1.
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Figure 1: Two different transition systems

If they were finite automata they would be equivalent, since both represent the

language {ab, ac}. But as transition systems they are indeed different:

• TS1 is deterministic and models the case in which after action a one can

perform both b and c;

• TS2 is nondeterministic and models the case in which after action a one is

allowed to perform either b or c depending on the nondeterministic choice of

the transition for a.

In other words, the nondeterminism of finite state machines and language the-

ory is angelic, and as a result nondeterminism becomes just a more compact way

of representing the set of accepted action sequences. Instead, transition systems

nondeterminism is devilish, i.e., the client can ask to perform an action but the

actual transition is chosen (in a devilish way) by the transition system, that is, the

service. Here, we follow the original proposal of the Roman Model and focus our

attention on deterministic transition systems only.

Available services These are the services that correspond to existing programs,

and are the only services directly available to the client. We remark that available

services cannot be modified: they are defined once for all and evolve according to

their behavior. The only way their evolution can be driven is by executing proper

legal sequences of actions. In general, we deal with many –i.e., a community, see

below– available services Si (i = 1, . . . , n), each of them modeled as a transition

system TSi = 〈Ai, Si, s
0
i , δ, Fi〉.

Community A finite set of available services C = {S1, . . . ,Sn} forms a commu-

nity. The available services of a community share the same set of actions A –which
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is, indeed, the result of joining the action alphabets of all available services– even

if some services might be not able to perform all actions in A.

Each community can be associated to a TS, which formalizes its “global” be-

havior: the result of combining in all possible ways the behaviors of its available

services. Formally, such community transition system (TSC, for community C) is

the asynchronous product of its available services. In details, let TS1, . . . , TSn be

the TSs associated to the available services of C, where TSi = 〈A, Si, s
0
i , δi, Fi〉

(i = 1, . . . , n), the community transition system TSC = 〈A, SC , s0
C
, δC , FC〉 is defined

as follows:

• SC = S1 × . . . × Sn;

• s0
C

= 〈s0
1, . . . , s

0
n〉;

• FC = F1 × . . . × Fn;

• δC ⊆ SC × A × SC , where (s1 × . . . × sn) →a (s′1 × . . . × s′n) iff:

– ∃i s.t. si →a s′i

– ∀j 6= i s′j = sj .

In general, despite the determinism of available services, TSC may be non deter-

ministic. Note that TSC can execute a transition if and only if there exists one

service among TS1, . . . , TSn that can do it and, consequently, can move to next

state according to the transition performed by such service.

Target service Our goal is to synthesize, given a services community, a new

service that realizes a desired behavior. Such a service is called target service and,

again, is represented by a transition system TSt = 〈At, St, s
0
t , δt, Ft〉.

Notably, the target service is not one of the available services of the community,

in general. Hence, it must be realized by exploiting fragments of the available

service behaviors (computations), since these are the only services that correspond

to existing programs in the system.

The following example makes actual the notions just introduced.

Example 1 [A multi-lingual community] Consider the services community de-

picted in Fig. 2, where available services provide several translation functionali-

ties. Available services 2(a) and 2(b) provide, respectively, French-to-Italian and

German-to-Italian translation services. Think of them as web services providing a

page where the user first fills a form with some text and then can ask for its Italian

translation. According to their TSs, translations can be asked for only after the

form is filled out.

Similarly, available service 2(c) provides French-to-Italian translation function-

alities, besides allowing for some further operations –such as finding synonyms–

when German text is introduced (actually, the “sub-behavior” associated to such

operations has been compacted in a single state, S1, since its details are not rele-

vant for our purposes). Differently from previous services, Italian translation can
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Figure 2: Example 1: Available services for a multi-lingual community
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Figure 3: Example 1: community transition system
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S1S0
input_german

input_french

output_italian

Figure 4: Example 1: target service

be performed even if no text is explicitly introduced, as shown by the looping edge

on state S0, labeled by action output italian –imagine that a buffer, initially filled

out with some default text, is used to record the last translated input.

We will refer to TSs associated to services 2(a), 2(b) and 2(c) by means of

subscripts a, b and c, respectively. For instance, TS associated to service 2(a) is

referred to as TSa = 〈Aa, Sa, s0
a, δa, Fa〉. The community TS is represented by

TSC = 〈AC , SC , s0
C
, δC , FC〉

Finally, Fig. 3 shows the community transition system, which describes the be-

havior of the community seen as a whole system, where actions are performed by ex-

actly one available service at a time. State labels are triples 〈sa, sb, sc〉 ∈ Sa×Sb×Sc

representing the state of each service after actions execution. Note that the com-

munity TS is non-deterministic.

Given such community, we are interested in synthesizing or, better said, compos-

ing, the target service depicted in Fig. 4, which allows for translating either French

or German text to Italian. 2

3. Service Composition

Intuitively, the service composition problem can be stated as follows:

Given a target service and a community, synthesize a composition, i.e.,

a suitable function that delegates actions, requested by the client to the

target service, to the available services in the community (which are the

only services actually corresponding to existing programs).

As already discussed, both available and target services are represented by transition

systems over a common actions alphabet A. Recall that (i) before any interaction

takes place, each available service is in its initial state and (ii) a service can be left

only if it is in a final state. Basically, composing a target service amounts to mim-

icking the desired (target) behavior by properly instructing, for each action chosen

by the client (coherently evolving with the target service) a particular available

service for performing the requested action. Of course, each time a service is to be

selected for executing some action, the choice is constrained by the current state,

as the result of the actions performed so far, of each available service (recall that

a service evolves each time it interacts with the client). In addition, it obviously
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depends from future actions that, coherently with the target behavior, can be later

requested by the client.

In order to make such intuition precise we first introduce the notion of execution

tree.

Execution trees TSs provide a compact description of service abilities, but take

into account no issue concerning their actual evolution. If, on one hand, TSs describe

which actions a service can execute and how its state changes, on the other hand,

they do not keep track of how states are reached. As a matter of fact, in general,

a given state may result from the execution of different action sequences, and the

state itself holds no information about which of them has been actually executed.

Since this aspect is crucial for our purposes, a formal definition is required.

The actual evolution of a service can be described by an execution tree. In-

tuitively, it is a structure obtained by “unfolding” the TS associated to the

service. More formally, given a service S and its associated transition system

TS = 〈A, S, s0, δ, F 〉, an execution tree for S is a pair 〈T , f inal〉, where T is a

tree over A (i.e., a prefixed closed set of string over A) and final is a boolean

function over nodes of T . Both T and final are inductively defined by making use

of an auxiliary function mTS : T → S, as follows:

• ε ∈ T , and mTS(ε) = s0, i.e., mTS associates the root ε of T to the initial

state s0 of TS;

• let x ∈ T , and mTS(x) = s where s ∈ S: if s →a s′ then x·a ∈ T , i.e., x has

an a successor, and mTS(x·a) = s′;

• final(x) = true iff mTS(x) ∈ F .

Observe that each node of T is a sequence of actions x = a1· · · · ·ak allowed in

TS, starting from the initial state. Such sequences are called histories for TS. Then,

each node x = a1· · · · ·ak of execution tree T represents a history for TS. Given a

history a1· · · · ·ak, we do know the state of TS after its execution, starting from the

initial state, namely mTS(a1· · · · ·ak). Also, notice that, given a node x = a1· · · · ·ak

of T , its successor nodes, namely x·a1
k+1, . . . , x·a

ℓ
k+1, tell us which actions, namely

a1
k+1, . . . , a

ℓ
k+1, are allowed in the current state of TS, that is, the state reached

from the initial state through history a1· · · · ·ak. Furthermore, function final(.)

tells us whether through the history x, TS has reached a final state, i.e., whether

final(x) = true.

Example 2 Fig. 5 depicts the execution tree generated by system 2(c). Note

that, coherently with its transition system: (i) every state is final, (ii) action in-

put german always leads to a sink node where no further action can be performed

and (iii) whenever execution is in a state where either input french or output italian

can be performed, any arbitrary sequence of such actions is allowed. Construction

of execution trees for systems 2(a) and 2(b) is straightforward. 2
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Figure 5: Example 1: execution tree of service (c)

Composition With the notion of TS execution tree in place, we can formally

define service composition. The crux notion is that of composition labeling which

formalizes the idea of assigning actions to services.

Definition 1 (Composition labeling) Let C = {S1, . . . ,Sn} be a community of

available services, St be the target service and T S
i = 〈Ti, f inali〉 be the execution

tree for Si (i = 1, . . . , n, t). A composition labeling of T S
t wrt T S

1 , . . . , T S
n is a

function clab : T S
t → T S

1 × · · · × T S
n that satisfies the following conditions:

1. clab(ε) = 〈ε, . . . , ε〉;

2. for every node x ∈ Tt, let clab(x) = 〈x1, . . . , xn〉; then, for all a ∈ A such

that x·a ∈ Tt, clab(x·a) = 〈y1, . . . , yn〉, where yi = xi·a for exactly one

i ∈ [1, . . . , n] (if service Si performs interaction a) and yj = xj otherwise.

3. for every node x ∈ Tt, if finalt(x) = true and clab(x) = 〈x1, . . . , xn〉, then

finali(xi) = true for i = 1, . . . , n.

Intuitively, clab labels each node of the target service execution tree T S
t with

a tuple 〈x1, . . . , xn〉, where the generic component xi (i = 1, . . . , n) denotes the

current node of execution tree T S
i , i.e., the history of actions executed so far, starting

from the initial state, by i-th available service. Requirement (1) states that all

services start from their respective initial state; requirement (2) constrains each

action of the target service to be executed by exactly one available service (in its

current state, which results from its history so far), while the other services remain

still; finally, requirement (3) allows for leaving the target service only if all available

services are in a final configuration. Summing up, clab relates, in a step-by-step

fashion, the evolution of the target service to the evolution of available services, by

suitably delegating, in a step-by-step fashion actions requested to the target services

to one of the available services.

Given a composition labeling clab, one can orchestrate the n available services

to mimic the target service St by stepping each available service according to what
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is specified by clab itself. Thus, service composition can be formally defined as

follows:

Definition 2 (Service composition) A composition of the services in the com-

munity C = {S1, . . . ,Sn} realizing the target service St is a function comp : T S
t →

{1, . . . , n} ∪ ⊥ such that

• comp(ε) = ⊥

• comp(x·a) = i, where clab(x) = 〈y1, . . . , yi, . . . , yn〉 and clab(x·a) =

〈y1, . . . , yi·a, . . . , yn〉, i.e., clab(x) and clab(x·a) are identical except for the

i-th component that from yi in clab(x) becomes yi·a in clab(x·a).

Observe that, by definition, given a composition labeling clab we get the corre-

sponding composition comp. The vice-versa is also true: given a composition comp,

it is immediate to get the corresponding composition labeling clab, as follows:

• clab(ε) = 〈ε, . . . , ε〉;

• for every node x ∈ Tt, let clab(x) = 〈x1, . . . , xn〉; then for all a ∈ A such

that x·a ∈ Tt clab(x·a) = 〈y1, . . . , yn〉, where yi = xi·a if comp(x·a) = i, and

yj = xj otherwise.

Computational complexity characterization Composition, as defined above,

has already been studied in [5, 7]. In particular, the computational complexity

characterization of the service composition problem is known. The upper bound

was established in [5]:

Theorem 1 ([5]) Checking the existence of a composition of the services in a com-

munity C = 〈S1, . . . ,Sn〉 that realizes a target service St can be done in EXPTIME.

A matching lower bound was recently proved by Muscholl and Walukiewicz:

Theorem 2 ([27]) Checking the existence of a composition of the services in a

community C = 〈S1, . . . ,Sn〉 that realizes a target service St is EXPTIME-hard.

In other words, checking the existence of a composition is an EXPTIME-complete

problem.

Notably, in [5, 7] an actual synthesis technique for computing the composition

is presented. Such a technique is based on a polynomial reduction to satisfiability

in Propositional Dynamic Logic [19]. Here, however, we do not rely on such a

technique. Instead, we develop a new composition synthesis technique based on the

notion of simulation.

4. Composition and Simulation

Now, we illustrate the basic result of this paper: we show that checking for

the existence of a service composition can be done by checking for the existence

of a simulation relation between the target and the community TSs. We start by

defining the notion of simulation relation [26] in our context.

Definition 3 (Simulation relation) Given two transition systems TSt and TSC,

a simulation relation of TSt by TSC is a relation R ⊆ St × SC, such that:

11



R(st, sC) implies:

1. if st ∈ Ft then sC ∈ FC;

2. for all transitions st →a s′t in TSt there exists a transition sC →a

s′
C

in TSC and R(s′t, s
′

C
).

The definition says that state st of TSt is in a simulation relation R with sC of

TSC if: (i) if st is final then also sC is final; (ii) for every action a and state s′t, if

st can make a transition to s′t with action a, then also sC can make a transition to

some s′
C

with action a, in such a way that s′t is still in the same simulation relation

R with s′C . Observe the coinductive nature of such a definition: indeed it is cyclic

but with no base case.

Definition 4 Let TSt be the transition system representing the target service, and

TSC be the community transition system. A state st ∈ St is simulated by a state

sC ∈ SC (or sC simulates st), denoted st � sC, iff there exists a simulation R of TSt

by TSC s.t R(st, sC).

Observe that the relation � is itself a simulation relation. In fact, it is the largest

simulation relation since, by the definition above, all simulation relations are con-

tained in �.

Definition 5 TSt is simulated by TSC (or TSC simulates TSt) iff s0
t � s0

C
, where

s0
t and s0

C
are the initial states of the target and the community TSs, respectively.

Example 3 [Example 1, continued] Consider the target (Fig. 4) and the community

(Fig. 3) services of Example 1. In Figure 6, a simulation of the former service by

the asynchronous product of the latter ones is given. Dashed lines associate each

state of the target TS to those states of the community TS it is simulated by. For

instance, state 〈S1,S0,S0〉 of TSC simulates state S1 of TSt as well as state S0 is

simulated by both 〈S0,S0,S0〉 and 〈S0,S0,S1〉. Note that, in general, there may

exist several simulations. The one shown in Figure 6 represents, in fact, the largest

one, i.e., the relation �. 2

Theorem 3 below shows how checking for the existence of a service composition

can be reduced to checking whether the target transition system is simulated by the

community transition system. In order to prove such result, we need to introduce

two preliminary lemmas.

Lemma 1 Let C = {S1, . . . ,Sn} be a community, St a target service, and

clab a composition labeling of T S
t wrt T S

1 , . . . , T S
n . Then the relation R ⊆

St × SC defined as R = {〈st, sc〉 | ∃x, x1, . . . , xn : mTSt
(x) = st,clab(x) =

〈x1, . . . , xn〉, 〈mTS1
(x1), . . . , mTSn

(xn)〉 = sc} is a simulation relation of TSt by

TSC such that R(s0
t , s

0
C
).

Proof. The following arguments prove that R is a simulation:

• Since clab(ε) = 〈ε, . . . , ε〉 by definition of clab, then R(s0
t , s

0
C
) holds by

definition of R.

12
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• Consider a final node x ∈ Tt associated to a final state st ∈ Ft ⊆ St by

mTSt
(x) = st. Recall that st is final iff x does. By definition of R, x is associ-

ated, by clab, to a tuple 〈x1, . . . , xn〉 such that 〈mTS1
(x1), . . . , mTSn

(xn)〉 =

sC . By definition of clab, being x final, also x1, . . . , xn do. By definition of

mTSi
each si is final, therefore sC is final.

• Let mTSt
(x) = st, x′ = x·a, st →a s′t and mTSt

(x′) = s′t. By definition of R,

clab(x) = 〈x1, . . . , xn〉 and 〈mTS1
(x1), . . . , mTSn

(xn)〉 = sC . By definition of

clab, clab(x·a) = 〈x′
1, . . . , x

′
n〉, where for one i ∈ [1, . . . , n], we get x′

i = xi·a,

and for all other j ∈ [1, . . . , n] with j 6= i, we get x′
j = xj . Finally, by definition

of mTSi
, mTSi

(x′
i) = s′i iff si →a s′i. Hence, sC →a s′

C
and, consequently,

R(s′t, s
′

C
) holds. 2

The lemma above constructively states that, given a target service St and a

community C, for every composition labeling of the execution tree associated to St

by the execution trees of community services, it is always possible to build a relation

R which is a simulation of TSt by TSC.

Lemma 2 Let C = {S1, . . . ,Sn} be a community, St a target service, and R a sim-

ulation relation of TSt by TSC such that R(s0
t , s

0
C
). Then, there exists a composition

labeling clab of T S
t wrt T S

1 , . . . , T S
n .

Proof. Let R be a simulation of TSt by TSC such that R(s0
t , s

0
C
) where s0

C
=

〈s0
1, . . . , s

0
n〉. From R we can build a labeling function clab : T S

t → T S
1 × · · · × T S

n ,

by induction on the level of nodes in Tt, which shows that a composition does exist.

Recall that (i) R associates each state of TSt to a tuple of states from TS1×. . .×TSn

(that is, the set of community TS states) and (ii) a mapping mTSi
associates each

node of Ti to a corresponding state of TSi (i = 1, . . . , n, t). We proceed as follows:

• Base case.

mTSt
(ε) = s0

t , i.e. the root of Tt is labeled with the initial state of

TSt, and analogously for each TSi. Since R is a simulation, we have that

R(s0
t , 〈s

0
1, . . . , s

0
n〉). Therefore, we define clab(ε) = 〈ε, . . . , ε〉.

• Inductive hypothesis.

Let mTSt
(x) = st and let R(st, 〈s1, . . . , sn〉). Let clab(x) = 〈x1, . . . , xn〉,

where mTSi
(xi) = si.

• Induction step.

Let x′ = x·a be a successor node of x. If such a node exists, there ex-

ists also a transition st →a s′t such that mTSt
(x′) = s′t. Therefore, since

R(st, 〈s1, . . . , sn〉) holds by inductive hypothesis, then a tuplea 〈s′1, . . . , s
′
n〉

exists such that R(s′t, 〈s
′
1, . . . , s

′
n〉). Such a tuple, by definition of TSC, must

be such that for one i ∈ [1, . . . , n], we have si →a s′i and for all other

j ∈ [1, . . . , n] with j 6= i, we have that s′j = sj . Hence, we can define

clab(x′) = 〈x′
1, . . . , x

′
n〉, where mTSt

(x′
i) = s′i and:

aIn general, R associates several n-tuples to s′
t

since TSC may be non deterministic.
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– if s′i = si then x′
i = xi

– if si →a s′i then x′
i = xi·a

Finally, recall that each Tt’s final node is associated, through mTSt
, to exactly

one TSt’s final state. Let x be one of such nodes and let mTSt
(x) = st. Since R

is a simulation, it relates st to some tuple(s) 〈s1, . . . , sn〉, where each component

is a final state for the TS it refers to. Hence being clab(x) = 〈x1, . . . , xn〉, with

mTSi
(xi) = si, we get that x1, . . . , xn are final. Concluding, we get that clab,

defined as above, is indeed a composition labeling. 2

This lemma says that given a simulation R of TSt by TSC, the whole set of

composition labelings which realize the target service can be always defined. Note

that such set is not a singleton since, in general, R associates a TSt’s state to

many (possibly one) TSC’s states. Observe that also the proof of this lemma is

constructive.

As a direct consequence of Lemmas 1 and 2, we get our theorem.

Theorem 3 A composition of the services in the community C = {S1, . . . ,Sn}

realizes the target service St if and only if TSt is simulated by TSC.

Proof. By definition of composition, it suffices to prove that there exists a

composition labeling of T S
t wrt T S

1 , . . . , T S
n if and only if TSt is simulated by TSC,

which is a consequence of Lemma 1 for “⇒” direction and Lemma 2 for “⇐”

direction. 2

Theorem 3 gives us a straightforward method to check for the existence of com-

position, namely:

• compute the maximal simulation relation � of TSt by TSC;

• check whether 〈s0
t , s

0
C
〉 is in such a relation.

Observe that such a method is quite different from the one in [5] which was based

on a polynomial reduction to satisfiability in Propositional Dynamic Logic [19].

From the computational point of view, we recall that checking for the existence

of a simulation relation between two (states of two) transition systems can be done

in polynomial time in the size of the transition systems –moreover well developed

techniques exists for computing simulation, such as those in [20, 32, 13]. Since in

our case the number of states of TSC is exponential in the size (i.e., the number of

states) of TS1, . . . , TSn, we get that we can check for the existence of a composition

using simulation in exponential time. Considering that the problem is EXPTIME-

complete, we get the following result:

Theorem 4 Checking the existence of compositions via simulation is optimal with

respect to worst-case complexity.

Notably, the EXPTIME-completeness of service composition, gives us the fol-

lowing result in the context of simulation, which closes a long standing open problem

in the simulation literature:

15



Theorem 5 Checking simulation from a single deterministic transition system to

the asynchronous product of to n deterministic transition systems is an EXPTIME-

complete problem.

Proof. The membership to EXPTIME is a direct consequence of Theorem 1

and Theorem 4. As for the EXPTIME-hardness, if a lower complexity technique

would exist for the simulation problem above it could be applied to service compo-

sition as well, leading to a lower complexity technique for service composition itself

and thus contradicting the EXPTIME-hardness result of Theorem 2. 2

Indeed, in [31] the computational complexity characterization of checking sim-

ulation from the asynchronous product of n concurrent deterministic transition

systems to a single deterministic transition system was given, however the compu-

tational complexity characterization of checking simulation in the converse direction

has remained open since. We close it here, by transferring EXPTIME-completeness

result of service composition to simulation.

5. Synthesizing Composition via Simulation

Theorem 3 closely relates the notion of simulation relation to the one of service

composition showing, ultimately, that finding a service composition corresponds to

finding a simulation relation between two particular –the target and the community–

transition systems and vice-versa. However, no procedure is given for actually syn-

thesizing an orchestrator that implements such a composition by properly assigning

action executions to available services. In this section, we show that if a simula-

tion relation exists, it can be used to synthesize an orchestrator. To this end, we

refer to an abstract structure called orchestrator generator, or simply OG. Intu-

itively, the OG is a program that returns, for each state reached by the community

in realizing a target history, the set of available services capable of performing the

(target-conformant) action the client requests next. OG is directly obtained from

the maximal simulation relation between the target and the community TSs.

Definition 6 (Orchestrator Generator, OG) Let St be a target service and

C = {S1, . . . , Sn} be a community of available services such that TSt is sim-

ulated by TSC. The orchestrator generator (OG) for TSt and TSC is a tuple

OG = 〈A, [1, . . . , n], Sr, s
0
r, ωr, δr, Fr〉, where:

1. A is the finite set of community actions;

2. [1, . . . , n] is the set of available services indices;

3. Sr = St × S1 × . . . × Sn is the set of OG states;

4. s0
r = 〈s0

t , s
0
1, . . . , s

0
n〉 is the OG’s initial state;

5. Fr = {(st, s1, . . . , sn) | si ∈ Fi, for i = t, 1, . . . , n} is the set of OG’s final

states;

6. ωr : Sr × A 7→ 2[1,...,n] is the service selection function:

let sr = 〈st, s1, . . . , sn〉 ∈ Sr, ωr(sr, a) is defined iff

16



• st � 〈s1, . . . , sn〉 and

• there exists s′t s.t st →a s′t;

in such case, ωr(sr, a) = {k | ∃ s′k. sk →a s′k ∧ s′t � 〈s1, . . . , s
′

k, . . . , sn〉};

7. δr : Sr × A × [1, . . . , n] → Sr is the transition function.

δr(sr, a, k) is defined iff k ∈ ωr(sr, a), as follows:

δr(sr, a, k) = s′r, where s′r = 〈s′t, s1, . . . , s
′

k, . . . , sn〉, st →a s′t and, sk →a s′k.

Intuitively, OG is a finite state machine that, given a (target-conformant) action

a, outputs (function ωr) the set of services which can perform a next according to the

maximal simulation relation �. For each choice of one of such services it progresses

to the next state (function δr).

Once we have OG, we get orchestrators by simply picking up, at each step, one

among the services returned by ωr. Formally, we define a (generated) orchestrator

as follows:

Definition 7 (Generated Orchestrator) Given an orchestrator generator OG

for TSt and TSC, defined as above, a generated orchestrator is a function orch :

Tt → [1, . . . , n] ∪ ⊥, inductively defined as follows:

• orch(ε) = ⊥;

• if x·a ∈ Tt, then orch(x·a) = i ∈ ωr(σ
orch

r (x), a), where:

σorch

r : Tt → Sr is the mapping function between nodes of Tt and corresponding

states of Sr, defined as follows:

– σorch

r (ε) = s0
r;

– if x·a ∈ Tt then σorch

r (x·a) = δr(σ
orch

r (x), a,orch(x·a))

A generated orchestrator is, basically, a function which selects an available service

for executing the action requested by the (target-conformant) client. In order to

guarantee the selected service to be actually capable of executing the assigned ac-

tion, orchestrator assignments must belong to the set defined by ωr, at each step.

Note that such set depends on σorch

r which, in turns, depends on orch itself. σorch

r

maps each node of target service execution tree, that is a target history, into the

state reached by the community TS when such history is actually executed. Since,

also, orch depends on σorch

r , both functions are defined by mutual induction,

through ωr. Note how such induction is well-founded, since i-th step value of orch

depends, through ωr, on (i − 1)-th step value of σorch

r .

Example 4 [Example 3, continued] As an OG instance, consider Figure 7, where

a graphical representation, i.e., a graph, of OG = 〈A, [1, . . . , n], Sr, s
0
r, ωr, δr, Fr〉

obtained by the simulation relation of Figure 6 is shown. According to Definition 6,

nodes are labeled by four components representing, respectively, states of target, a),

b) and c) services. Note that it includes two disconnected components. Obviously,

only the one containing the initial state is relevant, as the other one(s) cannot be
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Figure 7: OG for Example 3

reached, all services being initially assumed in their initial state. Edges are labeled

by pairs I/O, where I ∈ A×[1, . . . , n] and O ∈ 2[1,...,n], with the following semantics:

an edge e connects node s to node s′ with label 〈a, i〉/O iff ωr(s, a) = O, i ∈ O

and δr(s, a, i) = s′. Starting from this OG, several orchestrators can be obtained,

depending on the service selected for performing each interaction. Generating an

orchestrator corresponds to unfolding an OG and labeling the resulting edges by

choosing one among the services proposed by the selection function ωr. For instance,

in Figure 8(a) two different orchestrators are reported. Edges are labeled with pairs

a/i, where a ∈ A and i ∈ [1, . . . , n] represent, respectively, the client requested

action and the orch’s available service choice. 2

Now, we show that all generated orchestrators lead to a composition of available

services that realizes the client request. Even more importantly, the vice-versa holds:

every composition can be obtained by suitably choosing, at each step, one element

from those in OG’s selection function ωr. In other words, the maximal simulation

virtually contains all compositions. Formally, we have the following theorem.

Theorem 6 Let C = {S1, . . . ,Sn} be a community and St be a target service. Then

comp is a composition of the services in C realizing St if and only if comp is an

orchestrator generated by the orchestrator generator OG for TSt and TSC.

Proof. In order to prove the above theorem we work with composition la-

belings. A generated orchestrator defines a labeling of Tt by tuples of nodes from

T1 × . . . × Tn, representing the correspondence between a particular history of the

target behavior and those of community services. Such correspondence is strictly

related to the history of service assignments, that is, ultimately, to orch. Given an

orchestrator generator OG for TSt and TSC and a respective generated orchestra-

tor orch, defined as above, an orchestrator labeling olab of T S
t by T S

1 , . . . , T S
n is
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Figure 8: Two different generated orchestrators for OG of Example 4

defined wrt orch as a function olab : Tt → T1 × . . . × Tn, satisfying the following

conditions:

• olab(ε) = 〈ε, . . . , ε〉;

• let olab(x) = 〈x1, . . . , xn〉, for every node x ∈ Tt; if a ∈ A is such that

x·a ∈ Tt then olab(x·a) = 〈y1, . . . , yn〉, where: yi = xi·a if orch(x·a) = i

and yj = xj otherwise.

The following Lemmas are key results for proving our thesis. They state that

orchestrator labelings and composition labelings are just different representation of

the same entity: a composition.

Lemma 3 If olab is an orchestrator labeling of T S
t by T S

1 , . . . , T S
n , then olab is

a composition labeling of T S
t by T S

1 , . . . , T S
n .

Proof. We need to show that any orchestrator labeling olab fulfills requirements

of Definition 1. Let olab be an orchestrator labeling of T S
t by T S

1 , . . . , T S
n .

1. By definition of orchestrator labeling, olab(ε) = 〈ε, . . . , ε〉;

2. By definition of orchestrator labeling, for every node x ∈ Tt, if olab(x) =

〈x1, . . . , xn〉, then for all a ∈ A such that x·a ∈ Tt, olab(x·a) = 〈y1, . . . , yn〉,

where yi = xi·a if orch(x·a) = i and yj = xj otherwise. Since olab is

defined wrt an orchestrator orch, then orch(i) is defined and identifies the

only service capable of performing action a.
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Moreover, let olab(x·a) = 〈y1, . . . , yn〉, if mTSt
(x·a) = st and mTSi

(yi) = si

(i = 1, . . . , n) then, from orch and olab definitions, it follows that st �

〈s1, . . . , sn〉.

3. We need to prove that if x ∈ Tt is final and olab(x) = 〈x1, . . . , xn〉 then all

xi (i = 1, . . . , n) are final, as well.

By definition of mTSi
, a node xi ∈ Ti is final iff mTSi

(xi) is final for TSi

(i = 1, . . . , n, t). Of course, if x ∈ T is final then st also does. Hence, since

st � 〈s1, . . . , sn〉, where mTSt
(x) = st and mTSi

(yi) = si (i = 1, . . . , n), si is

final for its respective TSi (i = 1, . . . , n) and, consequently, xi is final for its

respective execution tree Ti. 2

Lemma 4 If clab is a composition labeling of T S
t by T S

1 , . . . , T S
n , then clab is

an orchestrator labeling defined wrt an orchestrator orch generated by the OG for

TSt and TSC.

Proof. First, observe that, due to Lemma 1, TSC can simulate TSt and, therefore,

the orchestrator generator OG = 〈A, [1, . . . , n], Sr, s
0
r, ωr, δr, Fr〉 for TSt and TSC

exists. Now, consider the function orch : Tt → [1, . . . , n] ∪ ⊥, defined as follows:

1. orch(ε) = ⊥;

2. orch(x) = k iff there exists a node x ∈ Tt and an action a ∈ A

such that i) x·a ∈ Tt, ii) clab(x) = 〈x1, . . . , xn〉 and iii) clab(x·a) =

〈x1, . . . , xk·a, . . . , xn〉 for exactly one k ∈ [1, . . . , n].

Referring to Definition 7, we can show orch is an orchestrator generated by the

OG for TSt and TSC:

• by definition, orch(ε) = ⊥;

• by defining σorch

r (ε) = s0
r and, for all x·a ∈ Tt, σorch

r (x·a) =

δr(σ
orch

r (x), a,orch(x·a)), we obtain that orch(x·a) ∈ ω(σorch

r (x), a) for all

x·a ∈ Tt. In fact, if we assume that there exists some x̄·ā ∈ Tt such that

orch(x̄·ā) /∈ ωr(σ
orch

r (x̄), ā), then clab would not be a composition labeling,

since there would exist no k ∈ [1, . . . , n] such that clab(x̄) = 〈x̄1, . . . , x̄n〉 and

clab(x̄·ā) = 〈x̄1, . . . , x̄k·ā, . . . , x̄n〉.

Finally, we need to show that clab is defined with respect to orch, according to

the definition of orchestrator labeling, but this straightforward follows from require-

ment 2 of orch’s construction. 2

With this lemmas in place, we can finally go back to Theorem 6. Indeed the the-

sis of the theorem directly follows from Lemmas 3 and 4, by recalling the equivalence

between composition and composition labeling (see Definitions 1 and 2). 2

As already pointed out, Theorem 6 yields that, given an OG, by non-

deterministically choosing a service among those proposed by the selection function
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ωr, we obtain all and only the orchestrators OG generates. Interestingly, orchestra-

tors are not required to be built before a client starts interacting with the commu-

nity, but can be generated just-in-time, as client issues action requests. Formally,

given an orchestrator generator OG for TSt and TSC, defined as in Definition 6, a

just-in-time (generated) orchestrator is a function jit orch : Tt → [1, . . . , n] ∪ ⊥,

inductively defined as follows:

• jit orch(ε) = ⊥;

• if x·a ∈ Tt, then jit orch(x·a) = choose(ωr(σ
jit orch

r (x), a)), where

σjit orch

r : Tt → Sr is the mapping function between nodes of Tt and corre-

sponding states of Sr defined as in Definition 7 and choose stands for a choice

function that chooses one element among those returned by ωr(σ
jit orch

r (x), a).

Obviously, with appropriate choice functions for choose, one can get all possible

generated orchestrators. But, the point of the definition above is that one can delay

the choice performed by choose till run-time, where one can take into account

information on the actual state, cost, etc., of the execution of actions by the various

services. This gives a great flexibility to the orchestrator, which, in a sense, can

“switch” composition on the go as needed. As a result, this work can be seen

as providing formal bases for research work aimed at developing ambient-aware

compositions that are fully reactive to events occurring during execution.

6. Conclusion

In this paper we have explored the possibility of basing service composition

on the notion of simulation. We have seen that by using simulation, we are able

to virtually compute all possible compositions at once, and that this opens the

possibility of devising composition in a just-in-time fashion.

The tight connection between service composition and simulation discussed here,

allows us to transfer well developed techniques for computing simulation, such as

those in [20, 32, 13] to service composition. Interestingly, also known result from

service composition can be transferred to simulation. In particular, the EXPTIME-

completeness of service composition, allows us to say that checking simulation from

a single deterministic transition system to the asynchronous product of to n deter-

ministic transition systems is an EXPTIME-complete problem. Notably, this closes

a long standing open problem in the simulation literature.
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