Highly Dynamic Adaptation
in Process Management Systems
through Execution Monitoring

Massimiliano de Leoni, Massimo Mecella, and Giuseppe De Giacomo

Dipartimento di Informatica e Sistemistica
SAPIENZA — Universita di Roma
Via Ariosto 25, 00185 Roma, Italy
{deleoni,mecella,degiacomo}@dis.uniromal.it

Abstract. Nowadays, process management systems can be used not
only in classical business scenarios, but also in highly mobile and dynamic
situations, e.g., in supporting operators during emergency management
in order to coordinate their activities. In such challenging situations,
processes should be adapted, in order to cope with anomalous situations,
including connection anomalies and task faults. In this paper, we present
a general approach, based on execution monitoring, which is (i) practical,
by relying on well-established planning techniques, and (ii) does not
require the definition of the adaptation strategy in the process itself
(as most of the current approaches do). We prove the correctness and
completeness of the approach.

1 Introduction

Nowadays, process management systems (PMSs, [1,2]) are widely used in many
business scenarios, such as government agencies, insurances, banks, etc. Besides
such scenarios, which present mainly static characteristics (i.e., deviations are
not the rule, but the exception), PMSs can be used also in mobile and highly
dynamic situations, such as in coordinating operators/devices/robots/sensors in
emergency situations [3, 4].

As an example, in [5] a project is presented in which PMSs are used within
teams of emergency operators, in order to coordinate their activities. In such
scenarios, the members of a team are equipped with PDAs and coordinated
through a PMS residing on a leader device (usually a laptop); devices communi-
cate among them through ad hoc networks, and in order to carry on the process,
they need to be continually connected each other. But this is not simply guaran-
teed: the environment is highly dynamic, since nodes (i.e., devices and the related
operators) move in the affected area to carry out assigned tasks; movements may
cause possible disconnections and, so, unavailability of nodes. Therefore the pro-
cess should be adapted. Adaptivity might simply consist in assigning the task
in progress to another device, but collecting actual user requirements [6] shows
that typical teams are formed by a few nodes (less than 10 units), and therefore
frequently such reassignment is not feasible. Conversely, other kind of adaptivity
can be envisioned, such as recovering somehow the disconnecting node through



specific tasks, e.g., when X is disconnecting, the PMS could assign the “follow
X” task to another node so to guarantee the connection. This example shows
that in such scenarios (i) the process is designed (and deployed on the PMS) as
if everything would be fine during run-time, and (%) it needs to be continuously
adapted on the basis of rules that would be infeasible to foresee at design time.

The aim of this paper is to propose a general conceptual framework for the
above issue, and to present a practical technique for solving it, which is based
on planning in AI; moreover, we prove the correctness and completeness of the
approach. In a PMS, process schemas are defined that describe the different as-
pects, i.e., tasks/activities, control and data flow, tasks assignment to services L
etc. Every task gets associated a set of conditions which have to be true in order
to perform the task. Conditions are defined on control and data flow (e.g., a
previous task has to be finished, a variable needs to be assigned a specific range
of values, etc.). This kind of conditions can be somehow considered as “internal”:
they are handled internally by the PMS and, thus, easily controllable. Another
type of conditions exist, that is the “external” ones: they depend on the environ-
ment where process instances are carried on. These conditions are more difficult
to keep under control and a continuous monitoring to detect discrepancies is re-
quired. Indeed we can distinguish between a physical reality and a virtual reality
[7]; the physical reality is the actual values of conditions, whereas the virtual
reality is the model of reality that PMS uses in making deliberations. A PMS
builds the virtual reality by assuming the effects of tasks/actions fill expecta-
tions (i.e., they modify correctly conditions) and no exogenous events break out,
which are capable to modify conditions.

When the PMS realizes that one or more events caused the two kinds of
reality to deviate, there are three possibilities to deal with such a discrepancy:

1. Ignoring deviations — this is, of course, not feasible in general, since the
new situation might be such that the PMS is no more able to carry out the
process instance.

2. Anticipating all possible discrepancies — the idea is to include in the process
schema the actions to cope with each of such failures. As we discuss in Sec-
tion 7, most PMSs use this approach. For simple and mainly static processes,
this is feasible and valuable; but, especially in mobile and highly dynamic
scenarios, it is quite impossible to take into account all exception cases.

3. Devising a general recovery method able to handle any kind of exogenous
events — this can be seen as a try-catch approach, used in some program-
ming languages such as Java. The process is defined as if exogenous actions
cannot occur, that is everything runs fine (the try block). Whenever the ex-
ecution monitor (i.e., the module intended for execution monitoring) detects
discrepancies leading the process instance not to be terminable, the control
flow moves to the catch block. The catch block activates the general re-
covery method to modify the old process P in a process P’ so that P’ can
terminate in the new environment and its goals are included in those of P.

! In this work, we abstract all possible actors a process can coordinate, i.e., human op-
erators commonly interacting through worklists, software applications/components,
etc. as services providing capabilities to be matched with the ones required by the
tasks.



Here the challenge is to automatically synthesize P’ during the execution
itself, without specifying a-priori all the possible catches.

The contribution of this paper is (i) to introduce a general conceptual frame-
work in accordance with the third approach previously described, and (i) to
present a practical technique, in the context of this framework, that is able to
automatically cope with anomalies. We prove the correctness and completeness
of such a technique, which is based on planning techniques in Al.

The rest of the paper is organized as follows: Section 2 introduces some
preliminary notions, namely Situation Calculus and CONGOLOG, that are used
as proper formalisms to reason about processes and exogenous events. Section
3 presents the general conceptual framework to address adaptivity in highly
dynamic scenarios, and introduces a running example. Section 4 presents the
proposed formalization of processes, and Section 5 deals with the adaptiveness.
Section 6 presents the specific technique and proves its correctness and complete-
ness. Related works are discussed in Section 7, and finally Section 8 concludes
the paper.

2 Preliminaries

In this section we introduce the Situation Calculus, which we use to formalize
the adaptiveness in PMSs. The Situation Calculus [8] is a second-order logic
targeted specifically for representing a dynamically changing domain of interest
(the world). All changes in the world are obtained as result of actions. A possible
history of the actions is represented by a situation, which is a first-order term
denoting the current situation of the world. The constant sy denotes the initial
situation. A special binary function symbol do(c, s) denotes the next situation
after performing the action « in the situation s. Action may be parameterized.

Properties that hold in a situation are called fluents. These are predicates
taking a situation term as their last argument. Changes in fluents (resulting from
executing actions) are specified through successor state axioms. In particular for
each fluent F' we have a successor state axioms as follows:

F(7,do(a,5)) & @p(T,do(a,s),s)

where @ (7', do(a, s), 5) is a formula with free variables 2, a is an action, and
s is a situation. Besides successor state axioms, Situation Calculus theories are
characterized by action precondition axioms, which specify whether a certain
action is executable in a situation. Action precondition axioms have the form:

Poss(a, s) < I,(s)

where the formula I7,(s) defines the conditions under which the action « may
be performed in the situation s.

In order to control the executions of actions we make use of high level pro-
grams, expressed in Golog-like programming languages [9]. In particular we focus
on CONGOLOG [10] which is equipped with primitives for expressing concurrency.



Construct Meaning

a A primitive action
o7 Wait while the ¢ condition is false
(61;02) Sequence of two sub-programs d; and d2
proc P(?) 1) Invocation of a procedure passing a vector v of parameters
if ¢ then 01 else d2|Exclusive choice between §; and d2 according to the condition ¢
while ¢ do § Iterative invocation of ¢
(61 ] 02) Concurrent execution

Table 1. CONGOLOG constructs

The Table 1 summarizes the constructs of CONGOLOG used in this work. Basi-
cally, these constructs allow to define every well-structured process as defined in
[11].

From the formal point of view, CONGOLOG programs are terms. The execu-
tion of CONGOLOG programs is expressed through a transition semantic based
on single steps of execution. At each step a program executes an action and
evolves to a new program which represents what remains to be executed of the
original program. Formally two predicates are introduced to specify such a se-
matic:

— Trans(d',s',6"”,5"), given a program ¢’ and a situation s’, returns (i) a new
situation s” resulting from executing a single step of ¢, and (ii) " which is
the remaining program to be executed.

— Final(¢',s') returns true when the program ¢’ can be considered successfully
completed in situation s’.

By using Trans and Final we can define a predicate Do(¢', s, s”) that rep-
resent successful complete executions of a program ¢’ in a situation s’, where s”
is the situation at the end of the execution of §’. Formally:

Do(¢',s',s") & 38" Trans*(§',s',8",s") A Final(§",s")

where Trans* is the definition of the reflective and transitive closure of Trans.

3 General Framework

The general framework which we introduce in this paper is based on execution
monitoring formally represented in Situation Calculus [12,7]. After each action,
the PMS has to align the internal world representation (i.e., the virtual reality)
with the external one (i.e., the physical reality), since they could differ due to
unforeseen events.

When using CONGOLOG for process management, tasks are considered as
predefined sequences of actions (see later) and processes as CONGOLOG pro-
grams.
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Fig. 1. Execution Monitoring

Before a process starts to be executed, the PMS takes the initial context
from the real environment as initial situation, together with the program (i.e. the
process) dp to be carried on. The initial situation sq is given by first-order logic
predicates. For each execution step, the PMS, which has a complete knowledge
of the internal world (i.e., its virtual reality), assigns a task to a service. The only
assignable tasks are those ones whose preconditions are fulfilled. A service can
collect from the PMS the data which are required in order to execute the task.
When a service finishes executing the task, it alerts the PMS of its completion.

The execution of the PMS can be interrupted by the monitor when a mis-
alignment between the virtual and the physical reality is sensed. When this
happens, the monitor adapts the program to deal with such a discrepancy.

Figure 1 illustrates such an execution monitoring. At each step, PMS ad-
vances the process § in the situation s by executing an action, resulting in a new
situation s’ with the process ¢’ remaining to be executed. The state? is repre-
sented as first-order formulas that are defined on situations. The current state
corresponds to the boolean values of these formulas evaluated on the current
situation.

Both the situation s’ and the process ¢’ are given as input to the monitor. It
collects data from the environment through sensors (here sensor is any software
or hardware component enabling to retrieve contextual information). If a dis-
crepancy between the virtual reality as represented by s’ and the physical reality
is sensed, the monitor changes s’ in s” by internally simulating a sequence of
actions that re-aligns the virtual and physical reality (i.e., those are not really
executed). Notice that the process ¢’ may fail to be correctly executed (i.e., by
assigning all tasks as required) in s”. If so, the monitor adapts the process by
generating a new process " that pursues at least each §’’s goal and is executable

2 Here we refer as state both the tasks’ state (e.g, performable, running, terminated,
etc.) and the process’ variables. The use of the latter variables are twofold: from the
one hand, the routing is defined on them and, from the other hand, they allow to
learn when a task may fire.



in s”. At this point, the PMS is resumed and the execution is continued from 46"
and s”.

We end this section by introducing our running example, stemming from the
project described in [5, 6].

Example 1 A Mobile Ad hoc NETwork (MANET) is a P2P network of mobile
nodes capable of communicating with each other without an underlying infras-
tructure. Nodes can communicate with their own neighbors (i.e., nodes in radio-
range) directly by wireless links. Non-neighbor nodes can communicate as well,
by using other intermediate nodes as relays that forward packets toward destina-
tions. The lack of a fized infrastructure makes this kind of network suitable in
all scenarios where it is needed to deploy quickly a network, but the presence of
access points is not guaranteed, as in emergency management.

Coordination and data exchange requires MANET nodes to be continually con-
nected each other. But this is not guaranteed in a MANET. The environment is
highly dynamic, since nodes move in the affected area to carry out assigned tasks.
Movements may cause possible disconnections and, so, unavailability of nodes,
and, consequently, unavailability of provided services. Therefore processes should
be adapted, not simply by assigning tasks in progress to other services, but also
considering possible recovery of the services.

Compile Questionnaire X Compile Questionnaire Y Compile Questionnaire Z
about destination A about destination B about destination C

Questionnairre
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Evaluates photos
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destination A destination C
[
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Fig. 2. A possible process to be carried on in disaster management scenarios



Figure 2 shows a possible scenario for information collecting after an earth-
quake: a team is sent to the affected area to evaluate the situation of three build-
ings. For each building, an actor compiles a questionnaire (by using a service,
i.e., an application that it has got installed). Questionnaire compiling can be done
everywhere: that is, movement is not required. Then, another actor/service has
to be sent to the specific building to collect some pictures (this, conversely, re-
quires movement). Finally, according to information in the questionnaire, a third
actor/service evaluates quality and effectiveness of collected pictures. If pictures
are of bad quality, the task of taking new pictures is scheduled again. Whenever
these steps have been performed for the three buildings A, B and C, the collected
data (questionnaires and pictures) are sent by GPRS or UMTS elsewhere. [

4 Formalization in Situation Calculus

Next we detail the general framework proposed above by using Situation Cal-
culus and CONGOLOG. We use some domain-independent predicates to denote
the various objects of interest in the framework:

— service(a): a is a service

task(x): x is a task

capability(b): b is a capability

— provide(a,b): the service a provides the capability b
— require(x,b): the task x requires the capability b

Every task execution is the sequence of four actions: (i) the assignment of
the task to a service, resulting in the service being not free anymore; (ii) the
notification to the service to start executing the task. Then, the service carries
out the tasks and, after finishing, (iii) the PMS stops the service, acknowledging
the successful termination of its task. Finally, (iv) the PMS releases the service,
which becomes free again. We formalize these four actions as follows (these are
the only actions used in our formalization):

Assign(a,x): the task x is assigned to a service a

Start(a,x,p): the service a is notified to perform the task = on input p

— Stop(a, x,q): the service a is stopped acknowledging the successful termina-
tion of & with output ¢

— Release(a, x): the service a is released with respect to the task x

The terms p and ¢ denote arbitrary sets of input/output, which depend on
the specific task; if no input or output is needed, p and q are 0.

For each specific domain, we have several fluents representing the properties
of situations. Among them, we have the fluent free(a, s), which is indeed domain-
independent, that denotes the fact that the service a is free, i.e., no task has been
assigned to it, in the situation s. The corresponding successor state axiom is as
follows:

free(a,do(t, s)) <
Va.t # Assign(a,z) A free(a,s)) V (1)
—free(a,s) A Jz.t = Release(a, )



This says that a service a is considered free in the current situation if and only
if a was free in the previous situation and no tasks have been just assigned to
it, or a was not free and it has been just released.

In addition, we make use, in every specific domain, of a predicate
available(a, s) which denotes whether a service a is available in situation s for
tasks assignment. However, available is domain-dependent and, hence, requires
to be defined specifically for every domain. Its definition must enforce the fol-
lowing condition:

Va s.available(a, s) = free(a,s) (2)

Precondition axioms are also domain dependent and, hence, vary from case
to case. However the following condition must be true:

Vz,p,q Poss(Start(a,z,p), s) = available(a, s) (3)

Knowing whether a service is available is very important for the PMS when
it has to perform assignments. Indeed, a task z is assigned to the best service
a which is available and provides every capability required by x. In order to
model the best choice among available services, we introduced a special con-
struct, named pick. The statement pick a.[¢(a)] § chooses the best service a
matching the condition ¢(-) on predicates and fluents applied in the current
situation. This choice is performed with respect to a given (typically domain-
dependent) metric. For instance, the pick might consider the queueing of tasks
that are assigned to the members, as well as the execution of multiple paral-
lel process instances sharing the same resources. Observe that such a choice is
deterministic, even when there are more than one service matching the condi-
tion ¢(-). Then it instantiates 6 with the chosen a and executes the first step of
the resulting program. If no service matches the condition, the process § stays
blocked, until some other services make ¢(a) true.

We illustrate such notions on our running example.

Example 1 (cont.). We formalize the scenario in Example 1. We make use of
the following domain-dependent fluents (for sake of brevity we focus on the most
relevant ones):

— connected(a, b, s): which is true if in the situation s the services a and b are
connected through multi-hop paths

— neigh(a,b, s): which is true if in the situation s the services a and b are in
radio-range in the situation s

— at(a,p,s) it is true if in the situation s the service a is located at the coor-
dinate p = (py, Dy, =) in the situation s.



The successor state axioms for this domain are:

available(a,do(x, s)) & free(a,do(z, s)) A connected(a, Coord, do(z, s))

connected(ag, ar,do(z, s)) < neigh(ag, a1, do(z, s)) V
(3ag.service(az) A neigh(ag, az, do(z, s)) A connected(az, a1, do(z, 5)))

neigh(ag, a1, do(z, s)) <
at(ao, po, do(z, s)) A at(ar,p1, s)A || po — p1 ||< rrange

at(a, p,do(z,s)) <
Y p,q. © # Stop(a, Go,p) A at(a,p,s)V V q. x = Stop(a, Go,p)

The first successor state axiom is the one for available, which states a
service is available if it is connected to the coordinator device (denoted by Coord)
and it is free. Notice that the condition 2 is fulfilled. The axiom for connected
states two devices are connected if and only if they are neighbors (i.e., in radio-
range) or there exists a path in the MANET. The successor state axiom neigh
states how neighbors evolve: two nodes a and b are neighbors in situation s if and
only if their distance || p, —py || is less than the radio-range. The successor state
axiom for at states that the position p for a does mot change until the assigned
task Go is acknowledged to be finished.

In the reality, in order to know the position returned by the Go task, the
PMS gets such an information from the service a (here not modelled). In case
the node (hence the service) is getting disconnected, the monitor will get in and
generate a Stop action which communicates the actual position, and a recovery is
instructed in order to keep the connection (see later). Indeed, in such a scenario
nodes need be continually connected to each other, as a disconnected node is out
of the PMS’s control [3].

For sake of brevity we do not look at the precondition axioms, and instead we
look directly at the CONGOLOG program (implicitly assuming that such precon-
dition azioms allow for all instructions in the program). The CONGOLOG pro-
gram corresponding to Figure 2 is shown in Figure 3. The main program is the
procedure Process, which executes in parallel on three threads the sub-procedure
EvalTake and then assigns the task SendByGPRS to the proper service that is
the one providing the capability to send data by means of GPRS (or similar).

|

5 Adaptation

Next we formalize how the monitor works. Intuitively, the monitor takes the
current program ¢’ and the current situation s’ from the PMS’s virtual reality
and, analyzing the physical reality by sensors, introduces fake actions in order
to get a new situation s” which aligns the virtual reality of the PMS with sensed
information. Then, it analyzes whether ¢’ can still be executed in s”, and if not,
it adapts &’ by generating a new correctly executable program ¢”. Specifically,
the monitor work can be abstractly defined as follows (we do not model how the
situation s” is generated from the sensed information):



01 proc Eval Take(Location, Questionnaire, Photos)
02 pick ab[actor(ao) Oavailable(a,) O0b service(b) Orequire(b, Compile) = provide(ao,b)]
03 Assign(a,, Compile);

04 Sart(a,, Compile, Location);

05 Stop(a,, Compile, Questionnaire);

06 Rel ease(a,, Compile);

07 isOk = false

08 while(isOk == false)

09 (pick a,[actor (a,) Davail able(a, ) O0b service(b) Orequire(b, TakePhoto)
= provide(a,, b)]

10 Assign(a,, TakePhoto);

11 Sart(a,, Go, Location);

12 Sop(a,, Go, Location);

13 Sart(a,, TakePhoto, Location);

14 Sop(a,, TakePhoto, Photos);

15 Release(a,, TakePhoto); )

16 pick a,[actor (a,) Davailable(a,) O0b service(b) Orequire(b, Evaluate)
= provide(a,,b)]

17 Assgn(a,, Evaluate);

18 Sart(a,, Evaluate,{Location, Questionnaire, Photos});

19 Sop(a,, Evaluate,isOk);

20 Release(a, , Eval uate);)

21 endproc

22

23 proc Process

24 (EvalTake(LocA,Q,,F) |

25 EvalTake(LocB,Q, . F,) |

26 EvalTake(LocC,Q,, F.));

27 pick aactor ()] Davail able(a) Ob service(b) Orequire(b, SendByGPRS)
= provide(a,b) 7,

28 Assign(a, SendByGPRS);

29 Start(a, SendByGPRS{Q,,F,, Q,, K, Q.. . });
30 Stop(a, SendByGPRS nil);

31 Release(a, SendByGPRYS);

32 endproc

Fig. 3. The CoNGOLOG program of the process in Figure 2



Monitor(8',s',s",0") &

Relevant (', s',s") A Recovery(d',s', s, 5”)) Vv (4)

—Relevant(d',s',s") A" = §')
where: (i) Relevant(d',s’,s") states whether the change from the situation
s’ into s” is such that ¢’ cannot be correctly executed anymore; and (%)
Recovery(d',s',s”,6") is intended to hold whenever the program ¢’, to be orig-
inally executed in the situation s’, is adapted to ¢ in order to be executed in
the situation s”.

Formally Relevant is defined as follows:

Relevant(d',s',s") & ~SameConfig(d',s',8,s")

where SameConfig(d',s',8",s") is true if executing ¢’ in s’ is “equivalent” to
executing ¢’ in s” (see later for further details).

In this general framework we do mnot give a definition for
SameConfig(d',s',8”,s"). However we consider any definition for SameCon fig
to be correct if it denotes a bisimulation [13]. Formally, for every ¢',s,6",s”
holds:

1. Final(8',s") < Final(§”,s)
2.V a, 5’.Tran5(5’,s’,§, do(a,s’)) =

3 W.Trans(é”, "8, do(a, s”)) A SameC’onfig(y, do(a, s),6", do(a, s”))
3. Y a,0 Trans(8",s",&,do(a,s")) =

3 W.Trans(é', s', 8, do(a, s’)) A SameConfig(W7 do(a,s"), &, do(a, s’))

Intuitively, a predicate SameConfig(d',s’,d8"”,s") is said to be correct if ¢’
and 8" are terminable either both or none of them. Furthermore, for each action
a performable by ¢’ in the situation s’, §” in the situation s” has to enable
the performance of the same actions (and viceversa). Moreover, the resulting
configurations (¢/, do(a, s")) and (6, do(a, s’)) must still satisfy SameCon fig.

The wuse of the bisimulation criteria to state when a predicate
SameConfig(---) is correct, derives from the notion of equivalence introduced
n [14]. When comparing the execution of two formally different business pro-
cesses, the internal states of the processes may be ignored, because what really
matters is the process behavior that can be observed. This view reflects the way
a PMS works: indeed what is of interest is the set of tasks that the PMS offers
to its environment, in response to the inputs that the environment provides.

Next we turn our attention to the procedure to adapt the process formalized
by Recovery(d, s, s’,d’). Formally is defined as follows:

Recovery(d',s',s",0") <
Fda, 6p.0" = d4; 6 A Deterministic(d,) A (5)
Do(84,5", sp) N SameConfig(d', s, dp, sp)

Recovery determines a process ¢’ consisting of a deterministic §, (i.e., a
program not using the concurrency construct), and an arbitrary program dp.
The aim of J, is to lead from the situation s” in which adaptation is needed to
a new situation s, where SameConfig(d’, s, d, sp) is true.



Notice that during the actual recovery phase §, we disallow for concurrency
because we need full control on the execution of each service in order to get
to a recovered state. Then the actual recovered program J, can again allow for
concurrency.

6 Adaptation: A Specific Technique

In the previous sections we have provided a general description on how adapta-
tion can be defined and performed. Here we choose a specific technique that is
actually feasible in practice. Our main step is to adopt a specific definition for
SameConfig, here denoted as SAMECONFIG, namely:

SAMECONFIG(d', s, 6", s") < (6)
SameState(s’,s") N§ = 6"

In other words, SAMECONFIG states that ¢’, s’ and §”, s” are the same
configuration if (4) all fluents have the same truth values in both s’ and s”
(SameState)? | and (ii) 6" is actually &'

The following shows that SAMECONFIG is indeed correct.

Theorem 1. SAMECONFIG(d,s',d",8") is correct.
Proof. We show that SAMECONFIG is a bisimulation. Indeed:

— Since SameState(s’, s”) requires all fluents to have the same values both in
s' and s”, we have that (Final(é, s') < Final(é,s")).

— Since SameState(s’, s") requires all fluents to have the same values both
in s and s”, it follows that the PMS is allowed for the same process
0" to assign the same tasks both in s’ and in s” and moreover for each
action a and situation s’ and s” s.t. SameState(s’,s”), we have that
SameState(do(a, s'),do(a, s"”)) hold. As a result, for each a and & such
that Trans(é’,s’,y, do(a,s’)) we have that Trans(d’,s”,y, do(a, s”)) and
SAMECONFIG (ﬁ, do(a, s), 8", do(a, s”)). Similarly for the other direction.

Hence, the thesis holds. O

Next let us denote by LinearProgram(d) a program constituted only by
sequences of actions, and let us define RECOVERY as:

RECOVERY (¢, s',5",0") <
364, 050" = b4; 0p A Linear Program(d,) A (7)
Do(64,5",sp) AN SAMECONFIG(H', s, dp, Sp)

Next theorem shows that we can adopt RECOVERY as a definition of Recovery
without loss of generality.

3 Observe that SameState can actually be defined as a first-order formula over the
fluents, as the conjunction of F(s') < F(s") for each fluent F.



Theorem 2. For every process &' and situations s’ and s”, there ezxists a
8" such that RECOVERY(',s',s",6") if and only if there exists a & such
that Recovery(d',s’,s",6"”), where in the latter we use SAMECONFIG as
SameConfig.

Proof. Observe that the only difference between the two definitions is that in one
case we allow only for linear programs (i.e., sequences of actions) as d,, while in
the second case also for deterministic ones, that may include also if-then-else,
while, procedures, etc.

(=) Trivial, as linear programs are deterministic programs.

(<) Let us consider the recovery process 8" = 64:0, where 6, is an arbi-
trary deterministic program. Then by definition of Recovery there exists a
(unique) situation s” such that Do(d,,s’,s”). Now consider that s as the form

s’ = do(ap,do(an—1,...,do(as,do(ay,s"))...)). Let us consider the linear pro-
gram p = (a1;as;...;a,). Obviously we have Do(p, s’, s”). Hence the process
0" = p; dp is a recovery process according to the definition of RECOVERY. |

The nice feature of RECOVERY is that it asks to search for a linear program
that achieves a certain formula, namely SameState(s’,s”). That is we have
reduced the synthesis of a recovery program to a classical Planning problem in
AT [15]. As a result we can adopt a well-developed literature about planning for
our aim. In particular, if the services and input and output parameters are finite,
then the recovery can be reduced to propositional planning, which is known to
be decidable in general (for which very well performing software tools exists).

Theorem 3. Let assume a domain in which services and input and output pa-
rameters are finite. Then given a process &' and situations s’ and s”, it is decid-
able to compute a recovery process 6" such that RECOVERY(d',s', s”,6") holds.

Proof. In domains in which services and input and output parameters are finite,
also actions and fluents instantiated with all possible parameters are finite. Hence
we can phrase the domain as a propositional one and the thesis follows from
decidability of propositional planning [15]. O

Example 1 (cont.). In the running example, consider the case in which the
process is between the lines 11 and 12 in the execution of the procedure in-
vocation FEvalTake(LocA, §-A, F-A). Now, let us assume that the node aj is
assigned the task TakePhoto. But it is moving to a location such that it is
not connected to the coordinator anymore; the monitor sees that it is getting
out of reach and generates a spurious (not inside the original process) ac-
tion Stop(a_1, Go, RealPosition), where RealPosition is the actual position as
sensed by the monitor. Since RealPosition is not LocA, adaptation is needed;
the Monitor generates the recovery program 6,;0, where &y is the original one
from line 11 and 6, is as follows:

Start(a-3, Go, NewLocation);
Stop(a_3, Go, NewLocation);
Start(a-1,Go, Loc4)



Instance
Schema T —
: oc
Pre-planned/Automatic | anuai [ Avomaic
W oflan Yes No Yes No
ADEPT Yes No Yes No
WASA, Yes No Yes No
Chautauqua Yes No Yes No
TRAM Yes No Yes No
Breeze Yes No Yes No
MILANO Yes No No No
WIDE Yes Yes No No
AgentW ork Yes Yes No No
DYNAMITE Yes Yes No No
EPOS Yes Yes No No
MQ W orflow Yes No No No
Staffware Yes No No No
InConcert Yes No Yes No
SER Process Yes No Yes No
FileNet Yes No Yes No
FLOWer Yes No Yes No

Table 2. Comparison of process adaptation approaches present in literature.

where NewLocation is within the radio-range of RealPosition®. O

7 Related Works

Adaptation in PMSs can be considered at two level: at the process schema or
at the process instance level [16]. Process schema changes become necessary,
for example, to adapt the PMS to optimized business processes or to new laws
[17-19]. In particular, applications supporting long-running processes (e.g., han-
dling of mortgage or medical treatments) and the process instances controlled by
them are affected by such changes. As opposed to this, changes of single process
instances (e.g., to insert, delete, or shift single process steps) often have to be
carried out in an ad-hoc manner in order to deal with an exceptional situation,
e.g., peer disconnection in mobile networks [3], or evolving process requirements
[20].

Table 2 shows a comparison of PMSs approaches supporting changes. The
columns show the adaptation features addressed by existing PMSs. The second
column illustrates which softwares support adaptation at schema level. As we
can see, all analyzed softwares support it. The other three columns show the
support for adaptation of single instances. The “Pre-Planned” PMSs refer to
those systems that enable to specify adaptation rules to handle a set of excep-
tional (but foreseen) events. Conversely, the “Ad-hoc” support means PMSs to
be able to adapt when unforeseen events fire. Ad-hoc adaptation of a process
instance can be performed by the responsible person who manually changes the
structure or, automatically, by the PMS.

4 Observe that if the positions are discretized, so as to become finite, this recovery
can be achieved by a propositional planner.



We note that there is no row having value “yes” in the column Ad-
hoc/Automatic. That means that no considered approach allows users to man-
age unforeseen exceptions in a fully automatic way. Actually, only few systems
(AgentWork[21], DYNAMITE[22], EPOS[23] and WIDE[24]) support automated
process instance changes, but only in pre-planned way.

The work [25] is one of the few coping with exogenous events in the field of the
Web service composition. This work considers the issue of long term optimality
of the adaptation but, anyway, it does not manage unforeseen events. Moreover,
it does require the definition of the probability according to which each of such
events fires.

We underline that our approach is not another way to capture expected
exceptions. Other approaches rely on rules to define the behaviors when special
events are triggered. Here we simply model (a subset of) the running environment
and the actions’ effects, without considering possible special exceptional events.
We argue that in some cases modeling the environment, even in detail, is easier
than modeling all possible exceptions.

8 Conclusion

In this paper, we have presented a general approach, based on execution moni-
toring, for automatic process adaptation in dynamic scenarios. Such an approach
is (i) practical, by relying on well-established planning techniques, and (i) does
not require the definition of the adaptation strategy in the process itself (as most
of the current approaches do). We have proved the correctness and completeness
of the approach, and we have shown its applicability to a running example stem-
ming from a real project. Future works include to actually develop the Adaptive
Process Management System. This will be done by using the IndiGolog module
developed by the Cognitive Robotics Group of the Toronto University.
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