
Finite Model Reasoning on UML Class Diagrams via
Constraint Programming

Marco Cadoli1, Diego Calvanese2, Giuseppe De Giacomo1, and Toni Mancini1

1 Dipartimento di Informatica e Sistemistica
Universit̀a di Roma “La Sapienza”

Via Salaria 113, I-00198 Roma, Italy
cadoli|degiacomo|tmancini@dis.uniroma1.it

2 Faculty of Computer Science
Free University of Bozen-Bolzano

Piazza Domenicani 3, I-39100 Bolzano, Italy
calvanese@inf.unibz.it

Abstract. Finite model reasoning in UML class diagrams is an important task
for assessing the quality of the analysis phase in the development of software
applications in which it is assumed that the number of objects of the domain
is finite. In this paper, we show how to encode finite model reasoning in UML
class diagrams as a constraint satisfaction problem (CSP), exploiting techniques
developed in description logics. In doing so we set up and solve an intermediate
CSP problem to deal with the explosion of “class combinations” arising in the
encoding. To solve the resulting CSP problems we rely on the use of off-the-shelf
tools for constraint modeling and programming. As a result, we obtain, to the
best of our knowledge, the first implemented system that performs finite model
reasoning on UML class diagrams.

1 Introduction

The Unified Modelling Language (UML, [9], cf.www.uml.org) is probably the most
used modelling language in the context of software development, and has been proven
to be very effective for the analysis and design phases of the software life cycle.

UML offers a number of diagrams for representing various aspects of the require-
ments for a software application. Probably the most important diagram is theclass
diagram, which represents all main structural aspects of an application. A typical class
diagram shows:

– classes, i.e., homogeneous collections ofobjects, i.e., instances;
– associations, i.e., relations among classes;
– ISA hierarchiesamong classes, i.e., relations establishing that each object of a class

is also an object of another class;
– multiplicity constraintson associations, i.e., restrictions on the number of links

between objects related by an association.

Actually, a UML class diagram represents also other aspects, e.g., the attributes and
the operations of a class, the attributes of an association, and the specialization of an
association. Such aspects, for the sake of simplicity, will not be considered in this paper.

1..1
Curriculum

20..∗

enrolled
Student

Fig. 1.A UML class diagram.

1..1
Curriculum

1..1 1..1

20..∗
enrolledStudent

likes

Fig. 2.A UML class diagram with finitely unsatisfiable classes.

An example of a class diagram is shown in Figure 1, which refers to an application
concerning management of administrative data of a university, and exhibits two classes
(Student andCurriculum) and an association (enrolled) between them. The multiplicity
constraints state that:

– Each student must be enrolled in at least one and at most one curriculum;
– Each curriculum must have at least twenty enrolled students, and there is no maxi-

mum on the number of enrolled students per curriculum.

It is interesting to note that a class diagram induces restrictions on the number of objects.
As an example, referring to the situation of Figure 1, it is possible to have zero, twenty,
or more students, but it is impossible to have any number of students between one and
nineteen. The reason is that if we had, e.g., five students, then we would need at least
one curriculum, which in turn requires at least twenty students.

In some cases the number of objects of a class is forced to be zero. As an example,
if we add to the class diagram of Figure 1 a further association,likes, with the con-
straints that each student likes exactly one curriculum, and that each curriculum is liked
by exactly one student (cf., Figure 2), then it is impossible to have any finite non-zero
number of students and curricula. In fact, the new association and its multiplicity con-
straints force the students to be exactly as many as the curricula, which is impossible.
Observe that, with a logical formalization of the UML class diagram, one can actually
perform such a form of reasoning making use of automated reasoning tools3.

Referring to Figure 2, note that the multiplicity constraints do not rule out the pos-
sibility of having infinitely manystudents and curricula. When a class is forced to have
either zero or infinitely many instances, it is said to befinitely unsatisfiable. For the
sake of completeness, we mention that in some situations involving ISA hierarchies
(not shown for brevity), classes may be forced to have zero objects, and are thus said to
be unsatisfiable in theunrestrictedsense. The above example shows that UML class di-
agrams donot have the finite model property, since unrestricted and finite satisfiability
are different.

Unsatisfiability, either finite or unrestricted, of a class is a symptom of a bug in the
analysis phase, since either such a class is superfluous, or a conflict has arisen while

3 Actually, current CASE tools do not perform any kind of automated reasoning on UML class
diagrams yet.

2

Syntax Semantics
¬B ∆I \BI

D1 uD2 DI
1 ∩DI

2

D1 tD2 DI
1 ∪DI

2

∀R.D {a : ∀b. (a, b) ∈ RI → b ∈ DI}

Syntax Semantics
(≥ m R) {a : |{b : (a, b) ∈ RI}| ≥ m}
(≤ n R) {a : |{b : (a, b) ∈ RI}| ≤ n}

P− {(a, b) : (b, a) ∈ P I}

Fig. 3.Syntax and semantics ofALUNI

modeling different, antithetic, requirements. In particular, finite unsatisfiability is espe-
cially relevant in the context of applications, e.g., databases, in which the number of
instances is intrinsically finite. Global reasoning on the whole class diagram is needed
to show finite unsatisfiability. For large, industrial class diagrams, finite unsatisfiability
could easily arise, because different parts of the same diagram may be synthesized by
different analysts, and is likely to be nearly impossible to be discovered by hand.

In this paper, we address finite model reasoning on UML class diagrams, a task that,
to the best of our knowledge, has not been attempted so far. This is done by exploiting an
encoding of UML class diagrams in terms of Description Logics (DLs) [2], in order to
take advantage of the finite model reasoning techniques developed for DLs [4, 5].These
techniques, which are optimal from the computational complexity point of view, are
based on a reduction of reasoning on a DL knowledge base to satisfaction of linear
constraints.

The contribution of this paper is on the practical realization of such finite modeling
reasoning techniques by making use of off-the-shelf tools for constraint modelling and
programming. In particular, by exploiting the finite model reasoning technique for DLs
presented in [4, 5], we propose an encoding of UML class diagram satisfiability as a
Constraint Satisfaction Problem (CSP). We show that, in spite of the high computa-
tional complexity of the reasoning task in general, the aforementioned techniques are
feasible in practice, if some optimizations are performed in order to reduce the expo-
nential number of variables in the constraint problem. We do so by relying again on the
constraint solver itself, by setting up and solving an auxiliary constraint problem that
exploits the structure of real-world UML class diagrams.

We built a system that accepts as input an UML class diagram (written in the stan-
dard MOF syntax4), and reasons on it according to the ideas above making use of the
ILOG’s OPLSTUDIOconstraint system. The system allowed us to test the technique on
the industrial knowledge base CIM.

2 Description Logics

DLs [1] are logics for representing a domain of interest in terms of classes and relation-
ships among classes and reasoning on it. They are extensively used to formalize con-
ceptual models and object-oriented models in databases and software engineering [3,
2], and lay the foundations for ontology languages used in the Semantic Web [7].

4 http://www.dmtf.org/

3

In DLs, the domain of interest is modeled throughconcepts, denoting classes of
objects, androles, denoting binary relations between objects. The semantics of DLs is
given in terms of aninterpretationI = (∆I , ·I) consisting of an interpretationdomain
∆I and aninterpretation function·I that maps every conceptD to a subsetDI of
∆I and every roleR to a subsetRI of ∆I × ∆I . In this paper we deal with the DL
ALUNI [4, 5], whose syntax and semantics are shown in Figure 3 (B andP denote
respectively atomic concepts and roles,D andR respectively arbitrary concepts and
roles,m a positive integer, andn a non-negative integer). The constructs(≥ m R) and
(≤ n R) are callednumber restrictions. We refer to [1] for more details on DLs.

An ALUNI knowledge base (KB) is constituted by a finite set of(primitive) in-
clusion assertionsof the formB v D. An interpretationI is called amodelof a KB if
BI ⊆ DI for each assertionB v D in the KB. The basic reasoning tasks in DLs are
(finite) KB and concept satisfiability: a KB is(finitely) satisfiableif it admits a (finite)
model; a conceptC is (finitely) satisfiablein a KB, if the KB admits a (finite) modelI
such thatCI 6= ∅.

Due to the expressiveness of the constructs present inALUNI KBs, unrestricted
and finite satisfiability are different problems, i.e.,ALUNI does not have thefinite
model property(cf. [5]). Unrestricted model reasoning is a quite well investigated prob-
lem in DLs, and several DL reasoning systems that perform such kind of reasoning are
available (e..g, FACT++5 or RACER6).

Instead, finite model reasoning is less well studied, both from the theoretical and
from the practical point of view. To the best of our knowledge, no implementation
of finite model reasoners has been attempted till now. Some works provide theoreti-
cal results showing that finite model reasoning over a KB can be done in EXPTIME
for variants of expressive DLs, includingALUNI [4, 5, 11]. Notice that this bound
is tight, since (finite) model reasoning is already EXPTIME-hard even for much less
expressive DLs (enjoying the finite model property) [1]. These results are based on an
encoding of the finite model reasoning problem into the problem of finding particular
integer solutions to a system of linear inequalities. Such solutions can be put in a di-
rect correspondence with models of the KB in which the values provided by the solution
correspond to the cardinalities of the extensions of concepts and roles. Also, the specific
form of the system of inequalities guarantees that the existence of an arbitrary solution
implies the existence of an integer solution. Moreover, from the encoding it is possible
to deduce the existence of a bound on the size of an integer solution, as specified by the
following theorem.

Theorem 1 ([5]). Let K be anALUNI KB of sizeK, C an atomic concept,ΨK,C

the system of linear inequalities derived fromK andC, andN the maximum number
appearing in number restrictions inK. Then,C is satisfiable inK if and only ifΨK,B
admits a solution. Moreover, if a solution exists, then there is one whose values are
bounded by(K ·N)O(K).

In the following, we will exploit the above result to derive a technique for reasoning
on UML class diagrams that properly takes into account finiteness of the domain of

5 http://owl.man.ac.uk/factplusplus/
6 http://www.racer-systems.com/

4

m1..n1
C1

A
C2

m2..n2

C1 C2 . . . Cn

C

(a) (b)

Fig. 4. (a) UML binary association with multiplicity constraints. (b) ISA hierarchy.

interest. The technique is a based on an encoding of UML class diagrams in terms of
DL KBs, which we present in the next section.

3 Formalizing UML Class Diagrams in DLs

UML class diagrams allow for modelling, in a declarative way, the static structure of
an application domain, in terms of concepts and relations between them. We briefly de-
scribe the core part of UML class diagrams, and specify the semantics of its constructs
in terms ofALUNI [2].

A classin a UML class diagram denotes a set of objects with common features.
Formally, a classC corresponds to a conceptC. Classes may have attributes and oper-
ations, but for simplicity we do not consider them here, since they don’t play any role
in the finite class unsatisfiability problem.

A (binary) associationin UML is a relation between the instances of two classes.
An associationA between two classesC1 andC2 is graphically rendered as in Fig-
ure 4(a). Themultiplicity m1..n1 on the binary association specifies that each instance
of the classC1 can participate at leastm1 times and at mostn1 times toA, similarly for
C2. ∗ is used to specify no upper bound.7

An associationA between the instances of classesC1 andC2, can be formalized as
an atomic roleA characterized by:

C1 v ∀A.C2 C2 v ∀A−.C1

For an association as depicted in Figure 4(a), multiplicities are formalized by:

C1 v (≥ m1 A) u (≤ n1 A) C2 v (≥ m2 A−) u (≤ n2 A−)

In UML, one can use ageneralizationbetween a parent class and a child class to
specify that each instance of the child class is also an instance of the parent class. Hence,
the instances of the child class inherit the properties of the parent class, but typically
they satisfy additional properties that in general do not hold for the parent class. Sev-
eral generalizations can be grouped together to form aclass hierarchy(also calledISA
hierarchy), as shown in Figure 4(b).Disjointnessandcompleteness constraintscan also

7 In UML, an association can have arbitrary arity and relate several classes, but for simplicity
we do not consider this case here (but see Conclusions).Aggregations, which are a particular
kind of binary associations are modeled similarly to associations.

5

be enforced on a class hierarchy (graphically, by adding suitable labels). A class hierar-
chy is said to be disjoint if no instance can belong to more than one derived class, and
complete if any instance of the base class belongs also to some of the derived classes.

A classC generalizing a classC1 can be formalized as:C1 v C. A class hierarchy
as shown in Figure 4(b) is captured byCi v C, for i = 1, . . . , n.

DisjointnessamongC1, . . . , Cn is expressed by:

Ci v
∧n

j=i+1 ¬Cj , for i = 1, . . . , n− 1

Thecompleteness constraintexpressing that each instance ofC is an instance of at least
one ofC1, . . . , Cn is expressed by:

C v
⊔n

i=1 Ci

Here, we follow a typical assumption in UML class diagrams, namely that all
classes not in the same hierarchy are a priori disjoint. Another typical assumption,
calledunique most specific class assumption, is that objects in a hierarchy must be-
long to a single most specific class. Hence, under such an assumption, two classes in a
hierarchy may have common instances only if they have a common subclass. We dis-
cuss in the next section the effect of making the unique most specific class assumption
when reasoning on an UML class diagram.

The basic form of reasoning on UML class diagrams is (finite) satisfiability of a
classC, which amounts to checking whether the class diagram admits a (finite) instan-
tiation in whichC has a nonempty extension. Formally, this corresponds to checking
whether the concept corresponding toC is (finitely) satisfiable in the KB formalizing
the diagram, Notice that, as mentioned, unrestricted and finite satisfiability in UML
class diagrams (and also inALUNI) are different problems.

The formalization of UML class diagrams in terms of DLs [2], and the fact that
instantiations of the UML class diagram must be finite, allows one to use on such dia-
grams the techniques for finite model reasoning in DLs discussed in Section 2. Specifi-
cally, the EXPTIME upper bounds apply also to finite model reasoning on UML class
diagrams [2]. Instead, the exact lower bound of reasoning on UML class diagrams as
presented above is still open. However, if one adds subsetting relations between as-
sociations or the ability of specializing the typing of an association for classes in a
generalization, then both unrestricted and finite model reasoning are EXPTIME-hard
(see [2]).

This justifies the approach taken in the next section, where we address the problem
of finite model reasoning on UML class diagrams also from a practical point of view.

4 Finite Model Reasoning onUML Class Diagrams via CSP

We address now finite class satisfiability in UML class diagrams, and show how it is
possible to encode the problem as a constraint satisfaction problem (CSP).

As mentioned, a technique for finite model reasoning in UML class diagrams can
be derived from techniques developed in the context of DLs. Such techniques are based

6

on translating a DL knowledge base into a set of linear inequalities [4, 5]. The formal-
ization of UML class diagrams in terms of DLs implies that the finite model reasoning
techniques for DLs can be used also for UML class diagrams.

In the rest of this paper, we will deal directly with the UML class diagram con-
structs, considered, from a formal point of view, as abbreviations for the corresponding
DL concepts and roles.

Intuitively, consider a simple UML class diagramD with no generalizations and
hierarchies. Figure 4(a) shows a fragment of such a diagram, in which we have two
classesC1 andC2 and an associationA between them. It is easy to see that such a
class diagramD is always satisfiable (assumingmi ≤ ni) if we admit infinite models.
Hence, only finite model reasoning is of interest. We observe that, ifD is finitely satis-
fiable, then it admits a finite model in which all classes are pairwise disjoint. Exploiting
this property, we can encode finite satisfiability of classC1 in D in a constraint satis-
faction problem. The variables and the constraints of the CSP are modularly described
considering in turn each association of the class diagram. LetA be an association be-
tween classesC1 andC2 such that the following multiplicity constraints are stated (cf.
Figure 4(a)):

– There are at leastm1 and at mostn1 links of typeA (instances of the association
A) for each object of the classC1;

– There are at leastm2 and at mostn2 links of typeA for each object of the classC2.

In the special case in which neitherC1 norC2 participates in an ISA hierarchy, the CSP
is defined as follows:

– There are three non-negative variablesc1 , c2 , anda, which stand for the number of
objects of the classes and the number of links8, respectively (upper bounds for these
variables follow from Theorem 1; in practice, they can be set to a huge constant,
e.g.,maxint);

– There are the following constraints (we use, here and in what follows, a syntax
similar to that ofOPL[12]):

1. m1 * c1 <= a;
2. n1 * c1 >= a;
3. m2 * c2 <= a;

4. n2 * c2 >= a;
5. a <= c1 * c2;
6. c1 >= 1;

Constraints 1–4 account for the multiplicity of the association; they can be omitted if
eitherm1 or m2 is 0, orn1 or n2 is∞ (symbol ‘* ’ in the class diagram). Constraint 5
sets an upper bound for the number of links of typeA with respect to the number of
objects. Constraint 6 encodes satisfiability of classC1: we want at least one object in its
extension. As an example, consider the Restaurant class diagram, shown in Figure 5: if
A stands forserved in, C1 stands formenu, andC2 stands forbanquet, thenm1 is 1,
n1 is∞, m2 is 1, andn2 is 1.

Finally, to avoid the system returning an ineffectively large solution, an objective
function that, e.g., minimizes the overall number of objects and links, may be added.

8 The use of variables standing for the number of links stems from the technique proposed in [5],
which ensures soundness and completeness of reasoning. It remains to be investigated whether
a simpler encoding avoiding the use of such variables is possible.

7

Fig. 5.The Restaurant UML class diagram.

It is possible to show that, from a solution of such a constraint system we can con-
struct a finite model of the class diagram in which the cardinality of the extension of
each class and association is equal to the value assigned to the corresponding variable9

[10].
When eitherC1 or C2 are involved in ISA hierarchies, the constraints are actually

more complicated, because the meaning of the multiplicity constraints changes. As an
example, the multiplicity1.. * of theorder association in Figure 5 states that aclient
orders at least onebanquet, but the client can be aperson, a firm, both, or neither
(assuming the generalization is neither disjoint nor complete). In general, for an ISA
hierarchy involvingn classes,2n non-negative variables corresponding to all possible
combinations must be considered. For the same reason, in our example, we must con-
sider four distinct specializations of theorder association, i.e., one for each possible
combination. Summing up, we have the following non-negative variables:

– person , order p, for clients who are persons and not firms;
– firm , order f , for clients who are firms and not persons;
– person firm , order pf , for clients who are both firms and persons;
– client , order c , for clients who are neither firms nor persons;

plus the non-negativebanquet variable.
The constraints which account for theorder association are as follows:

9 In fact, if one is interested just in the existence of a finite model, the nonlinear constraints
a ≤ c1 ∗ c2 can be dropped. Indeed, any solution of the resulting constraint system can be
transformed into one that satisfies also the nonlinear constraint by multiplying it with a suffi-
ciently large constant, cf. [5].

8

/ * 1 * / client <= order_c;
/ * 2 * / firm <= order_f;
/ * 3 * / person <= order_p;
/ * 4 * / person_firm <= order_pf;
/ * 5 * / banquet = order_c + order_f + order_p + order_pf;
/ * 6 * / order_c <= client * banquet;
/ * 7 * / order_f <= firm * banquet;
/ * 8 * / order_p <= person * banquet;
/ * 9 * / order_pf <= person_firm * banquet;
/ * 10 * / client + firm + person + person_firm >= 1;

Constraints 1–4 account for the ‘1’ in the1.. * multiplicity; Constraint 5 translates the
1..1 multiplicity; Constraints 6–9 set an upper bound for the number of links of type
order with respect to the number of objects; Constraint 10 encodes satisfiability of the
client class.

We refer the reader to [5] for formal details of the translation and the proof of its
correctness. As for the implementation, the Restaurant example has been encoded in
OPL as a CSP with 24 variables and 40 constraints. The solution has been found by the
underlying constraint programming solver, i.e., ILOG’s SOLVER, [8], in less than 0.01
seconds.

The exponential blow-up in the number of variables and constraints due to the presence
of ISA hierarchies is a major obstacle when dealing with large class diagrams, such as
those describing real-world applications. To this end, special care to reduce the size of
the resulting CSP as much as possible is mandatory.

In particular, if a given ISA hierarchy (withC as parent class and{C1, . . . , Cn} as
children) iscomplete, the variable for classC can be removed. Moreover, if the ISA is
disjoint, we can omit all the variables that model instances that belong toany combi-
nation of two or more derived classes, hence reducing the overall number of variables
to the number of classes in the hierarchy. As an example, if the ISA amongClient,
Person, andFirm in the Restaurant example is complete, variableclient (and the
correspondingorder c) is superfluous. In the same way, if the ISA is disjoint, vari-
ablesperson firm andorder pf can be omitted.

In order to derive the set of combinations of classes (called, in what follows, “types”)
that may have common instances, we show now that we can use CP technology again.
Indeed, for a given UML class diagram, we can set up and solve an auxiliary constraint
problem. The constraint problem is defined in such a way that the set of its solutions
corresponds to the set of all those types that are consistent with the ISA hierarchies of
the diagram, i.e., those types that can be populated without violating any of the con-
straints expressed by the ISA hierarchies. More precisely, assuming the classes of the
diagram are represented by integers between 1 andnclasses , the constraint problem
is defined as follows (we use again a pseudocode resembling theOPL syntax):

Given the set of ISA hierarchies of an UML class diagram
Find boolean legalType[1..nclasses] such that:

For each ISA (C1...Cn is-a C) {
for each i = 1..n: legalType[Ci] -> legalType[C];

9

If ISA is disjoint:
at_most_one(i = 1..n)(legalType[Ci]);

If ISA is complete:
legalType[C] -> exists i=[1..n] s.t. legalType[Ci];

}
legalType is a combination of at least one class;
Classes that belong to legalType must be connected

by ISA hierarchies;

By computing all solutions of this auxiliary constraint problem, we obtain the set of all
types that are consistent with the ISA hierarchies. Given a solutionlegalType[] (an
array of booleans), the corresponding type is made of all classesCsuch thatlegalType[C]
= true). Only variables for types found in this way need to be generated in order to
solve the finite satisfiability problem. It is worth noting that in practical circumstances,
the number of all possible types is not expected to be huge. In fact, well designed class
diagrams, even if the unique most specific class assumption is not made (cf. end of Sec-
tion 3), usually have a small amount of non-disjoint ISAs, since this helps to increase
the overall quality of the diagram, by making the partitions of concepts that are impor-
tant for the application explicit. Some experimental results that show the applicability of
the approach when reasoning on real-world class diagrams are described in Section 5.

Once a UML class diagram is shown to be finitely satisfiable, a second problem is to re-
turn a model with non-empty classes and associations. To solve this problem, we can use
again constraint technology, by writing a constraint program that encodes the semantics
of the UML class diagram (cf. Section 3), and uses the output of the finite satisfiability
problem to fix the size of the model. In fact, since in the finite satisfiability problem
we have enforced the multiplicity constraints, we know that a finite model of the class
diagram exists, and we also know an admissible number of instances for each class and
association. We do not describe the relevant constraint program for space reasons, but
just observe that, for the Restaurant example (encoded inOPL with about 40 lines of
code, which resulted in a CSP with 498 variables and 461 constraints), the solution has
been found by ILOG’s SOLVER in less than 0.01 seconds, and no backtracking.

5 Implementation

In this section, we describe a system realized in order to automatically produce, given
a UML class diagram as input, a constraint-based specification that decides finite class
satisfiability. Two important choices were made in the design phase: the input language
for class diagrams, and the output constraint language. As for the former, we decided
to use a standard textual representation of UML class diagrams called “Managed Ob-
ject Format” (MOF) (cf. footnote 4). Concerning the output language, instead, in order
to use state-of-the-art solvers, we opted for the constraint programming languageOPL.
However, in order to have a strong decoupling between the two front-ends of the sys-
tem, we realized it in two modules: the first one acts as a server, receiving a MOF file as
input and returning a high-level, object-oriented complete internal representation of the
described class diagram (actually, the system supports the concepts in the core UML,

10

i.e., classes, associations, hierarchies among classes, and subset relationships between
associations). A client module, then, traverses the internal model in order to produce
the OPL specification encoding the finite satisfiability problem for the diagram (actu-
ally, subset relationships between associations are not taken into account). With this
decoupling, we are able to change the language for the input (resp., output) by modify-
ing only the MOF parser (resp., theOPL encoder) module of the system. Moreover, by
decoupling the parsing module from the encoder intoOPL, we are able to realize new
tools to make additional forms of reasoning at low cost.

As for the handling of ISA hierarchies, it has already been mentioned that an ex-
ponential blow-up of the number of variables (one for each combination of classes
involved in the hierarchy) cannot be avoided in the worst case. However, in case of dis-
joint or complete hierarchies, it is possible to strongly reduce the number of generated
variables (cf. Section 4).

Hence, the system works in two stages. In the first one, after having built the internal
representation of the input class diagram, it solves theOPL auxiliary constraint problem
described in Section 4 in order to detect all possible combinations of classes (the so-
called “types”) belonging to the same hierarchy that may have objects in common. In
the second stage, it uses this knowledge to build theOPL program that models the finite
satisfiability problem for the class diagram.

In order to test whether using off-the-shelf tools for constraint programming is ef-
fective to decide finite satisfiability of real-world diagrams, we used our system to
produceOPL specifications for several class diagrams of the “Common Information
Model” (CIM)10, a standard model used for describing overall management informa-
tion in a network/enterprise environment. We don’t describe the model in detail, but
just observe that the class diagrams we used were composed of about 1000 classes and
associations, and so can be considered good benchmarks to test whether current con-
straint programming solvers can be effectively used to perform the kind of reasoning
shown so far.

Constraint specifications obtained from large class diagrams in the CIM collection
were solved very efficiently byOPL. As an example, when the largest diagram, consist-
ing of 980 classes and associations, was given as input to our system, we obtained an
OPL specification consisting of a comparable number of variables and 862 constraints.
Nonetheless,OPL solved it in less than 0.03 seconds of CPU time, by invoking ILOG
SOLVER. This high efficiency is achieved also because of the “structural” aspects usu-
ally present in UML class diagrams that model real-world applications. In particular,
multiplicity constraints on many associations had “0” or “1” as lower bounds, or “∗”
as upper bounds, and hence the correspondingOPL constraints were easily satisfiable.
The consequence is that only a small portion of the constraints of the overall constraint
model needed a deep search for finding a solution. Moreover, the exponential explosion
of the number of variables for classes belonging to ISA hierarchies was not a problem,
since the unique most specific class assumption is implicitly made in these diagrams
(hence, non-disjointness among classes was always explicitly stated). This is encourag-
ing evidence that current CP technology can be effectively used in order to make finite
model reasoning on real-world class diagrams.

10 http://www.dmtf.org/standards/cim

11

6 Conclusions

Finite model reasoning in UML class diagrams, e.g., checking whether a class is forced
to have either zero or infinitely many objects, is important for assessing quality of the
analysis phase in software development. Despite the importance of finite model rea-
soning, no implementation of this task has been attempted so far. In this paper we
have shown how one can develop such a system by relying on off-the-shelf tools for
constraint modeling and programming, using techniques for finite model reasoning in
description logics, and putting special care in taming the class-combination explosion.

For simplicity, in this paper we have dealt with binary associations only, but in fact
the technique can be straightforwardly extended ton-ary associations11 as well, and in
fact, our current implementation deals also with them.

This paper can also be seen as the first attempt to obtain a practical, computationally
optimal finite model reasoner for expressive description logics. Indeed, the techniques
developed here apply toALUNI knowledge bases with primitive inclusion assertions
[6]. More generally, the ideas of applying CSP tools and taking special care in limiting
the “class combinations” explosion, could be applied to more expressive description
logics as well [11].

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors.The
Description Logic Handbook: Theory, Implementation and Applications. Cambridge Uni-
versity Press, 2003.

2. D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on UML class diagrams.Artificial
Intelligence, 168(1–2):70–118, 2005.

3. A. Borgida, M. Lenzerini, and R. Rosati. Description logics for data bases. In Baader et al.
[1], chapter 16, pages 462–484.

4. D. Calvanese. Finite model reasoning in description logics. InProc. of KR’96, pages 292–
303, 1996.

5. D. Calvanese.Unrestricted and Finite Model Reasoning in Class-Based Representation
Formalisms. PhD thesis, Dip. di Inf. e Sist., Univ. di Roma “La Sapienza”, 1996. Available
athttp://www.dis.uniroma1.it/pub/calvanes/thesis.ps.gz .

6. D. Calvanese, M. Lenzerini, and D. Nardi. Unifying class-based representation formalisms.
J. of Artificial Intelligence Research, 11:199–240, 1999.

7. I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. FromSHIQ and RDF to OWL:
The making of a web ontology language.J. of Web Semantics, 1(1):7–26, 2003.

8. ILOG OPL Studio system version 3.6.1 user’s manual, 2002.
9. I. Jacobson, G. Booch, and J. Rumbaugh.The Unified Modeling Language User Guide.

Addison Wesley Publ. Co., 1998.
10. M. Lenzerini and P. Nobili. On the satisfiability of dependency constraints in entity-

relationship schemata.Information Systems, 15(4):453–461, 1990.
11. C. Lutz, U. Sattler, and L. Tendera. The complexity of finite model reasoning in description

logics. InProc. of CADE 2003, pages 60–74, 2003.
12. P. Van Hentenryck.The OPL Optimization Programming Language. The MIT Press, 1999.

11 We do not consider multiplicities forn-ary associations. For a discussion, see [2].

12

