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Abstract

In spite of the importance of identification mechanisms in on-
tology engineering, the Description Logics at the basis of cur-
rent reasoners do not include modeling features for express-
ing identification constraints. In this paper, we consider a
powerful class of identification constraints, which allow for
using roles, inverses, and paths, thus capturing sophisticated
forms of identifications often needed in real-world applica-
tions. We show that, when used with no limitations, such
path-based identification constraints are problematic with re-
spect to effectiveness/efficiency of reasoning. We then pro-
pose a restricted form of these constraints, called local, re-
quiring that at least one of the component paths of the concept
identifier is a direct property of the concept. We argue that
such a restriction is not a severe limitation in practice, and we
show that local path-based identification constraints do not
increase the complexity of reasoning both in very expressive
Description Logics and in the tractable DL-Lite family.

Introduction
Description Logics (DLs) are presently the most popular for-
malisms for expressing ontologies, and are at the basis of
Ontology Languages for the Semantic Web, such as OWL
(Bechhofer et al. 2004). Identity is one of the main prin-
ciples in ontology engineering (Welty and Guarino 2001),
and methods for explicitly asserting identity properties are
provided in some modeling languages. For example, mech-
anisms for identifying objects using attribute values or their
participation to relationships are present in most conceptual
modeling formalisms used in software engineering, data-
bases, and information systems (Fowler and Scott 1997;
Chen 1976; Hull and King 1987).

In spite of the importance of identity, the DLs at the ba-
sis of current DL reasoners do not include specific mecha-
nisms for expressing identification constraints. For example,
in OWL1, the only way to specify identification is through
the use of one-to-one relationships, and this corresponds to
a very limited form of identification. More powerful iden-
tification mechanisms have been already studied in the con-
text of very expressive Description Logics, see, e.g., (Cal-
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1Although we generically use the term “OWL”, in this paper we
focus on OWL-DL.

vanese, De Giacomo, and Lenzerini 2001; Lutz et al. 2005;
Toman and Weddell 2008), but they have not been incorpo-
rated in DL reasoners yet.

Following the above mentioned papers, we argue for the
usefulness of identification constraints in modeling a do-
main of interest through an ontology. For example, in the
context of geographic information systems, the fact that a
location is identified by its coordinates should be consid-
ered as part of the very definition of location. The lack of
identification mechanisms is even more serious if one con-
siders that in most DLs both n-ary relations and attributes
of roles are missing. Indeed, the only way to represent an
arbitrary n-ary relation in the most popular DLs is through
the well-known reification2 technique (Baader et al. 2003).
Reification, as well as modeling attributes of roles, actually
need identification constraints, as we briefly illustrate in the
following simple example.

Consider the notion of enrolment, where each instance re-
lates a student s, a program p (e.g., Computer Science), and
the year of enrolment of s in p, in such a way that no two
instances exist for the same pair (s, p). This notion can be
modeled in FOL with a ternary relation, but in DLs with bi-
nary relations only, it must be represented by the reified con-
cept enrolment, two functional binary roles HAS-STUDENT
(from enrolment to student) and HAS-PROGRAM (from
enrolment to program), and one functional attribute year for
enrolment. However, in order for this reified representation
to be correct, we must also impose that no two distinct in-
stances of enrolment exist that are connected to the same pair
of fillers for HAS-STUDENT and HAS-PROGRAM. This
is exactly what an identification constraint can be used for:
in this case, HAS-STUDENT and HAS-PROGRAM form an
identifier for enrolment.

To continue the example, suppose that every program is
offered by one or more universities (forming a sort of con-
sortium), represented by the binary role OFFERED-BY from
program to the concept university, and that every student
has a code, represented by the functional attribute code for
student, that is unique for all universities offering the pro-
grams in which she is enrolled. To model this situation,

2By reification we mean here the use of an object to denote a
tuple, and it should not be confused with reification where an object
is used to denote a predicate, like, for instance, in RDF.



we need to define an identifier for student constituted by the
combination of code and the path connecting the student to
the universities through the program she is enrolled in. Note
that this path is constituted by the composition of the in-
verse of the role HAS-STUDENT, the role HAS-PROGRAM
and the role OFFERED-BY.

The above example shows the need of sophisticated forms
of identification constraints to accurately model the domain
of interest. In particular, the example calls for identification
constraints including paths with (non-functional) roles and
inverse roles, called path-based identification constraints.
According to our experience (see, for instance, (Amoroso
et al. 2008)), this example represents a typical situation, as
such constraints are of vital importance in modeling real-
world applications. Therefore, the lack of identification
mechanisms in ontology languages is one of the most rel-
evant gaps between requirements from the real world, and
current semantic technologies.

In this paper, we carry out an extensive study of path-
based identification constraints in the context of two DLs,
the expressive DL ALCQIbreg (Calvanese, Eiter, and Ortiz
2007), and the tractable DL DL-LiteA (Poggi et al. 2008).
Our contributions can be summarised as follows:

• We show that path-based identification constraints with
no limitations are problematic with respect to the
effectiveness/efficiency of reasoning. In particular,
adding such constraints to ALCI leads to undecidabil-
ity, whereas extending DL-LiteA with path-based identi-
fiers makes query answering NLOGSPACE-hard with re-
spect to ABox complexity, and therefore computationally
harder than in DL-LiteA.

• We propose a restricted form of path-based identification
constraints, which we call local, requiring that at least one
of the component paths of the identifier has length 1. In-
tuitively, this means that every identifier of a concept C
must include at least one direct (or “local”) property of C.
We show that adding identification constraints of this re-
stricted form does not increase the complexity of reason-
ing both in ALCQIbreg , and in DL-LiteA. Conversely,
our results imply that going beyond the locality restric-
tion leads to undecidability/increase in complexity.

Note that all identification constraints discussed in the
above examples are indeed local, and so are virtually all
identification mechanisms introduced in conceptual mod-
eling (Hull and King 1987) (see, for example, the notion
of “weak entity” in the Entity-Relationship model). More
generally, we argue that local path-based identification con-
straints capture most of the identifiers needed in real appli-
cations, and therefore locality does not constitute a severe
limitation in practice.

Although this is not the first investigation on this subject,
previous work concentrated on special cases of identifica-
tion constraints, such as paths with only functional roles,
paths with no inverses, or paths of length 1 (related work is
discussed in detail in Section 3). More precisely, to the best
of our knowledge, the results presented in this paper are the
first decidability/tractability results on path-based identifica-
tion constraints with roles and inverse roles. Our work can

provide the basis for incorporating powerful forms of iden-
tification constraints in DLs, including OWL, and for ex-
tending current DL reasoners with suitable capabilities for
dealing with such constraints, thus filling the gap between
semantic technologies and one of the most important mod-
eling requirements coming from real world applications.

The rest of the paper is organized as follows. In the next
section we describe the two DLs studied in our work. In the
following section we provide the formal definitions of the
identification constraints proposed in the paper, we present
examples of ontologies with such constraints, and we dis-
cuss related work. In the two following sections we investi-
gate the issue of adding path-based identification constraints
to expressive DLs and to tractable DLs, respectively. Finally,
the last section provides our conclusions.

Preliminaries
We briefly discuss the two main DLs considered in this pa-
per, namelyALCQIbreg (Calvanese, Eiter, and Ortiz 2007),
and DL-LiteA (Poggi et al. 2008).
ALCQIbreg is one of the most expressive DLs proposed

in the literature. It can encode DLR/DLRreg , SHIQ, and
PDL with inverse and graded modalities. Moreover, answer-
ing unions of conjunctive queries over ALCQIbreg knowl-
edge bases (KBs) has been shown to be decidable (Cal-
vanese, Eiter, and Ortiz 2007). Concepts and roles in this
DL are formed according to the following syntax,

C,C ′ −→ A | ¬C | C u C ′ | C t C ′ | ∀R.C |
∃R.C | > n Q.C | 6 n Q.C

Q, Q′ −→ P | P− | Q ∩Q′ | Q ∪Q′ | Q \Q′

R,R′ −→ Q | R ∪R′ | R ◦R′ | R∗ | C?

where A denotes an atomic concept, P an atomic role, P−

the inverse of an atomic role, C an arbitrary concept, and
R an arbitrary role. Furthermore, ¬C, C u C ′, C t C ′,
∀R.C, and ∃R.C denote negation of concepts, concept in-
tersection, concept union, value restriction, and qualified ex-
istential quantification on roles, respectively. We then use Q
to denote basic roles, which are those roles that may oc-
cur in number restrictions, that are expressions of the form
> n Q.C and 6 n Q.C. A basic role can be an atomic role or
its inverse, or a role obtained combining basic roles through
set theoretic operators, i.e., intersection (“∩”), union (“∪”),
and difference(“\”). W.l.o.g., we assume difference applied
only to atomic roles and their inverses. Finally, observe
that arbitrary roles are regular expressions over basic roles,
where R ◦ R′ and R∗ respectively denote role composition
and reflexive-transitive closure (a second order property),
whereas C?, called test role, denotes the identity relation
on instances of the concept C.

An ALCQIbreg knowledge base (KB) is a pair K =
〈T ,A〉, where T (the TBox) is a finite set of general
inclusion assertions C v C ′ with C and C ′ arbitrary
ALCQIbreg concepts, and A (the ABox) is a finite set
of membership assertions of the form A(a), P (a, b), and
a 6= b, with A and P respectively an atomic concept and an
atomic role occurring in T , and a, b constants.

The semantics ofALCQIbreg concepts and roles is given
in terms of interpretations, where an interpretation I =



AI ⊆ ∆I P I ⊆ ∆I ×∆I

¬CI = ∆I \ CI (P−)I = { (o, o′) | (o′, o) ∈ P I }
(C u C ′)I = CI ∩ C ′I (Q ∩Q′)I = QI ∩Q′I

(C t C ′)I = CI ∩ C ′I (Q ∪Q′)I = QI ∪Q′I

(∀R.C)I = { o | ∀o′. (o, o′) ∈ RI ⊃ o′ ∈ CI } (Q \Q′)I = QI \Q′I

(∃R.C)I = { o | ∃o′. (o, o′) ∈ RI ∧ o′ ∈ CI } (R ∪R′)I = RI ∪R′I

(> n Q.C)I = { o | |{o′ ∈ CI | (o, o′) ∈ QI}| ≥ n } (R ◦R′)I = RI ◦R′I

(6 n Q.C)I = { o | |{o′ ∈ CI | (o, o′) ∈ QI}| ≤ n } (R∗)I = (RI)∗

(C?)I = { (o, o) | o ∈ CI }

Figure 1: Interpretation of ALCQIbreg concepts and roles

(∆I , ·I) consists of a non-empty interpretation domain ∆I

and an interpretation function ·I , defined in Figure 1.
An interpretation I satisfies an inclusion assertion C v

C ′, if CI ⊆ C ′I .
To specify the semantics ofALCQIbreg ABox assertions,

we extend the interpretation function to constants, by assign-
ing to each constant a a object aI ∈ ∆I . Note that, for
ALCQIbreg , we do not enforce the unique name assump-
tion on constants (Baader et al. 2003). Then, an interpre-
tation I satisfies a membership assertion A(a) if aI ∈ AI ,
a membership assertion P (a, b) if (aI , bI) ∈ P I , and an
assertion of the form a 6= b if aI 6= bI .

We now turn to DL-LiteA, a member of the DL-Lite fam-
ily (Calvanese et al. 2007c; 2006b), and hence a tractable
DL particularly suited for dealing with KBs with very large
ABoxes, which can be managed through relational database
technology. DL-LiteA distinguishes concepts from value-
domains, which denote sets of (data) values, and roles from
attributes, which denote binary relations between objects
and values. Concepts, roles, attributes, and value-domains
in this DL are formed according to the following syntax3:

B −→ A | ∃Q | δ(U) E −→ ρ(U)
C −→ B | ¬B F −→>D | T1 | · · · | Tn

Q −→ P | P− V −→ U | ¬U
R −→ Q | ¬Q

In such rules, A, P , and P− respectively denote an atomic
concept, an atomic role, and the inverse of an atomic role,
exactly as in ALCQIbreg , Q and R respectively denote a
basic and an arbitrary role as in ALCQIbreg , but with a
different syntax, whereas B denotes a basic concept, U an
atomic attribute, V an arbitrary attribute, E a basic value-
domain, and F an arbitrary value-domain. Furthermore,
δ(U) denotes the domain of U , i.e., the set of objects that
U relates to values; ρ(U) denotes the range of U , i.e., the
set of values that U relates to objects; >D is the univer-
sal value-domain; T1, . . . , Tn are n pairwise disjoint un-
bounded value-domains, corresponding to RDF data types,
such as xsd:string, xsd:integer, etc.

3The results given in this paper apply also to DL-LiteA extended
with role attributes (cf. (Calvanese et al. 2006a)), which are not
considered here for the sake of simplicity.

A DL-LiteA KB is a pair K = 〈T ,A〉, where T is the
TBox and A the ABox. The TBox T is defined as follows:

(1) T is a finite set of assertions of the forms

B v C Q v R E v F U v V

(funct Q) (funct U)

where, from left to right, assertions of the first row respec-
tively denote inclusions between concepts, roles, value-
domains, and attributes, whereas assertions of the second
row denote functionality on roles and on attributes.

(2) T satisfies the following conditions:

– for each atomic role P , if either (funct P ) or
(funct P−) occur in T , then T does not contain as-
sertions of the form Q′ v P or Q′ v P−, where Q′ is
a basic role;

– for each atomic attribute U , if (funct U) occurs in T ,
then T does not contain assertions of the form U ′ v U ,
where U ′ is an atomic attribute.

Intuitively, the conditions stated at point (2) say that, in
DL-LiteA TBoxes, roles and attributes occurring in function-
ality assertions cannot be specialized.

In order to define DL-LiteA ABoxes, we need to explic-
itly define the set of constants used in such ABoxes. We
denote with Γ the alphabet for constants, which we assume
partitioned into two sets, namely, ΓV (the set of constant
symbols for values), and ΓO (the set of constant symbols for
objects). In turn, ΓV is partitioned into n sets ΓV1 , . . . ,ΓVn ,
where each ΓVi is the set of constants for the values in the
value-domain Ti. Notice that every ΓVi is infinite, that is, we
only consider unbounded value-domains. Then, the ABoxA
is a finite set of membership assertions of the forms A(a),
P (a, b), and U(a, v), where A, P , and U are as above, a and
b are object constants in ΓO, and v is a value constant in ΓV .

The semantics of DL-LiteA concepts, roles, attributes and
value-domains is given in terms of interpretations. We no-
tice that all DL-LiteA interpretations agree on the seman-
tics assigned to each value-domain Ti and to each constant
in ΓV . More precisely, we assume to have a unique (in-
finite, non-empty) domain ∆V used to interpret constants
in ΓV , and partitioned into n infinite, non-empty subsets



AI ⊆ ∆I
O P I ⊆ ∆I

O ×∆I
O

(δ(U))I = { o | ∃o. (o, v) ∈ UI } (P−)I = { (o, o′) | (o′, o) ∈ P I }
(∃Q)I = { o | ∃o′. (o, o′) ∈ QI } (¬Q)I = (∆I

O ×∆I
O) \QI

(¬B)I = ∆I
O \BI UI ⊆ ∆I

O ×∆V

>ID = ∆V (¬U)I = (∆I
O ×∆V ) \ UI

(ρ(U))I = { v | ∃o. (o, v) ∈ UI }

Figure 2: Interpretation of DL-LiteA concepts, roles, and attributes

val(T1), . . . , val(Tn), where each val(Ti) is used to inter-
pret the corresponding Ti, in such a way that each value con-
stant v ∈ ΓVi

is interpreted as one distinct value in val(Ti).
Then, a DL-LiteA interpretation I = (∆I , ·I) consists of

a non-empty interpretation domain ∆I = ∆V ∪∆I
O, where

∆I
O is the domain used to interpret object constants in ΓO,

and of an interpretation function ·I , which is defined in Fig-
ure 2. We say that an interpretation I satisfies
• a concept (resp., value-domain, role, attribute) inclusion

assertion B v C (resp., E v F , Q v R, U v V ), if
BI ⊆ CI (resp., EI ⊆ F I , QI ⊆ RI ,UI ⊆ V I),

• a role functionality assertion (funct Q), if for each
o, o′, o′′ ∈ ∆I

O, we have that (o, o′) ∈ QI and (o, o′′) ∈
QI implies o′ = o′′,

• an attribute functionality assertion (funct U), if for each
o ∈ ∆I

O and o′v, o′′v ∈ ∆V , we have that (o, o′v) ∈ UI and
(o, o′′v) ∈ UI implies o′v = o′′v .
To specify the semantics of DL-LiteA membership asser-

tions, we extend the interpretation function to object con-
stants (interpretation of value constants has been discussed
above), by assigning to each constant a ∈ ΓO an object
aI ∈ ∆I

O. Note that, differently from ALCQIbreg , in
DL-LiteA we adopt the unique name assumption on both
value and object constants, i.e., for each a, b ∈ Γ, a 6= b
implies aI 6= bI . Then, an interpretation I satisfies a mem-
bership assertion A(a) (resp., P (a, b), U(a, v)) if aI ∈ AI

(resp., (aI , bI) ∈ P I , (aI , vI) ∈ UI).
With the above notions in place, we can introduce the de-

finition of model for either a DL-LiteA or an ALCQIbreg
KB K = 〈T ,A〉. Precisely, we say that an interpretation I
is a model of T (resp., A) if I satisfies all the assertions in
T (resp., A). A model of K is a model of both T and A.
Obviously, the meaning of satisfaction here depends on the
DL in which K is specified (i.e., DL-LiteA or ALCQIbreg ).

We now concentrate on reasoning. The reasoning services
we consider in this paper are KB satisfiability, i.e., determin-
ing whether a knowledge base K admits at least one model,
and answering unions of conjunctive queries.

A union of conjunctive queries (UCQ) q over either an
ALCQIbreg or a DL-LiteA KB K is an expression of the
form q(~x) ← ∃~y1.conj 1(~x, ~y1) ∨ · · · ∨ ∃ ~yn.conjn(~x, ~yn),
where ~x are the distinguished variables, ~y1, . . . , ~yn are the
non-distinguished variables, and each conj i(~x, ~yi) is a con-
junction of atoms of the form D(z), S(z, z′), z = z′, where

D denotes a concept (resp., basic value-domain, or arbi-
trary value-domain) occurring in K, S denotes an atomic
role (resp., attribute) or the inverse of an atomic role (resp.,
attribute4) occurring in K, and z, z′ are constants in K or
variables in ~x or ~yi, for some i ∈ {1, . . . , n}. Given an
interpretation I = (∆I , ·I), qI is the set of tuples of ∆I

that, when assigned to the distinguished variables ~x, make
the formula ∃~y1.conj 1(~x, ~y1)∨ · · · ∨ ∃ ~yn.conjn(~x, ~yn) true
in I. Then, the set cert(q,K) of certain answers to q over
K is the set of tuples ~a of constants appearing in K such that
~aI ∈ qI , for every model I of K. In the following, instead
of query answering, we consider, w.l.o.g., boolean query en-
tailment K |= q, i.e., checking whether 〈〉 ∈ cert(q,K),
where q is a Boolean UCQ (that is, a UCQ with no distin-
guished variables) and 〈〉 denotes the empty tuple.

Path-based identification constraints
The goal of this section is to formally introduce the con-
straints studied in this paper. In particular, we illustrate both
syntax and semantics of such constraints, and we discuss
their use by means of some examples. Finally, we compare
our proposal with related work.

Since the form of identification constraints proposed in
this paper is based on paths, we start our presentation by
introducing the notion of path used in our context.

A path in a DL L is an expression built according to the
following syntax,

π −→ S | D? | π ◦ π

where S denotes an atomic role (resp., attribute) or the
inverse of an atomic role (resp., attribute) in L, D de-
notes a concept (resp., a basic value-domain, or an arbi-
trary value-domain) in L, and π1 ◦ π2 denotes the com-
position of paths π1 and π2. Finally, the expression D?
is called a test relation, which represents the identity re-
lation on instances of D. Test relations are used in all
those cases in which we want to impose that a path in-
volves instances of a certain concept, basic value-domain,
or arbitrary value-domain. For example, consider again
the context described in the introduction in which stu-
dents are enrolled in programs offered by universities. For-
mally, the path connecting a student to the universities is

4The semantics of the inverse of an atomic attribute is the obvi-
ous one.



HAS-STUDENT−◦HAS-PROGRAM◦OFFERED-BY. Now,
if we would like to consider only paths involving master
programs, modeled with the concept masterProgram, a sub-
concept of the concept program, we should specify the path
HAS-STUDENT− ◦ HAS-PROGRAM ◦ masterProgram? ◦
OFFERED-BY.

A path π denotes a complex property for the instances
of concepts: given an object o in a certain interpretation I,
every object that is reachable from o in I by means of π
is called a π-filler for o. Note that previous works on path-
based identification constraints generally refer to DLs where
roles are total functions (Toman and Weddell 2005; 2008).
Our study, instead, focuses on DLs where roles are arbitrary
binary relations (and their inverse), and therefore there may
be several distinct π-fillers, or no π-fillers at all, for o.

If π is a path, the length of π, denoted length(π), is 0 if π
has the form D?, is 1 if π has the form S, and is length(π1)+
length(π2) if π has the form π1 ◦ π2. A path with length 1
is called simple.

We now turn our attention to identification constraints.

Definition 1 A path-based identification constraint (or,
simply, identification constraint – IdC) in a DL L is an as-
sertion of the form

(id C π1, . . . , πn)

where C is a concept in L, n ≥ 1, and π1, . . . , πn (called
the components of the identifier) are paths in L such that
length(πi) ≥ 1 for all i ∈ {1, . . . , n}.
Intuitively, the above constraint asserts that for any two dif-
ferent instances o, o′ of C, there is at least one πi such that
o and o′ differ in the set of their πi-fillers.

An IdC (id C π1, . . . , πn) is called simple if all paths
π1, . . . , πn are simple, is called single-path IdC if n = 1,
and is called local if at least one of the paths π1, . . . , πn is
simple (the term “local” emphasizes that at least one of the
paths refers to a local property of C). Note that we have
ruled out components of length 0 in IdCs, since they would
make an IdC trivially satisfied in every interpretation (see
below).

In order to define the semantics of IdCs, we first define
the semantics of paths, and then specify the conditions for
an interpretation to satisfy an IdC.

The extension πI of a path π in an interpretation I is de-
fined as follows:

• if π = S, then πI = SI ,

• if π = D?, then πI = { (o, o) | o ∈ DI },
• if π = π1 ◦ π2, then πI = πI1 ◦ πI2 , where ◦ denotes the

composition operator on relations.

As a notation, we write πI(o) to denote the set of π-fillers
for o in I, i.e., {o′ | (o, o′) ∈ πI}. Then, an interpretation
I satisfies the IdC (id C π1, . . . , πn) if for all o, o′ ∈ CI ,
πI1 (o) ∩ πI1 (o′) 6= ∅ ∧ · · · ∧ πIn(o) ∩ πIn(o′) 6= ∅ implies
o = o′. Observe that this definition is coherent with the
intuitive reading of IdCs discussed above, in particular by
sanctioning that two different instances o, o′ of C differ in
the set of their πi-fillers when such sets are disjoint.

university

enrollmentstudent
HAS_STUDENT

program

OFFERED_BYyearcode

HAS_PROGRAM

Figure 3: Diagrammatic representation of the students on-
tology

Examples
We start by considering again the students example de-
scribed in the introduction. In Figure 3, we show a schematic
representation of (part of) the ontology for such a domain of
interest. Concepts are represented by ovals, attributes are
represented by squares connected to the concepts they re-
fer to, and roles are drawn as lines connecting the appropri-
ate concepts. The TBox assertions capturing the students
domain are given in Figure 4 (the TBox is expressed in
DL-LiteA with IdCs).

INCLUSION ASSERTIONS
∃HAS-STUDENT v enrolment
∃HAS-STUDENT− v student
∃HAS-PROGRAM v enrolment
∃HAS-PROGRAM− v program
∃OFFERED-BY v program
∃OFFERED-BY− v university

student v δ(code)
enrolment v δ(year)

FUNCTIONAL ASSERTIONS
(funct code) (funct HAS-STUDENT)
(funct year) (funct HAS-PROGRAM)

IDENTIFICATION CONSTRAINTS
(id enrolment HAS-STUDENT, HAS-PROGRAM)
(id student HAS-STUDENT− ◦ HAS-PROGRAM

◦ OFFERED-BY, code)

Figure 4: The TBox in DL-LiteA with IdCs for the students
example

As for the IdCs given in the TBox, the first one im-
poses that no two instances of enrolment exist that are con-
nected to the same pair of fillers for HAS-STUDENT and
HAS-PROGRAM, whereas the second IdC imposes that no
two students s and s′ exist with both the same code and a
non-empty intersection of the sets of universities that are
the π-fillers for s and s′, where π = HAS-STUDENT− ◦
HAS-PROGRAM◦OFFERED-BY. Note that in the two IdCs,
HAS-STUDENT is used in both the direct and the inverse di-
rection, and also that OFFERED-BY is a non-functional role.

Let us now consider a second, more complex example.
We aim at modeling the annual national football5 champi-
onships in Europe, where the championship for a specific
year and for a specific nation is called league (e.g., the 2008
Spanish Liga). A league is structured in terms of a set of

5Football is called “soccer” in the United States.



INCLUSION ASSERTIONS
league v ∃OF
∃OF v league
∃OF− v nation
round v ∃BELONGS-TO

∃BELONGS-TO v round
∃BELONGS-TO− v league

match v ∃PLAYED-IN
∃PLAYED-IN v match
∃PLAYED-IN− v round

match v ∃HOME
∃HOME v match
∃HOME− v team
∃HOST v match
∃HOST− v team

match v ∃HOST
playedMatch v match

league v δ(year)
match v δ(code)
round v δ(code)

playedMatch v δ(playedOn)
playedMatch v δ(homeGoals)
playedMatch v δ(hostGoals)

ρ(playedOn) v xsd:date
ρ(homeGoals) v xsd:nonNegativeInteger
ρ(hostGoals) v xsd:nonNegativeInteger

ρ(code) v xsd:positiveInteger
ρ(year) v xsd:positiveInteger

FUNCTIONAL ASSERTIONS
(funct OF)
(funct BELONGS-TO)
(funct PLAYED-IN)
(funct HOME)
(funct HOST)

(funct year)
(funct code)
(funct playedOn)
(funct homeGoals)
(funct hostGoals)

IDENTIFICATION CONSTRAINTS

1. (id league OF, year)
2. (id round BELONGS-TO, code)
3. (id match PLAYED-IN, code)
4. (id match HOME, PLAYED-IN)
5. (id match HOST, PLAYED-IN)

6. (id playedMatch playedOn, HOST)
7. (id playedMatch playedOn, HOME)
8. (id league year, BELONGS-TO− ◦ PLAYED-IN− ◦ HOME)
9. (id league year, BELONGS-TO− ◦ PLAYED-IN− ◦ HOST)
10. (id match HOME, HOST, PLAYED-IN ◦ BELONGS-TO ◦ year)

Figure 6: The TBox in DL-LiteA with IdCs for the football leagues example
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Figure 5: Diagrammatic representation of the football
leagues ontology

rounds. In every round, a set of matches is scheduled, where
each match is characterized by one home team and one host
team. When a scheduled match takes place, it is played in a
specific date, and for every match that has been played, the
number of goals scored by the home team and by the host
team are given. Note that different matches scheduled for
the same round can be played in different dates.

In Figure 5 we show a schematic representation of (part
of) the ontology for the football leagues domain. In this fig-
ure, the arrow represents inclusion between concepts. The
TBox assertions capturing the above aspects are shown in
the upper parts of Figure 6. The resulting TBox is expressed
in terms of inclusion and functional DL-LiteA assertions.

A natural question to ask is how accurate such assertions
are in representing the semantics of our football domain. It is
not hard to see that the ontology fails to model the following:

1. no nation has two leagues in the same year;
2. within a league, the code associated to a round is unique;
3. every match is identified by its code within its round;
4. a team is the home team of at most one match per round;
5. as above for the host team;
6. no home team participates in different played matches in

the same date
7. as above for the host team;
8. no home team plays in different leagues in the same year;
9. as above for the host team;

10. no pair (home team, host team) plays different matches
in the same year.

All the above aspects require the notion of identifier. The
resulting ontology, expressed as a TBox in DL-LiteA with
IdCs, is illustrated in Figure 6 (the labels of the IdCs refer to
the item numbers in the above list). Note that all the IdCs in
the TBox are local.

Related work
Identification constraints have been investigated extensively
in Databases (Abiteboul, Hull, and Vianu 1995) and in Con-
ceptual Modeling (Brodie, Mylopoulos, and Schmidt 1984).
Their importance in Description Logics has been recognized
in the mid ’90s, when they were introduced essentially in
two variants: as a concept construct and as an assertion.

In particular, an identification construct (with simple
identification, in our terminology) was added to the well-



known DL Classic (Borgida and Weddell 1997), where it
was shown to keep logical implication PTIME. In (Cal-
vanese, De Giacomo, and Lenzerini 1995; De Giacomo and
Lenzerini 1995) a similar construct, but with a nonstan-
dard semantics, was added to expressive DLs, which ex-
tended ALCQI, and hence allowed for negating the iden-
tification construct. Recently, in (Toman and Weddell 2008)
it has been shown that allowing for negating the identifi-
cation construct with a standard semantics leads to unde-
cidability, even in very simple DLs: it suffices to allow
Boolean combinations of atomic concepts and identification
constructs with functional identification paths of length 1.
The best decidability result on path-based identification con-
structs is that in (Toman and Weddell 2005), in which EXP-
TIME-completeness is established for reasoning in the DL
DLFAD, which is essentially a variant of ALCI in which
identification paths include functional roles only, and inverse
roles are not allowed in paths.

A different line of research has looked at identification
constraints as assertions (as we do here). In (Calvanese,
De Giacomo, and Lenzerini 2001), identification assertions
with paths of length 1 (simple IdCs, in our terminology)
were added to DLR, a DL that extends ALCQI with re-
lations of arbitrary arity, and it was shown that such an ex-
tension preserves the EXPTIME-completeness of logical im-
plication. Simple IdCs were also investigated in the context
of the DL-Lite-family in (Calvanese et al. 2007a).

Identification assertions were studied in (Lutz et al. 2005)
for an extension of ALC with concrete domains, allow-
ing for identification paths of arbitrary length but involv-
ing functional roles only, and one final concrete feature.
Note that inverse roles were not considered in that work.
In (Nguyen and Le Thanh 2007), a tableaux procedure for
logical implication in SHOIQ extended with identifica-
tion assertions, was proposed. Again, identification asser-
tions allow only for simple identification paths, as in (Cal-
vanese, De Giacomo, and Lenzerini 2001). Finally, we note
that OWL-DL, both in version 1 and in version 2, does not
include identification constraints. However, proposals of
adding a weak form of identification assertions are currently
considered6. Syntactically, such identification assertions are
simple IdCs, but they are interpreted only over individuals
that are explicitly present in the ontology (i.e., they require
that both the identified object and the identifying objects are
named individuals in the ontology), making them akin to
epistemic constraints (Calvanese et al. 2007b).

Reasoning in expressive DLs with IdCs
In this section, we investigate the addition of IdCs in expres-
sive DLs of the ALCI family.

Undecidability of ALCQIbreg with IdCs
We first show that if we allow for arbitrary IdCs, then rea-
soning becomes undecidable already inALCI. To do so, we
exhibit a reduction from the unconstrained quadrant tiling
problem (van Emde Boas 1997), which consists in deciding

6http://www.w3.org/2007/OWL/wiki/Easy Keys

whether the first quadrant of the integer grid can be tiled us-
ing a finite set of square tile types in such a way that adjacent
tiles respect adjacency conditions. Tiling problems are well
suited to show undecidability of variants of description and
dynamic logics (van Emde Boas 1997). The crux of the un-
decidability proof consists in enforcing that the tiles lie on
an integer grid. Once the grid structure is enforced, it is typ-
ically easy to impose the adjacency conditions on the tiles.
In our case, we exploit IdCs to construct the grid, following
an idea already proposed in (Calvanese, De Giacomo, and
Lenzerini 2001).

Theorem 2 KB satisfiability, and thus query answering, in
ALCI with IdCs is undecidable.

Proof (sketch). The reduction is from the unconstrained
quadrant tiling problem (van Emde Boas 1997). Formally, a
tiling system is a triple S = (D,H,V) where D is a finite
set of elements representing tile types and H and V are two
binary relations over D. The unconstrained quadrant tiling
problem consists in verifying the existence of a tiling con-
sistent with S, i.e., a mapping τ from N × N to D such that
(τ(h, k), τ(h + 1, k)) ∈ H and (τ(h, k), τ(h, k + 1)) ∈ V ,
for h, k ∈ N. Such a problem is undecidable, more precisely
Π0

0-complete (Berger 1966; van Emde Boas 1997).
Given a tiling system S = (D,H,V), we construct an
ALCI TBox with single-path IdCs TS as follows. We use
two atomic roles P0 and P1 that alternate in the horizontal
and vertical directions to form a grid. We also use eight
atomic concepts Aj

i , for i ∈ {0, 1}, j ∈ {0, 1, 2, 3}, that are
pairwise disjoint i.e., Aj

i v ¬Aj′

i′ , for i 6= i′ or j 6= j′. See
Figure 7, where a node (i, j) denotes an instance of Aj

i , and
an edge labeled i denotes an instance of Pi. We enforce the
grid structure by means of the following assertions in TS , for
each i ∈ {0, 1}, j ∈ {0, 1, 2, 3}:

Aj
i v ∃P(i+j) mod 2.Aj

1−i u ∃P(i+j) mod 2.A(j+1) mod 4
i u

∃P−
(i+j+1) mod 2.Aj

1−i u ∃P
−
(i+j+1) mod 2.A(j+3) mod 4

i

(id Aj
i P(i+j) mod 2 ◦ P(i+j+1) mod 2).

We enforce the adjacency conditions on the tiles of the first
quadrant by using one concept for each tile type in D and
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Figure 7: Grid structure enforced by TS



introducing in TS the following assertions: for each Dh ∈
D, i ∈ {0, 1}, j ∈ {0, 1, 2, 3}

Dh uAj
i v ∀P(i+j) mod 2.

⊔
(Dh,Dk)∈H Dk u

∀P(i+j+1) mod 2.
⊔

(Dh,Dk)∈V Dk.

Finally, to represent the origin of the tiling, we use the con-
cept C0 = A0

0 u
⊔

Dh∈D Dh. Then, it is possible to show
that the tiling problem associated to S admits a solution if
and only if the KB 〈TS , {C0(a)}〉 is unsatisfiable.

Notice, that we can easily modify the reduction to show
undecidability also in the presence of IdCs that are not
single-path. Indeed, introduce an additional atomic role P ,
and for each i ∈ {0, 1}, j ∈ {0, 1, 2, 3}, add to TS an as-
sertion: Aj

i v ∃P . Moreover, replace the single-path IdC
above with:

(id Aj
i P(i+j) mod 2 ◦ P(i+j+1) mod 2,

P ◦ P− ◦ P(i+j) mod 2 ◦ P(i+j+1) mod 2).

Since each instance of an Aj
i concept is forced to have an

outgoing P -edge, two such instances will have a common
P(i+j) mod 2 ◦ P(i+j+1) mod 2-successor if and only if they
also have a common P ◦P− ◦P(i+j) mod 2 ◦P(i+j+1) mod 2-
successor. Actually, both successors will coincide.

Decidability of ALCQIbreg with local IdCs
We now show that, if we extend ALCQIbreg with local
IdCs, then answering unions of conjunctive queries becomes
decidable. The intuition behind the decidability result is that
local IdCs preserve the tree-model property ofALCQIbreg .
More precisely, given an interpretation I, consider the undi-
rected graph GI whose set of nodes is ∆I and in which
there is an edge (o, o′) iff (o, o′) ∈ P I or (o′, o) ∈ P I ,
for some atomic role P . A tree-shaped model I is a model
for which GI is a tree. In the presence of an ABox, with
arbitrarily connected individuals, tree-shaped models might
be ruled out. However, given a KB K = 〈T ,A〉, let
us define a canonical model of K to be a (forest-shaped)
model of K in which each ABox individual is the root of a
tree-shaped model of T (Calvanese and De Giacomo 2003;
Vardi and Wolper 1986).
Theorem 3 Let K be an ALCQIbreg KB with local IdCs.
Then K is satisfiable iff it has a canonical model.

Proof (sketch). It suffices to show that we can transform
an arbitrary model I = (∆I , ·I) of K = 〈T ,A〉 into a
canonical model. For simplicity, we discuss here the case
where the ABox A contains a single individual a. The con-
struction can immediately be generalized, by repeating it for
each individual in A, while taking into account in the first
steps also adjacent ABox individuals. The transformation
is based on the standard unfolding process (see, e.g., (Vardi
and Wolper 1986)), where, starting from the object oa ∈ ∆I

denoting a, a tree model It is constructed, together with a
mapping ϑ from ∆It to a (suitably chosen) subset of ∆I .
Each object o′ in ∆It is introduced in order to satisfy an
existential quantification or an at-least number restriction,
proceeding by induction on the length of a (suitably cho-
sen) path in I from oa to ϑ(o′). The constructed model It

is such that, when ϑ(o′) = o, then o and o′ satisfy the same
concepts of the syntactic closure (Calvanese, Eiter, and Ortiz
2007) ofK, and for each role R in the syntactic closure ofK,
when (o′, o′′) ∈ RIt then (ϑ(o′), ϑ(o′′)) ∈ RI . Notice that,
during the unfolding process, multiple “copies” of an object
o ∈ ∆I may be introduced in ∆It , i.e., multiple objects
o′, o′′ ∈ ∆It such that ϑ(o′) = ϑ(o′′) = o. We show that a
local IdC α = (id C π1, . . . , πn) that is satisfied in I will
also be satisfied in It. Towards a contradiction, assume that
α is not satisfied in It, i.e., that the unfolding process gen-
erates objects {u′1, u′2, o′1, . . . , o′n} ⊆ ∆It , with u′1 6= u′2,
such that {u′1, u′2} ⊆ CIt and {(u′1, o′i), (u′2, o′i)} ⊆ πIt

i ,
for i ∈ {1, . . . , n}. Since α is local, there is an atomic or in-
verse atomic role S (that, together with tests, constitutes π1)
such that {(u′1, o′1), (u′2, o′1)} ⊆ SIt . Since u′1 6= u′2, and It

is a tree-model, this can occur only in one of the following
cases:
• Both u′1 and u′2 are S−-children of o′1 in It. Then, in order

for the unfolding process to generate two distinct children
of a node, also in I we have that ϑ(u′1) 6= ϑ(u′2).

• o′1 is an S-child of u′1, and u′2 is an S−-child of o′1. Then,
the unfolding process has first generated o′1 as an S-child
of u′1, due to the presence of the S-successor ϑ(o′1) of
ϑ(u′1) in I. In such a situation, a new S−-child u′2 of o′1
will be generated only if required by the presence of an
S−-successor of ϑ(o′1) in I that is different from ϑ(u′1).
Hence ϑ(u′1) 6= ϑ(u′2).

• o′1 is an S-child of u′2, and u′1 is an S−-child of o′1. This
case is symmetric to the preceding one.
Let u1 = ϑ(u′1), u2 = ϑ(u′2), and oi = ϑ(o′i), for

i ∈ {1, . . . , n}. By construction of It and ϑ, we have
that {u1, u2} ⊆ CI and {(u1, oi), (u2, oi)} ⊆ πIi , for
i ∈ {1, . . . , n}. In all three cases above we have u1 6= u2,
which contradicts the fact that α is satisfied in I.

The above result allows us to exploit techniques based on
automata on infinite trees to solve the decision problem for
query answering in ALCQIbreg with local IdCs. Specifi-
cally, we adapt to our purposes the automata based algorithm
proposed in (Calvanese, Eiter, and Ortiz 2007) for checking
whether K |= q, where K = 〈Tin ,A〉 is an ALCQIbreg KB
and q is a Boolean CQ. The algorithm proceeds as follows:

1. Construct a two-way alternating automaton on infinite
trees (2ATA) AK accepting trees that represent canonical
models of K.

2. Construct a 2ATA Aq accepting trees that represent in-
terpretations (over the alphabet of K) in which q is not
satisfied.

3. Complement Aq and intersect it with AK, obtaining
a (1-way) non-deterministic automaton on infinite trees
(1NTA) AK6|=q.

Then AK6|=q accepts infinite trees that represent counterex-
ample models to K |= q. Hence, K |= q iff AK6|=q is
empty, i.e., accepts no infinite tree (Calvanese, Eiter, and
Ortiz 2007).

We exploit such a technique for checking conjunctive
query entailment K |= q, where K = 〈T ,A〉, with T =



Tin ∪C, where Tin is a set ofALCQIbreg concept inclusion
assertions, and C is a set of local IdCs. Let Kin = 〈Tin ,A〉.
To deal with Kin and with the CQ q, we proceed exactly
as described above for ALCQIbreg , and construct a 1NTA
AKin 6|=q that accepts infinite trees representing counterexam-
ple models to Kin |= q.

As a preliminary step, we define the notion of negation
of a set of IdCs. Given an IdC α = (id C π1, . . . , πn), we
define its negation ¬α as the Boolean CQ with an inequality

¬α = ∃~x. C(x) ∧ C(x′) ∧ x 6= x′ ∧∧
1≤i≤n(τ(πi(x, xi)) ∧ τ(πi(x′, xi)))

where ~x are all variables appearing in the atoms of ¬α, and
τ(π(x, y)) is inductively defined as follows:

1. if π = C1? ◦ · · · ◦Ch? ◦S ◦D1? ◦ · · · ◦Dk? (with h ≥ 0,
k ≥ 0), then τ(π(x, y)) = C1(x)∧· · ·∧Ch(x)∧S(x, y)∧
D1(y) ∧ · · · ∧Dk(y);

2. if π = π1 ◦ π2, where length(π1) = 1 and length(π2) ≥
1, then τ(π(x, y)) = τ(π1(x, z)) ∧ τ(π2(z, y)), where
z is a new variable symbol (i.e., a variable symbol not
occurring elsewhere in the query).

Intuitively, ¬α encodes the violation of α by asking for
the existence of two distinct instances of C identified, ac-
cording to α, by the same set of objects. Moreover, if
C = {α1, . . . , αm} then ¬C is the Boolean UCQ with in-
equalities having the form ¬α1 ∨ · · · ∨ ¬αm.

In the rest of this section, we assume w.l.o.g. that all con-
cepts occurring in (local) IdCs are atomic. By extending the
technique in (Calvanese, Eiter, and Ortiz 2007) to deal with
inequalities7, we can construct from¬C a 2ATA A¬C accept-
ing trees representing interpretations in which ¬C holds, and
hence at least one of the IdCs in C is violated. Note that, in
general it is not sufficient to restrict the attention to tree-
shaped models when checking entailment of a UCQ with
inequalities8. However, Theorem 3 ensures that it is indeed
sufficient in the case where the inequalities express the vio-
lation of local IdCs.

By complementing the 2ATA A¬C , we obtain a 1NTA AC
accepting the trees representing interpretations in which all
IdCs in C are satisfied. Finally, by intersecting AKin 6|=q with
AC , we obtain a 1NTA AK6|=q accepting all trees represent-
ing models ofK. It follows from results in (Calvanese, Eiter,
and Ortiz 2007; Vardi 1998) that AK6|=q is a 1NTA whose
emptiness can be checked in time double exponential in the
size of K and q. Given the lower bounds in (Lutz 2007), we
get the following result.

Theorem 4 Answering UCQs in ALCQIbreg with local
IdCs is 2EXPTIME-complete w.r.t. combined complexity.

Reasoning in DL-LiteA with IdCs
In this section, we study reasoning in DL-LiteA KBs ex-
tended with IdCs. In particular, we show that adding ar-

7A 2ATA can easily check that two variables are being mapped
to different nodes of a tree.

8Checking entailment of a CQ with a single inequality is unde-
cidable in expressive DLs (Calvanese, De Giacomo, and Lenzerini
1998).
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bitrary IdCs to DL-LiteA KBs makes reasoning computa-
tionally harder, while adding local IdCs to DL-LiteA KBs
does not increase the computational complexity of reason-
ing. We recall that both KB satisfiability and answering
UCQs in DL-LiteA are in LOGSPACE with respect to ABox
complexity (i.e., with respect to the size of the ABox).

First, we provide the definition of DL-LiteA with IdCs.
Definition 5 A KB in DL-LiteA with IdCs is a pair 〈T ,A〉,
whereA is a DL-LiteA ABox, and T is the union of two sets
T ′, C, where T ′ is a DL-LiteA TBox, and C is a set of IdCs
such that
• all concepts identified in C are basic concepts, i.e., the

concept C in each IdC (cf. Definition 1) of C is of the
form ∃Q, δ(U), or ρ(U);

• all concepts appearing in the test relations in C are of the
form A, ∃Q, δ(U), ρ(U), >D, T1, . . ., or Tn;

• for each IdC α in C, every role or attribute that occurs
(in either direct or inverse direction) in a path of α is not
specialized in T ′, i.e., it does not appear in the right-hand
side of assertions of the form Q v Q′ or U v U ′.
Notice that the last condition is the natural generalization

of the analogous condition enforced on functional roles and
attributes in DL-LiteA KBs (cf. Preliminaries).

NLOGSPACE-hardness of DL-LiteA with IdCs
We now show that adding arbitrary IdCs to DL-LiteA makes
reasoning computationally harder, even when we add just
single-path IdCs.
Theorem 6 KB satisfiability in DL-LiteA9 with single-path
IdCs is NLOGSPACE-hard with respect to ABox complexity.

Proof (sketch). The proof is based on a reduction from
reachability in directed graphs, which is NLOGSPACE-hard.

Let G = 〈V,E〉 be a directed graph. Reachability is the
problem of deciding, given two vertices s, t ∈ V whether
there is an oriented path formed by edges in E that, start-
ing from s allows one to reach t. We consider the graph
represented through first-child and next-sibling functional
relations F , N , S, and denote with V + the set of vertices
augmented by the nodes used in such a representation (cf.
Figure 8).

From G and the two vertices s, t we define the KB K =
〈T ,A〉 as follows:

A = {R(a, b),R(a′, b′) | (a, b) ∈ R, forR ∈ {F,N, S}} ∪
{A(a) | a ∈ V +} ∪
{P (s, init), P (s′, init), C(t), C(t′)}

T = {A v ∃P} ∪ {(id C P )} ∪
{(id ∃P− P− ◦ R− ◦ P ) | R ∈ {F,N, S}}

9Actually, the result holds for the weaker logic DL-LiteF (Cal-
vanese et al. 2007c).



In other words, we encode in A two copies of (the repre-
sentation of) G. In addition, we include in A the assertions
P (s, init) and P (s′, init) connecting the two copies of the
start vertex s to an individual init that does not correspond
to any vertex of (the representation of) G. We also include
the assertions C(t) and C(t′), which are exploited to encode
the reachability test. As for the TBox, we enforce that each
individual contributing to the encoding of the two copies of
G has an outgoing P edge. Moreover, we enforce through
path-identification constraints that each object that is the tar-
get of such a P edge is identified by a suitable path. Finally,
we enforce the identification constraint (id C P ) to imply
equality of t and t′. It can be shown that t is reachable from
s in G iff K is unsatisfiable.

LOGSPACE membership of DL-LiteA with local
IdCs
In the following, we restrict our attention to local IdCs. We
first present the algorithm KBSat for KB satisfiability in
DL-LiteA with local IdCs.

Algorithm KBSat(K)
Input: DL-LiteA KB with local IdCs K = 〈T ∪ C,A〉
Output: true if K satisfiable, false otherwise
begin

if 〈T ,A〉 is unsatisfiable
then return false
else begin

q := ¬C;
q′ := PerfectRef(q, T );
return 〈∅,A〉 6|= q′

end
end

The above algorithm decides satisfiability of a DL-LiteA
KB with local IdCs as follows. First, it checks satisfiability
of the ordinary DL-LiteA KB 〈T ,A〉 (cf. (Poggi et al. 2008))
obtained from K by eliminating the local IdCs: if 〈T ,A〉 is
unsatisfiable, then K is also unsatisfiable. Otherwise, the al-
gorithm first computes the query ¬C corresponding to the
negation of the local IdCs in K (cf. previous section). Then,
the algorithm computes the query q′ corresponding to the
perfect reformulation of query q with respect to the TBox
assertions in T . Due to lack of space, we can only provide
an informal description of PerfectRef. Such a reformulation
is almost identical to the reformulation algorithm reported
in (Calvanese et al. 2007c) for the case of UCQs without in-
equalities: in this modified version, the inequality predicate
is considered as a new primitive role, and variables occurring
in inequality atoms are never “reduced” (i.e., transformed by
unification steps into non-join variables) by the reformula-
tion. The query computed by this reformulation method is
still a Boolean UCQ with inequalities.

Finally, the algorithm checks whether the ABoxA entails
the Boolean UCQ q′ thus computed (as explained e.g., in
(Calvanese et al. 2007c), this can be done by simply eval-
uating q′ over A interpreted as a relational database, which
can be done in LOGSPACE w.r.t. the size of A): if this is the
case, then the algorithm returns false, because this implies

that the ABox violates some IdC that is logically implied by
T ∪ C. Otherwise, the algorithm returns true.

The following lemma states correctness of KBSat.
Lemma 7 LetK = 〈T ∪C,A〉 be a DL-LiteA KB with local
IdCs. Then, KBSat(K) returns true if K is satisfiable, false
otherwise.

Correctness of the algorithm KBSat immediately implies
the following upper bound for KB satisfiability.
Theorem 8 KB satisfiability in DL-LiteA with local IdCs is
LOGSPACE with respect to ABox complexity.

We now turn our attention to query answering. We re-
mark that in UCQs over DL-LiteA KBs that we consider,
predicates in unary atoms are only basic concepts, and basic
or arbitrary value-domains. We start by establishing a fun-
damental “separation” property for local IdCs in DL-LiteA.
Theorem 9 Let K = 〈T ∪ C,A〉 be a DL-LiteA KB with
local IdCs, and let q be a Boolean UCQ. If K is satisfiable,
then K |= q iff 〈T ,A〉 |= q.

Proof (sketch). We use here the notion of chase
of a DL-LiteA KB 〈T ,A〉, denoted by chase(〈T ,A〉)
(see (Poggi et al. 2008; Calvanese et al. 2007c)). We
prove that, if K is satisfiable, then chase(〈T ,A〉) is a model
of C. In fact, since roles and attributes occurring in IdCs
cannot be specialized, the following crucial property holds:
for each role or attribute S and for each labeled null n, in
chase(〈T ,A〉) there is at most one fact of the form S(n, t)
and at most one fact of the form S(t, n), where t is any
constant or labeled null value. From this property, it im-
mediately follows that a local IdC (recall that a local IdC
has at least one path of length 1) can not be violated by a
labeled null value in chase(〈T ,A〉). On the other hand, if
a local IdC were violated in chase(〈T ,A〉) by some pair
of constants, then K would be unsatisfiable, thus contra-
dicting the hypothesis. Consequently, no IdC in C is vio-
lated in chase(〈T ,A〉), thus chase(〈T ,A〉) is a model of
C, and hence a model of K. Now, as shown in (Calvanese
et al. 2007c), for every Boolean UCQ q, 〈T ,A〉 |= q iff
chase(〈T ,A〉) |= q. Thus, if 〈T ,A〉 6|= q then K 6|= q. On
the other hand, trivially if K 6|= q then 〈T ,A〉 6|= q, hence
the claim follows.

The above theorem indicates that answering UCQs in
DL-LiteA with local IdCs can be done by first verifying
KB satisfiability, and then executing query answering on the
DL-LiteA KB obtained by eliminating the IdCs. In other
words, we have the following remarkable property: to an-
swer UCQs over DL-LiteA KBs with local IdCs, we can es-
sentially reuse the same machinery developed for ordinary
DL-LiteA KBs. The above property and the known compu-
tational properties of query answering in DL-LiteA immedi-
ately imply the following theorem.
Theorem 10 Answering UCQs in DL-LiteA with local IdCs
is LOGSPACE with respect to ABox complexity.

Finally, it can be shown that logical implication of TBox
assertions (including identification constraints) in DL-LiteA
with local IdCs is polynomial, i.e., adding local IdCs to
DL-LiteA KBs does not increase the computational com-
plexity of TBox reasoning.



Conclusions
Motivated by the importance of modeling identification in
ontologies, we have presented a study on the notion of path-
based identification constraints in DLs. The results de-
scribed in this paper provide the basis for extending cur-
rent DL reasoners with suitable capabilities for dealing with
identification constraints, both in the case of expressive DLs,
and in the case of tractable DLs. As for the latter, we have
incorporated local path-based identification constraints in
the DL-LiteA reasoner QuOnto (Acciarri et al. 2005), im-
plementing the technique illustrated in the previous section.
For the same reasoner, we are planning to add a method for
dealing with non-local path-based identification constraints,
in particular by treating such constraints as epistemic for-
mulae, so as to essentially restrict their scope to the set of
named individuals in the knowledge base.
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