Composing Web Services with Nondeterministic Behavior

Daniela Berardi, Giuseppe De Giacomo, Massimo Mecella
Universita di Roma “La Sapienza”, Dipartimento di Informatica e Sistemistica
{berardi, degiacomo, mecella}@dis.uniromal.it

Diego Calvanese
Libera Universita di Bolzano/Bozen, Facolta di Scienze e Tecnologie Informatiche
calvanese@inf.unibz.it

The promise of Web services is to enable the compo-
sition of new distributed applications/solutions: when no
available service can satisfy a client request, (parts of) avail-
able services can be composed and orchestrated in order to
satisfy such a request. Service composition involves two
different issues: the synthesis, in order to synthesize, either
manually or automatically, a specification of how coordi-
nating the component services to fulfill the client request,
and the orchestration, i.e., how executing the previous ob-
tained specification by suitably supervising and monitoring
both the control flow and the data flow among the involved
services.

In this work, we address the automatic composition syn-
thesis when the behavior of the available services is non-
deterministic, and hence is not fully controllable by the or-
chestrator. The service behavior is modeled by the possi-
ble conversations the service can have with its clients. The
presence of nondeterministic conversations stems naturally
when modeling services in which the result of each inter-
action with its client on the state of the service can not be
foreseen. Let us consider as an example, a service that al-
lows buying items by credit card; after invoking the opera-
tion, the service can be in a state payment _OK, accepting
the payment, or in a different state payment_refused, if
the credit card is not valid, with not enough credit, etc. Note
that the client of a nondeterministic service can invoke the
operation but cannot control what is the result of it. In other
words, the behavior of the service is partially controllable,
and the orchestrator needs to cope with such partial control-
lability. Note also that if one observes the status in which
the service is after an operation, then s/he understand which
transition, among those nondeterministically possible in the
previous state, has been undertaken by the service. We as-
sume that the orchestrator can indeed observe states of the
available services and take advantage of this in choosing
how to continue a certain task .

IThe reader should observe that also the standard proposal WSDL 2.0

From a formal point of view, we adhere to the setting
proposed in [1, 2, 3] whose distinguished features can be
summarized as follows.

e The available services are grouped together into a so
called community.

e Services in the community share a common set of ac-
tions 3, the actions of the community. In other words,
each available service in the community exports its be-
havior to the community itself in terms of the actions
in X (the actions recognized be the community).

e Each action in ¥ denotes a (possibly complex) interac-
tion between the service and a client, and as a result of
such interaction the client may acquire new informa-
tion (not necessarily modeled explicitly) that may be
of help in choosing the next action to perform.

e The behavior of each available service is described in
terms of a finite transition system (aka finite state ma-
chine) that makes use of the actions in X. Since in
this work we assume that the behavior of the available
services is nondeterministic, differently form [1, 2, 3],
such a transition system are nondeterministic in gen-
eral.

e The client request itself is expressed as a finite transi-
tion system that makes use of the actions in 3. Such
a transition system, called target service, is determin-
istic as in [1, 3], since we assume that there is no un-
certainty on the behavior that the client want to realize
through composition of the available services.

e The orchestrator has the ability of scheduling services
on a step-by-step basis. Hence the orchestrator has the

has a similar point of view: the same operation can have multiple out-
put messages (the out message and various out fault messages),
and the client observe how the service behaved only after receiving a spe-
cific output message.



search

(c) Composition

Figure 1. Composition of nondeterministic
services

ability of controlling the interleaving of multiple ser-
vices executed concurrently.

e The composition synthesis consists on synthesizing
a program for the orchestrator such that by suitably
scheduling the available services it can provide the tar-
get service to the client.

Figure 1(a) shows a community of services for get-
ting information on books. The community includes two
services: &p that allows one to repeatedly (i) search the
ISBN of a book given its title (search) then, (ii) in cer-
tain cases (e.g., if the record with cataloging data is cur-
rently accessible), it allows for displaying the cataloging
data (such as editor information, year of publication, au-
thors, copyrights, etc.) of the book with the selected ISBN
(display), or (iii) simply returns without displaying in-
formation (return); Sy allows for repeatedly displaying
cataloging data of books given the ISBN (display), with-
out allowing researches. Figure 1(b) shows the target ser-
vice Sp: the client wants to have a service that allows him
to search for a book ISBN given its title (search), and
then display its cataloging data (display). Note that the
client wants to display the cataloging data in any case and
hence he/she can neither directly exploit S; nor Ss.

Figure 1(c) shows an orchestrator program P for avail-
able services S and S, in Figure 1(a), that realizes the tar-
get service Sy in Figure 1(b). Essentially, P behaves as
follows: it repeatedly delegates to S; the action search

(notice that both transitions labeled with this actions are del-
egated to Sp); then it checks the resulting state of S; and,
depending on this state, it delegates the action display to
either Sp or Ss.

The contribution of this work is to devise a formal tech-
nique to perform automatic composition synthesis, when
available services are nondeterministic and hence partially
controllable by the orchestrator. In the extended version
[4], we show that the technique proposed is sound, com-
plete and terminating. Moreover we characterize the com-
putational complexity of the problem and show that the pro-
posed technique is optimal wrt (worst-case) computational
complexity.

The technique proposed here is based on reduction to
satisfiability in Propositional Dynamic Logic (PDL) with
a limited use of the reflexive-transitive-closure operator?.
Now, PDL satisfiability shares the same basic algorithms
behind the success of the description logics-based reason-
ing systems used for OWL3, such as FaCT*, Racer”, Pellet®,
and hence its applicability in the context of composition
synthesis appears to be quite promising. Indeed a prototype
implementation is available as open source software.

References

[1] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenz-
erini, and M. Mecella, “Automatic composition of e-
Services that export their behavior”, in ICSOC 2003.

[2] ——, “Synthesis of underspecified composite e-
Services based on automated reasoning”, in IC-
SOC 2004.

[3] , “Automatic service composition based on be-
havioural descriptions”, Int. J. of Cooperative Infor-

mation Systems, vol. 14, no. 4, pp. 333-376, 2005.

[4] D. Berardi, D. Calvanese, G. De Giacomo, and
M. Mecella, “Automatic Composition of Web Ser-
vices with Nondeterministic Behavior”, Univ. Roma
LA SAPIENZA, Technical Report, 2006.

2Asin [1, 3], but more sophisticated this time in order to correctly deal
with nondeterministic behavior of the available services.

3http://www.omg.org/uml/

4http://www.cs.man.ac.uk/ horrocks/FaCT/

Shttp://www.sts.tu-harburg.de/ r.f.moeller/
racer/

Shttp://www.mindswap.org/2003/pellet/



