
Data Complexity of Query Answering
in Description Logics∗

Diego Calvanese1, Giuseppe De Giacomo2, Domenico Lembo2,
Maurizio Lenzerini2, Riccardo Rosati2

1 Faculty of Computer Science
Free University of Bozen-Bolzano

Piazza Domenicani 3, Bolzano, Italy
calvanese@inf.unibz.it

2 Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”

Via Salaria 113, Roma, Italy
lastname @dis.uniroma1.it

Abstract

In this paper we study data complexity of answering conjunctive
queries over Description Logic knowledge bases constituted by an ABox
and a TBox. In particular, we are interested in characterizing the FOL-
reducibility and the polynomial tractability boundaries of conjunctive
query answering, depending on the expressive power of the DL used to ex-
press the knowledge base. FOL-reducibility means that query answering
can be reduced to evaluating queries over the database corresponding to
the ABox. Since first-order queries can be expressed in SQL, the impor-
tance of FOL-reducibility is that, when query answering enjoys this prop-
erty, we can take advantage of Data Base Management System (DBMS)
techniques for both representing data, i.e., ABox assertions, and answer-
ing queries via reformulation into SQL. What emerges from our complex-
ity analysis is that the Description Logics of the DL-Lite family are the
maximal logics allowing conjunctive query answering through standard
database technology. In this sense, they are the first Description Logics
specifically tailored for effective query answering over very large ABoxes.

∗This paper is an extended and abridged version of [10]



1 Introduction

The idea of using ontologies as a conceptual view over data repositories is becom-
ing more and more popular. For example, in Enterprise Application Integration,
Data Integration [20], and the Semantic Web [17], the intensional level of the
application domain can be profitably represented by an ontology, so that clients
can rely on a shared conceptualization when accessing the services provided by
the system. In these contexts, the set of instances of the concepts in the ontology
is to be managed in the data layer of the system architecture (e.g., in the lowest
of the three tiers of the Enterprise Software Architecture), and, since instances
correspond to the data items of the underlying information system, such a layer
constitutes a very large (much larger than the intensional level of the ontology)
repository, to be stored in secondary storage (see [9]).

When clients access the application ontology, it is very likely that one of the
main services they need is the one of answering complex queries over the exten-
sional level of the ontology (obviously making use of the intensional level as well
in producing the answer). Here, by complex we mean that it does not suffice
to ask for the instances of concepts, but we need at least expressing conjunctive
conditions on the extensional level. Given the size of the instance repository,
when measuring the computational complexity of query answering (and reason-
ing in general) the most important parameter is the size of the data. In other
words, we are interested in the so-called data complexity of query answering.

In this paper we consider conjunctive queries (CQs) specified over ontologies
expressed in Description Logics (DL), and study the data complexity of the
query answering problem. Since an ontology in DL is essentially a knowledge
base (KB) constituted by a TBox and an ABox, the problem we address is
the one of computing the answers to a CQ that are logical consequences of the
TBox and the ABox, where complexity is measured with respect to the size of
the ABox only. Note that we borrow the notion of data complexity from the
database literature [23], on the premise that an ABox can be naturally viewed
as a relational database.

We are interested in characterizing the FOL-reducibility and the polynomial
tractability boundaries of conjunctive query answering, depending on the ex-
pressive power of the DL used to express the KB. We say that query answering
is FOL-reducible in a DL L, if for every conjunctive query q over an L TBox
T , there is a first-order query q′ such that for all ABoxes A the answers to q
with respect to the KB (T ,A) are the same as the answers to q′ over the data-
base corresponding to the ABox A. Since first-order queries can be expressed
in SQL, the importance of FOL-reducibility is that, when query answering en-
joys this property, we can take advantage of Data Base Management System
(DBMS) techniques for both representing data, i.e., ABox assertions, and an-

1



swering queries via reformulation into SQL1. Notably, in this case, the data
complexity of conjunctive query answering over ontologies is the one of FOL
queries over databases, i.e., LogSpace.

We are also interested to know for which DLs we go beyond FOL. For this
purpose, we consider the LogSpace boundary of the problem. Indeed, we sin-
gle out those DLs for which query answering becomes NLogSpace-hard and
PTime,-hard respectively. From the complexity characterization of query lan-
guages, it follows that those DLs require at least the power of linear recursive
Datalog (NLogSpace), and general recursive Datalog (PTime). Note that, al-
though very interesting and promising Datalog engines exist, query optimization
strategies for this query language are not sufficiently mature yet to deal with
complex applications with millions of instances in the extensional level. Finally,
we address the problem of going even beyond PTime, by exhibiting DLs for
which query answering is polynomially intractable.

More precisely, the contributions of the paper are the following.

• We discuss DLs for which conjunctive query answering is FOL-reducible.
In this class, we essentially find the family of DL-Lite [11] languages.
This family is constituted by two simple DLs, which are rich enough to
express basic ontology languages, e.g., extensions of (the DL subset of)
RDFS [6] or fragments of OWL-DL [5]; conceptual data models, e.g.,
Entity-Relationship [7]; and object-oriented formalisms, e.g., basic UML
class diagrams [3]. We also show that we can extend these two languages
by adding n-ary relations, and still retain FOL-reducibility. We show that
the DLs of the DL-Lite family are maximally expressive DLs for which
query answering is FOL reducible.

• We show that minimal additions to the languages considered above bring
data complexity of conjunctive query answering to NLogSpace-hardness
and PTime-hardness, thus losing the possibility of reformulating queries
in first-order logic. In spite of the fact that we conjecture that for such
languages query answering is polynomially tractable (in NLogSpace and
PTime, respectively), these hardness results tell us that in query answer-
ing we cannot take advantage of state-of-the-art database query optimiza-
tion strategies, and this might hamper practical feasibility for very large
ABoxes.

• Finally, we establish coNP-hardness of conjunctive query answering with
respect to data complexity for surprisingly simple DLs. In particular, we
show that we get intractability as soon as the DL is able to express simple
forms of union.

1We consider here the kernel of the SQL-92 standard, i.e., we see SQL as an implementation
of relational algebra.

2



What emerges from our complexity analysis is that the two versions of DL-
Lite are the maximal DLs which allow for answering conjunctive queries through
standard database technology. In this sense, they are the first DLs specifically
tailored for effective query answering over large amounts of data.

The paper is organized as follows. In the next section we introduce some
preliminaries which will be useful for the subsequent discussions. In Section 3
and 4, we present DLs for which query answering is FOL-reducible. Then, we
deal with DLs for which query answering goes beyond LogSpace: in Section 5
we identify DLs for which query answering is NLogSpace-hard; in Section 6 we
characterize DLs for which query answering is PTime-hard; and in Section 7 we
identify DLs for which query answering is coNP-hard. In Section 8 we overview
related work, and in Section 9 we draw some conclusions.

2 Preliminaries

Description Logics (DLs) [8] are logics that represent the domain of interest in
terms of concepts, denoting sets of objects, and roles, denoting binary relations
between (instances of) concepts. Complex concept and role expressions are con-
structed starting from a set of atomic concepts and roles by applying suitable
constructs. Different DLs allow for different constructs. In this paper, we dis-
tinguish between the constructs that are allowed in the concepts in the left-hand
side (Cl) and those in the right-hand side (Cr) of inclusion assertions (see later).

As a concrete example of a DL, we focus on DL-Litecore , which serves as core
language for the family of DL-Lite languages discussed in the rest of the paper.
The language for DL-Litecore concepts and roles is defined as follows:

Cl −→ A | ∃R | Cl1 u Cl2 | Cl1 t Cl2 | ⊥
Cr −→ A | ∃R | Cr 1 u Cr 2 | ⊥ | >
R −→ P | P−

where Cl (resp., Cr) denotes a concept used in the left-hand side (resp., right-
hand side) of an inclusion assertion, A denotes an atomic concept, P an atomic
role, and P− its inverse2.

The semantics of a DL, e.g., DL-Litecore , is given in terms of interpretations,
where an interpretation I = (∆I , ·I) consists of an interpretation domain ∆I

and an interpretation function ·I that assigns to each concept C a subset CI of

2We observe that including Cl1tCl2 in the constructs for the left-hand side of the inclusion
assertions and Cr1uCr2 in the constructs for the right-hand side does not extend the expressive
capabilities of the language, since these can be simulated by considering that Cl1 tCl2 v Cr
is equivalent to the pair of assertions Cl1 v Cr and Cl2 v Cr , and that Cl v Cr1 u Cr2 is
equivalent to Cl v Cr1 and Cl v Cr2. Similarly, we can drop ⊥ from the constructs for the
left-hand side and > from those for the right-hand side.

3



∆I , and to each role R a binary relation over ∆I . In particular for the constructs
of DL-Litecore we have:

>I = ∆I

⊥I = ∅
AI ⊆ ∆I

P I ⊆ ∆I ×∆I

(C1 u C2)
I = CI

1 ∩ CI
2

(C1 t C2)
I = CI

1 ∪ CI
2

(∃R)I = {o | ∃o′. (o, o′) ∈ RI}
(P−)I = {(o2, o1) | (o1, o2) ∈ P I}

A DL knowledge base (KB) K = (T ,A) represents the domain of interest
and consists of two parts, a TBox T , representing intensional knowledge, and
an ABox A, representing extensional knowledge. A TBox is formed by a set of
inclusion assertions of the form

Cl v Cr

where Cl and Cr are formed using the constructs allowed by the particular DL
used, e.g., for DL-Litecore we can have the constructs described above. Such an
inclusion assertion expresses that all instances of concept Cl are also instances
of concept Cr . Apart from the above inclusion assertions, some DLs that we
consider in this paper allow for other forms of assertions in the TBox (see later).
DL-Litecore does not allow for any other form of assertion however.

An ABox is formed by a set of membership assertions on atomic concepts
and on atomic roles:

A(a), P (a1, a2)

stating respectively that the object (denoted by the constant) a is an instance of
A and that the pair (a1, a2) of objects is an instance of the role P . Other forms
of ABoxes have also been proposed [8], but we will not consider them here.

Formally, an interpretation I is a model of an inclusion assertion Cl v Cr
if ClI ⊆ CrI . We extend the interpretation function to constants, by assigning
to each constant a a distinct object aI ∈ ∆I ; in other words, as usual in DLs,
we enforce the unique name assumption on constants [8]. An interpretation I
is a model of a membership assertion A(a) (resp., P (a1, a2)) if aI ∈ AI (resp.,
(aI1 , aI2 ) ∈ P I). A model of a KB K is an interpretation I that is a model of
all assertions in K. A KB is satisfiable if it has at least one model. A KB K
logically implies (an assertion) α, written K |= α, if all models of K are also
models of α.

Given a KB K expressed in a DL, we can query it by using queries. In
particular we will concentrate on conjunctive queries: A conjunctive query q(~x)
over a KB K is an expression of the form

{ ~x | conj (~x, ~y) }
where ~x are the so-called distinguished variables (which will be bound with
objects in the KB), ~y are the non-distinguished variables (which are existentially

4



quantified), and conj (~x, ~y) is a conjunction of atoms of the form A(z) or P (z1, z2)
where A and P are respectively atomic concepts and roles of K and z, z1, z2 are
either constants in K or variables in ~x or ~y.

Given an interpretation I, the conjunctive query q(~x) = {~x | conj (~x, ~y)} is
interpreted as the set qI of tuples ~o of objects such that, when assigning ~o to ~x,
the first-order formula ∃~y.conj (~x, ~y) evaluates to true in I.

The reasoning service we are interested in is (conjunctive) query answering :
given a knowledge base K and a conjunctive query q(~x) over K, return all tuples
~a of constants in K such that, when substituted to the variables ~x in q(~x), we
have that K |= q(~a), i.e., such that ~aI ∈ qI for every model I of K. We observe
that query answering (properly) generalizes a well known reasoning service in
DLs, namely instance checking, i.e., logical implication of an ABox assertion.
In particular, instance checking can be expressed as the problem of answering
(boolean) conjunctive queries constituted by just one ground atom.

Finally, we refer to data complexity of query answering, which is a notion
borrowed from relational database theory [23]. First, we note that there is a
recognition problem associated with query answering, which is defined as follows.
We have a fixed TBox T expressed in a DL L, and a fixed query q: the recognition
problem associated to T and q is the decision problem of checking whether, given
an ABox A, and a tuple ~a of constants, we have that (T ,A) |= q(~a). Note that
neither the TBox nor the query is an input to the recognition problem.

Let S be a complexity class. When we say that query answering for a certain
DL L is in S with respect to data complexity, we mean that the corresponding
recognition problem is in S. Similarly, when we say that query answering for
a certain DL L is S-hard with respect to data complexity, we mean that the
corresponding recognition problem is S-hard.

We will also use the notion of Q-reducibility of query answering, where Q is
a given query language. Query answering in a DL L is Q-reducible if for every
(conjunctive) query q and every TBox T expressed in L, there exists a query q1,
over the same alphabet, belonging to the query language Q, such that for every
ABox A (T ,A) |= q(~a) iff ~aIA ∈ qIA1 , where IA is an interpretation defined as
follows: aIA = a for each constant a, AIA = {a | A(a) ∈ A} for each atomic
concept A, and P IA = {(a1, a2) | P (a1, a2) ∈ A} for each atomic role P . In
other words, q1 is evaluated over the ABox A considered as a database. One of
the most interesting classes of queries is that of FOL queries, i.e., the queries
expressed in first-order logic, since, from the practical point of view, FOL queries
correspond to queries expressed in relational algebra (i.e., in SQL). Observe
that every FOL query can be evaluated in LogSpace wrt data complexity (see
e.g., [7]). It follows that if L is FOL-reducible then query answering in L is
in LogSpace wrt data complexity. Vice-versa, if query answering is S-hard
wrt data complexity for some complexity class S larger than LogSpace (e.g.,
NLogSpace, PTime, coNP, etc.) then it is not FOL-reducible.

5



3 FOL-reducibility of DL-Lite

In this section we discuss two new DLs that extend DL-Litecore , and show that
in such DLs query answering is FOL-reducible (and hence is in LogSpace).

The first DL which we consider is DL-LiteF , which has the same language
(i.e., the same concept and role constructs) as DL-Litecore , but additionally
allows for assertions of the form (funct R) in the TBox, expressing functionality
of role R. An interpretation I is a model of an assertion (funct P ) if the binary
relation P I is a function, i.e., (o, o1) ∈ P I and (o, o2) ∈ P I implies o1 = o2.
Analogously for (funct P−).

Notice that DL-LiteF is actually an extension of the DL presented in [11]
(simply called DL-Lite), which essentially did not have conjunctions in Cl . In
[11] we have presented an algorithm for query answering based on the idea of
expanding the original query into a set (i.e., a union) of conjunctive queries
that can be directly evaluated over the ABox. The expansion process takes into
account only the original query and the TBox assertions, and is independent
of the ABox, which can be easily managed in secondary storage by a relational
DBMS. Therefore, from the results in [11] it follows that query answering in
DL-Lite is FOL-reducible. In the following, we show that FOL-reducibility of
query answering still holds in DL-LiteF , as stated by the theorem below.

Theorem 1 Query answering in DL-LiteF is FOL-reducible and therefore is in
LogSpace with respect to data complexity.

Proof. The proof is based on an algorithm for conjunctive query answering
over DL-LiteF knowledge bases, which relies on a technique for rewriting the
input query in FOL, which is obtained by extending the reformulation technique
of DL-Lite presented in [11].

Such an extension is analogous to the one described in the proof of Theo-
rem 2, which is given in the following. Indeed, a part for functionalities on roles,
a DL-LiteF knowledge base is actually a special case of a DL-LiteR knowledge
base (in which neither inclusion assertions between roles nor qualified existen-
tial quantification on the right-hand side of inclusions between concepts are
allowed). As for functionalities on roles, we point out that Lemma 5 introduced
in the proof of Theorem 2 also holds for DL-LiteF knowledge bases. In this
language however, the TBox TNI also contains functionality assertions (whereas
TPI is obtained from Normalize(T ) by dropping both negative inclusions and
functionality assertions). As a consequence, we can still apply the algorithms
Consistent and PerfectRef, provided that Consistent also computes a FOL query
for each functionality assertion (together with a FOL query for each NI as for
DL-LiteR knowledge bases). More precisely, given an input query q of arity n,
for each functionality assertion (funct P ) belonging to TNI , Consistent computes

6



the FOL query

qφ(x1, . . . , xn) = {x1, . . . , xn | ∃y, z.P (x, y)∧P (x, z)∧y 6= z∧val(x1)∧. . .∧val(xn)}.

Analogously for assertions of the form (funct P−).

Notice that DL-Litecore only allows for unqualified existential quantification
and inclusions between concepts. One might ask what happens to query an-
swering if we add qualified existential quantification and inclusions between
roles to the language. To this purpose, we consider a second notable exten-
sion of DL-Litecore , called DL-LiteR. The DL DL-LiteR has the same language
of DL-Litecore for the roles and for the concepts on the left-hand side of inclusion
assertions, while concepts on the right-hand side are formed according to the
following syntax:

Cr −→ A | ∃R.Cr | Cr 1 u Cr 2 | ⊥ | >

For each interpretation I, besides those of DL-Litecore , the equation (∃R.Cr)I =
{o | ∃o′. (o, o′) ∈ RI and o′ ∈ CrI} holds.

In addition to inclusion assertions between concepts, DL-LiteR allows for
inclusion assertions between roles of the form:

R1 v R2

where Ri is either an atomic role or its inverse. An interpretation I is a model
of such an assertion if RI

1 ⊆ RI
2 .

For the above DL the following result holds.

Theorem 2 Query answering in DL-LiteR is FOL-reducible and therefore is in
LogSpace with respect to data complexity.

Proof. To prove the thesis we provide an algorithm which, taken as input a
DL-LiteR TBox T and a conjunctive query q specified over T , returns a union
of conjunctive queries (and therefore a FOL query) q1 such that, for each ABox
A, the evaluation of q1 over the ABox A considered as a database (see Section
2) returns the set of tuples in the answer to q over the knowledge base (T ,A),
i.e., returns all tuples ~a such that (T ,A) |= q(~a). We prove soundness and
completeness of the algorithm with respect to the problem of computing such
set of tuples.

As usual, with Cl (resp. Cr) we denote a concept used in the left-hand
side (resp. right-hand side) of inclusion assertions between concepts, with A
we denote an atomic concept, with P an atomic role, and with P− its inverse
(whereas R indicates either P or P−). Furthermore, we use the symbol B to
denote basic concepts, i.e., we use B to indicate either A, ∃P , or ∃P−. Also,

7



without loss of generality, we assume that, in what follows, every concept name
or role name occurring in an ABox A also occurs in the corresponding TBox T .
Finally, we recall that a FOL query q(~x) over a KB K is an expression of the
form

{ ~x | bodyq(~x, ~y) }
where ~x are the so-called distinguished variables (which will be bound with
objects in the KB), ~y are the non-distinguished variables (which are existentially
quantified), and bodyq(~x, ~y) is a FOL formula involving atoms of the form A(z)
or P (z1, z2) where A and P are respectively atomic concepts and roles of K and
z, z1, z2 are either constants in K or variables in ~x or ~y3.

The algorithm makes use of three main functions, namely Normalize, Con-
sistent, and PerfectRef, which correspond to three phases called Normalization,
Satisfiability check and Query reformulation, respectively. The first one performs
some preliminary transformations on the TBox T . The second one computes a
portion of the final output query that properly deals with situations in which the
ABox A, over which the final output query is evaluated, contradicts the TBox
T , i.e., the knowledge base (T ,A) is unsatisfiable. Notice that, in these cases,
every n-tuple of constants of A is in the answer to every query of arity n over T .
Finally, the third function computes the remaining portion of the output query.
Roughly speaking, PerfectRef reformulates the input query q into a FOL query
in which it compiles the knowledge of the TBox T that is needed to answer q.

Normalization. The function Normalize takes as input the TBox T and trans-
forms it as follows:

1. replaces each assertion of the form Cl1 t Cl2 v Cr with the assertions

Cl1 v Cr
Cl2 v Cr ;

2. replaces each assertion of the form Cl v Cr 1 u Cr 2 with the assertions

Cl v Cr 1

Cl v Cr 2;

3. erases each assertion of the form ⊥ v Cr , ⊥ u Cl v Cr , or Cl v >;

4. replaces each assertion of the form Cl v ∃P .Cr (resp. Cl v ∃P−.Cr)
with the assertions

Q v P
∃Q− v Cr (resp. ∃Q v Cr)
Cl v ∃Q (resp. Cl v ∃Q−);

3Obviously, for FOL queries that are conjunctive queries, bodyq(~x, ~y) is a conjunction of
atoms, that can be also denoted with ∃y.conj (~x, ~y) (see Section 2).

8



5. closes the TBox with respect to the following inference rules:

(i) if Cl v B and B u Cl ′ v ⊥ occur in T , then add Cl u Cl ′ v ⊥ to T ;

(ii) if P1 v P2 or P−
1 v P−

2 and ∃P2 u Cl v ⊥ (resp. ∃P−
2 u Cl v ⊥)

belong to T , then add ∃P1uCl v ⊥ (resp. ∃P−
1 uCl v ⊥) to T , or if

P−
1 v P2 or P1 v P−

2 and ∃P2uCl v ⊥ (resp. ∃P−
2 uCl v ⊥) belong

to T , then add ∃P−
1 u Cl v ⊥ (resp. ∃P1 u Cl v ⊥) to T .

In the following, we denote with Normalize(T ) the TBox obtained after
processing T according to the above steps.

We are now able to prove some notable properties that hold for a normalized
TBox. In particular, we show that T and Normalize(T ) are “equivalent” with
respect to conjunctive query answering, as formally stated below.

Lemma 3 Let T be a DL-LiteR TBox, q a conjunctive query over T , A an
ABox, and ~a a tuple of constants occurring in A. Then, ~a is in the answer to
q over the knowledge base (T ,A) iff ~a is in the answer to q over the knowledge
base (Normalize(T ),A), i.e., (T ,A) |= q(~a) iff (Normalize(T ),A) |= q(~a).

Notice that, according to steps from 1 to 4 of the algorithm, the TBox
Normalize(T ) contains only assertions of the form (i) Cl v B, (ii) R1 v R2, and
(ii) Cl v ⊥. We call positive inclusions (PIs) inclusions of the forms (i) and
(ii), and negative inclusions (NIs) inclusions of form (iii). The aim of step 5
is to expand the TBox by computing all (non-trivial) NIs logically implied by
T . We now prove that that the inference rules given at point 6 are sound and
complete with respect to logical implication of NIs.

Lemma 4 Let T be a DL-LiteR TBox. Then, for every sequence B1u. . .uBn of
basic concepts, T |= (B1u . . .uBn v ⊥) iff (B1u . . .uBn v ⊥) ∈ Normalize(T ).

In the following, we indicate with TPI the TBox obtained by dropping all
negative inclusions from Normalize(T ), and with TNI the TBox obtained by
dropping all positive inclusions from Normalize(T ). It is easy to see that TNI

and TPI are disjoint and that Normalize(T ) = TPI ∪ TNI .
Finally, we prove below that, in order to answer conjunctive queries over a

DL-LiteR knowledge base, we can separately “reason” on NIs and PIs.

Lemma 5 (Separation) Let T be a DL-LiteR TBox, q a conjunctive query
over T , A an ABox, and ~a a tuple of constants occurring in A. Then, (T ,A) 6|=
q(~a) iff (TNI ,A) is satisfiable and (TPI ,A) 6|= q(~a).

9



We point out that (T ,A) is unsatisfiable if and only if (TNI ,A) is unsat-
isfiable. Therefore, checking satisfiability of (TNI ,A) means actually checking
satisfiability of (T ,A).

According to the above theorem, to answer a conjunctive query q expressed
over a DL-LiteR knowledge base (T ,A) we can proceed in two steps: (i) checking
satisfiability of (TNI ,A) and then (ii) answering q as NIs were not specified over
the TBox T . Since our aim is to show FOL-reducibility of query answering
for DL-LiteR knowledge bases, we provide in the following two functions that
allow for achieving the above goals by means of suitable FOL queries (that “put
together” constitute the FOL reduction of the input query q).

Satisfiability check. The function Consistent is in charge of properly dealing
with situations in which the ABox A contradicts (at least one) NIs of the TBox
T , i.e., (TNI ,A) is unsatisfiable. Observe that in such a case query answering is
meaningless, since, according to the “ex falso quod libet” principle, every tuple
is in the answer to every query (of the same arity). Therefore, with regards to
this issue, the function Consistent takes as input the TBox TNI and a query q of
arity n and proceeds as follows4:

1. for each NI inclusion ι = B1u . . .uBm v ⊥ belonging to TNI , it computes
the FOL query

qι(x1, . . . , xn) = {x1, . . . , xn | ∃y.C1(y)∧. . .∧Cm(y)∧val(x1)∧. . .∧val(xn)}

where

- for each i ∈ {1, . . . , m}, Ci(y) = Ai(y) if Bi = Ai, or Ci(y) =
∃zi.Pi(y, zi) if Bi = ∃Pi or Ci(y) = ∃zi.Pi(zi, y) if Bi = ∃P−

i , and

- for each i ∈ {1, . . . , n}, val(xi) = A1(xi) ∨ . . . ∨ A`(xi) ∨
∃w1.R1(xi, w1) ∨ . . . ∨ ∃wk.Rk(xi, wk) ∨ ∃v1.R1(v1, xi) ∨ . . . ∨
∃vk.Rk(vk, xi), where A1, . . . , A` and R1, . . . , Rk are all the atomic
concepts and the atomic roles over which inclusions of the TBox T
are asserted;

2. returns the query

qc(~x) = {~x | bodyqα
(~x, ~yα) ∨ . . . ∨ bodyqν

(~x, ~yν)}

where with bodyqα
(~x, ~yα), . . . , bodyqν

(~x, ~yν) we denote the bodies of queries
qα, . . . , qν constructed according to step 1.

Remember (see Section 2) that, in order to answer the query q over a DL-
LiteR knowledge base (T ,A), the above query will be evaluated over the ABox

4Actually, Consistent only makes use of the arity n of q.

10



A considered as a database, i.e., over the interpretation IA defined as follows:
aIA = a for each constant a occurring in A, AIA = {a | A(a) ∈ A} for each
atomic concept A, and P IA = {(a1, a2) | P (a1, a2) ∈ A} for each atomic role P .
Given a knowledge base (T ,A) we will call the interpretation IA defined above,
the minimal interpretation of A. Then, it should be easy to see that, if A
contradicts a NI ι = B1 u . . .uBm v ⊥ of the TBox T (and therefore contained
in TNI), there exists a substitution for y in the body of qι with a constant d
occurring inA such that C1(d)∧. . .∧Cm(d) evaluates to true in IA. Then, any n-
tuples constructible from constants occurring in A is returned by the evaluation
of qι over IA, due to the conjunction of predicates val(x1) ∧ . . . ∧ val(xn) in the
body of qι. Then, the following Lemma is easily proved.

Lemma 6 Let T be a DL-LiteR TBox, q a conjunctive query of arity n over
T , and let A be an ABox. Then, (TNI ,A) is unsatisfiable iff Consistent(T , q)
returns a query qc such that qIAc returns all n-tuples of constants constructible
from the constants of A.

Since Consistent provides the right answers to the query for all cases in which
the ABox contradicts NIs of the TBox, in the following we can focus our attention
to the different case in which the knowledge base is satisfiable (and therefore we
will consider only ABoxes A such that (TNI ,A) is satisfiable).

Query reformulation. Query reformulation is achieved by means of the algo-
rithm PerfectRef. The basic idea of our method is to reformulate the input query
expressed over the TBox T taking into account only the PIs in T . In particular,
given a query q over a DL-LiteR knowledge base (T ,A), we compile the PIs of
T into the query itself, thus obtaining a new query qr. The evaluation of such a
new query qr over the ABox A considered as a simple relational database, i.e.,
over the minimal interpretation IA of A, returns the answer to q over (T ,A)
(when (T ,A) is satisfiable).

In the following, we illustrate PerfectRef from a technical point of view.
We say that an argument of an atom in a query is bound if it corresponds to

either a distinguished variable or a shared variable, i.e., a variable occurring at
least twice in the query body, or a constant, while we say that it is unbound if
it corresponds to a non-distinguished non-shared variable (we use the symbol −
to represent non-distinguished non-shared variables).

We now specify when a positive inclusion is applicable to a query atom g: (i)
a PI I is applicable to an atom of the form A(x), where A is an atomic concept,
if I is of the form Cl v A ; (ii) a PI I is applicable to an atom P1(x1, x2), if one
of the three following conditions holds (a) x2 =− and I is of the form Cl v ∃P1,
(b) x1 =− and I is of the form Cl v ∃P−

1 , (c) I is of the form R2 v P1 or
R2 v P−

1 , where R2 can be either P2 or P−
2 . Roughly speaking, an inclusion I

is applicable to an atom g if all bound arguments of g are propagated by I.

11



We indicate with gr(g, I) the atom obtained from the atom g by applying
the inclusion I, i.e.,

- if I = B1 u . . . u Bm v A (resp., I = B1 u . . . u Bm v ∃P1 or I = B1 u
. . .uBm v ∃P−

1 ), where each Bi is a basic concept, and if g = A(x) (resp.,
g = P1(x,− ) or g = P1(−, x)), we have gr(g, I) = C1(x)∧. . .∧Cm(x), where
for each i ∈ {1, . . . , m}, Ci(x) = Ai(x) if Bi = Ai, or Ci(y) = ∃zi.Pi(y, zi)
if Bi = ∃Pi or Ci(y) = ∃zi.Pi(zi, y) if Bi = ∃P−

i ;

- if I = P1 v P2 or I = P−
1 v P−

2 (resp. I = P−
1 v P2 or I = P1 v P−

2 ) and
g = P2(x, y), we have gr(g, I) = P1(x, y) (resp. gr(g, I) = P1(y, x))

We are now ready to define the algorithm PerfectRef.

Algorithm PerfectRef(q, T )
Input: conjunctive query q of arity n, DL-LiteR TBox T
Output: FOL query qr

P := {q};
repeat

P ′ := P ;
for each q ∈ P ′ do
(a) for each g in q do

for each PI I in T do
if I is applicable to g
then P := P ∪ { q[g/gr(g, I)] };

(b) for each g1, g2 in q do
if g1 and g2 unify
then P := P ∪ {τ(reduce(q, g1, g2))};

until P ′ = P ;
let qr be a query in P
for each q ∈ P do

bodyqr
= bodyqr

∨ bodyq;
return qr

end

In the algorithm, q[g/g′] denotes the query obtained from q by replacing the
atom g with a new atom g′.

Informally, the algorithm first reformulates the atoms of each (conjunctive)
query q ∈ P ′, and produces a new (conjunctive) query for each atom reformula-
tion (step (a)). Roughly speaking, PIs are used as rewriting rules, applied from
right to left, that allow to compile away in the reformulation the knowledge of
T that is relevant for answering q.

At step (b), for each pair of atoms g1, g2 that unify, the algorithm computes
the query q′ = reduce(q, g1, g2), by applying to q the most general unifier between
g1 and g2. Due to the unification, variables that were bound in q may become

12



unbound in q′. Hence, PIs that were not applicable to atoms of q, may become
applicable to atoms of q′ (in the next executions of step (a)). Function τ applied
to q′ replaces with − each unbound variable in q′.

Finally, the for cycle before the end of the algorithm transforms the set of
conjunctive queries P into a FOL query (union of conjunctive queries) qr.

Lemma 7 Let K = (T ,A) be a satisfiable DL-LiteR knowledge base, let q be a
conjunctive query over K, and let ~a be a tuple of constants occurring A. Then,
K |= q(~a) iff ~aIA ∈ qIA

r , where qr = PerfectRef(T , q) and IA is the minimal
interpretation of A.

Finally, we are able to give the algorithm FOL-Reduction.

Algorithm FOL-Reduction(q, T )
Input: conjunctive query q of arity n, DL-LiteR TBox T
Output: FOL query q1

T = Normalize(T );
let TPI be the TBox obtained from T by dropping all NIs;
TNI = T\TPI ;
qc = Consistent(TNI , q);
qr = PerfectRef(TPI , q);
let q1 be a FOL query such that

bodyqc = bodyqc ∨ bodyqr ;
return qc

end

It should be easy to see that, posed q1 = FOL-Reduction(T , q), from Lemma
5, Lemma 6 and Lemma 7, it follows that given an ABox A, and a tuple ~a of
constants of A, ~a ∈ qIA1 iff (T ,A) |= q(~a), thus proving the thesis.

Other logics allowing for different usages of qualified existential quantification
will be analyzed in the next section.

4 FOL-reducibility of DLR-Lite

In this section we show that we can extend the FOL-reducibility results of The-
orems 1 and 2 to the case where we allow for the presence of n-ary relations,
similar to the DL DLR [12]. Given an interpretation I, an n-ary relation R
is interpreted as an n-ary relation RI over ∆I . For each of the DLs presented
in Section 2, we introduce now a corresponding variant in which we allow for
n-ary relations instead of (binary) roles. In the following, R denotes an n-ary
relation, and we use ~o to denote an n-tuple of objects, and ~o[i] to denote the
i-th component of ~o.

13



The DL DLR-Litecore is obtained from DL-Litecore by replacing both in Cl
and in Cr the construct ∃R with ∃i:R, where R is an n-ary relation and i ∈
{1, . . . , n}. Such a construct denotes the projection of the relation denoted by
R on its i-th component. Formally, for an interpretation I, we define (∃i:R)I =
{~o[i] | ~o ∈ RI}.

DLR-LiteF , analogously to DL-LiteF , is obtained from DLR-Litecore by ad-
ditionally allowing in the TBox for assertions of the form (funct i:R), stating
the functionality of the i-th component of R. Formally, an interpretation I is a
model of such an assertion if ~o1, ~o2 ∈ RI with ~o1[i] = ~o2[i] implies ~o1[j] = ~o2[j]
for all j ∈ {1, . . . , n}.

DLR-LiteR, analogously to DL-LiteR, is obtained from DLR-Litecore by re-
placing in Cr the constructs ∃i:R with ∃i:R.Cr 1, . . . ,Crn. Such a construct
denotes those objects that participate as i-th component to tuples of R in which
the j-th component is an instance of Cr j, for all j ∈ {1, . . . , n}. Formally, for
an interpretation I, we define (∃i:R.Cr 1, . . . ,Crn)I = {~o[i] | ~o ∈ RI with ~o[j] ∈
CrIj , for j ∈ {1, . . . , n}}. Additionally, DLR-LiteR allows in the TBox for in-
clusion assertions between projections of relations of the form:

R1[i1, . . . , ik] v R2[j1, . . . , jk]

where R1 is an n-ary relation, i1, . . . , ik ∈ {1, . . . , n}, and ip 6= iq if p 6= q; R2 is an
m-ary relation, j1, . . . , jk ∈ {1, . . . , m}, and jp 6= jq if p 6= q. An interpretation
I is a model of such an assertion if for every n-tuple of objects ~o1 ∈ RI

1 there is
an m-tuple of objects ~o2 ∈ RI

2 such that (~o1[i1], . . . , ~o1[ik]) = (~o2[j1], . . . , ~o2[jk]).
Analogously to Theorem 1 and 2, we can show FOL-reducibility of DLR-LiteF
and DLR-LiteR.

Theorem 8 Query answering in DLR-LiteF is FOL-reducible (and hence in
LogSpace with respect to data complexity).

Theorem 9 Query answering in DLR-LiteR is FOL-reducible (and hence in
LogSpace with respect to data complexity).

5 NLogSpace-hard DLs

In the previous section, we have pointed out the importance of languages for
which query answering is FOL-reducible. In this section, we show that, as
soon as we consider further, minimal extensions of DL-Litecore , besides those
illustrated in Section 3, we cross the boundary of LogSpace data complexity.
Going beyond LogSpace data complexity means actually that we lose the prop-
erty of FOL-reducibility and therefore query answering requires more powerful

14



engines than those available in standard relational database technology. An im-
mediate consequence of this fact is that we cannot take advantage anymore of
data management tools and query optimization techniques of current DBMSs.

The first case of this type is when we add qualified existential quantification
to Cl . The second case is when we add qualified universal quantification to Cr ,
and the third case is when we add qualified existential quantification to Cr ,
while keeping the possibility of expressing functionality constraints.

Theorem 10 Instance checking (and hence query answering) is NLogSpace-
hard with respect to data complexity for the cases where

1. Cl → A | ∃R.A
Cr → A
R → P
TBox assertions: Cl v Cr

2. Cl → A
Cr → A | ∀R.A
R → P
TBox assertions: Cl v Cr

3. Cl → A
Cr → A | ∃R.A
R → P
TBox assertions: Cl v Cr , (funct R)

Proof. For Case 1, the proof is by a LogSpace reduction from reachability in
directed graphs, which is NLogSpace-complete. Let G = (N,E) be a directed
graph, where N is a set of nodes and E ⊆ N×N is the set of edges of G, and let
s, d be two nodes in N . Reachability is the problem of checking whether there
is a path in G from s to d.

We define a KB K = (T ,A), where the TBox T is constituted by a single
inclusion assertion

∃P .A v A

and the ABox A has as constants the nodes of G, and is constituted by the
membership assertion A(d), and by one membership assertion P (n, n′) for each
edge (n, n′) ∈ E. It is easy to see that K can be constructed in LogSpace
from G, s, and d. We show that there is a path in G from s to d if and only if
K |= A(s).

“⇐” Suppose there is no path in G from s to d. We construct a model I of K
such that sI 6∈ AI . Consider the interpretation I with ∆I = N , nI = n for each
n ∈ N , P I = E, and AI = {n | there is a path in G from n to d }. We show
that I is a model of K. By construction, I satisfies all membership assertions

15



P (n, n′) and the membership assertion A(d). Consider an object n ∈ (∃P .A)I .
Then there is an object n′ ∈ AI such that (n, n′) ∈ P I . Then, by definition of
I, there is a path in G from n′ to d, and (n, n′) ∈ E. Hence, there is also a path
in G from n to d and, by definition of I, we have that n ∈ AI . It follows that
also the inclusion assertion ∃P .A v A is satisfied in I.

“⇒” Suppose there is a path in G from a node n to d. We prove by induction
on the length k of such a path that K |= A(n). Base case: k = 0, then n = d,
and the claim follows from A(d) ∈ A. Inductive case: suppose there is a path
in G of length k − 1 from n′ to d and (n, n′) ∈ E. By the inductive hypothesis,
K |= A(n′), and since by definition P (n, n′) ∈ A, we have that K |= ∃P .A(n).
By the inclusion assertion in T it follows that K |= A(n).

For Case 2, the proof follows from Case 1 and the observation that an asser-
tion ∃P .A1 v A2 is logically equivalent to the assertion A1 v ∀P−.A2, and that
we can get rid of inverse roles by inverting the edges of the graph represented
in the ABox.

For Case 3, the proof is again by a LogSpace reduction from reachability in
directed graphs, and is based on the idea that an assertion ∃P .A1 v A2 can be
simulated by the assertions A1 v ∃P−.A2 and (funct P−). Moreover, the graph
can be encoded using only functional roles, and we can again get rid of inverse
roles by inverting edges.

More precisely, Let G = (N, E) be a directed graph and consider the problem
of reachability in G between nodes s and d. We define the KB K = (T ,A), where
the TBox T is constituted by the inclusion assertions

A v ∃P1.B B v ∃P1.B B v ∃P2.A (funct P1) (funct P2)

and the ABox A makes use of the nodes in N and the edges in E as constants.
Consider a node n of G, and let e1, . . . , ek be all edges of G that have n as their
target (i.e., such that ei = (ni, n) for some node ni), taken in some arbitrarily
chosen order. Then the ABox A contains the following membership assertions:

• P1(n, e1), and P1(ei, ei+1) for i ∈ {1, . . . , k − 1},
• P2(ei, ni), where ei = (ni, n), for i ∈ {1, . . . , k − 1}.

Additionally, A contains the membership assertion A(d). Notice that the as-
sertions in the ABox do not violate the functionality assertions in the TBox.
Again, it is easy to see that K can be constructed in LogSpace from G, s, and
d. We show that there is a path in G from s to d if and only if K |= A(s).

“⇐” Suppose there is no path in G from s to d. We construct a model I of
K such that sI 6∈ AI . Consider the interpretation I with ∆I = {o}∪N ∪E, and
in which each constant of the ABox is interpreted as itself, P I

1 and P I
2 contain all

pairs of nodes directly required by the ABox assertions, AI contains each node

16



n such that there is a path in G from n to d, and BI contains all edges (i, j)
such that there is a path in G from j to d. To satisfy the assertion A v ∃P1.B
for those objects n ∈ AI that have no outgoing P1 edge forced by the ABox (i.e.,
that have no incoming edge in G), we set o ∈ BI , (n, o) ∈ P I

1 , and (o, o) ∈ P I
1 .

We use o in a similar way to satisfy the assertions B v ∃P1.B and B v ∃P1.A.
Note that in this way the functionality assertions are not violated. It is easy to
see that I is a model of K, and since there is no path in G from s to d, we have
that s 6∈ AI .

“⇒” Suppose there is a path in G from a node n to d. We prove by induction
on the length ` of such a path that K |= A(n). Base case: ` = 0, then n = d,
and the claim follows from A(d) ∈ A. Inductive case: suppose there is a path
in G of length ` − 1 from j to d and (n, j) ∈ E. Let n1, . . . , nh be the nodes
of G such that (ni, j) ∈ E, up to nh = n and in the same order used in the
construction of the ABox. By the inductive hypothesis, K |= A(j), and by the
assertion A v ∃P1.B, functionality of P1, and the ABox assertion P1(j, (n1, j)),
we obtain that K |= B((n1, j)). Exploiting B v ∃P1.B, functionality of P1,
and the ABox assertion P1((ni, j), (ni+1, j)), we obtain by induction on h that
K |= B((nh, j)). Finally, by B v ∃P2.A, functionality of P2, and the ABox
assertion P2((nh, j), nh), we obtain that K |= A(nh), i.e., K |= A(n).

Note that all the above “negative” results hold for instance checking already,
i.e., for the simplest queries possible. Also, note that in all three cases, we
are considering extensions to a minimal subset of DL-Litecore in order to get
NLogSpace-hardness.

6 PTime-hard DLs

Next we show that if we consider further extensions to the logics mentioned in
Theorem 10, we get even stronger complexity results. In particular, we consider
five different cases where query answering (actually, instance checking already)
becomes PTime-hard in data complexity.

Note that the PTime-hardness result basically means that we need at least
the power of full Datalog to answer queries in these cases.

Theorem 11 Instance checking (and hence query answering) is PTime-hard
with respect to data complexity for the cases where

1. Cl → A | ∃R.A
Cr → A | ∃P
R → P | P−

TBox assertions: Cl v Cr

17



2. Cl → A
Cr → A | ∃R.A
R → P | P−

TBox assertions: Cl v Cr , (funct R)

3. Cl → A | ∃R.A
Cr → A | ∃R.A
R → P
TBox assertions: Cl v Cr , (funct R)

Proof. For Case 1, we reduce the emptiness problem of context-free grammars
to query answering over such DL-KBs. Let G = 〈VN ,VT , S,P〉 be a context-
free grammar (the non-terminal symbol S is the axiom of G). Without loss of
generality, we can assume that each production rule has at most two nonterminal
symbols in its right-hand side, since each rule with more than two nonterminal
symbols in its right-hand side can be linearly transformed into an equivalent set
of production rules with at most two nonterminal symbols in their right-hand
side. Let L(G) be the language generated by G.

Given a production rule R, we denote by Left(R) the nonterminal symbol oc-
curring in the left-hand side of R, and denote by Right(R) the set of nonterminal
symbols occurring in the right-hand side of R.

We define the KB K = 〈T ,A〉, where:

• The TBox T is constituted by the following inclusion assertions:

∃L.D v D (I1)
∃R.D v A1 (I2)
∃R.A1 v A2 (I3)
∃P .A v D (I4)

∃P−.A2 v A (I5)
A1 v ∃P (I6)

• The ABox A is constructed in the following way.

begin
A := ∅;
j = 1;
for each N ∈ VN do
begin

i=1;
for each production rule PR in P such that Left(PR) = N do
begin
A :=A ∪ {L(ni, ni+1)};

18



if Right(PR) = ∅
then A :=A ∪ {D(Ni)}
else if Right(PR) = {B}
then begin A :=A ∪ {A1(j), R(Ni, j), L(j, B1)}; j := j + 1 end
else if Right(PR) = {B, C}
then begin
A :=A ∪ {R(Ni, j), L(j, B1), R(j, j + 1), L(j + 1, C1)};
j := j + 2

end;
i := i + 1

end
end

end

It is immediate to see that A is constructed in time linear in the size of
P . (Notice that for each nonterminal symbol A, the individuals a1, . . . , ak

represent the k occurrences of A in the left-hand sides of production rules
in P , while there is a distinct (new) individual j for each right-hand side
occurrence of A in P).

Finally, let q be the query q :–D(S1). We prove that L(G) is empty iff K |= q.
More precisely, we prove that, for every nonterminal symbol A ∈ VN , K |= D(A)
iff A generates a non-empty language in G.

(⇐) Suppose A generates a non-empty language in G. We prove that
K |= D(a1). The proof is by induction on the structure of a derivation of
s from A in G. Base case (direct derivation): there exists a production rule
such that Left(PR) = A and Right(PR) = ∅. By the above definition of A,
D(a1) ∈ A, consequently K |= D(a1). Inductive case (indirect derivation):
there exists a production rule such that Left(PR) = A and each nonterminal
symbol occurring in Right(PR) generates a non-empty language in G. Suppose
Right(PR) = {B, C} (the case when Right(PR) = {B} is analogous). By the
inductive hypothesis, it follows that K |= D(b1) and K |= D(c1). Moreover, by
definition of A, there exist individuals i and j such that R(ak, i) ∈ A for some
k, R(i, j) ∈ A, L(i, b1) ∈ A, L(j, c1) ∈ A. Since K |= D(c1), from inclusion
(I1) of T it follows that K |= D(j), consequently from inclusion (I2) it follows
that K |= A1(i), and from inclusion (I3) we have that K |= A2(ak); moreover,
from K |= D(b1) and inclusion (I1) it follows that K |= D(i), thus, from (I2)
it follows that K |= A1(ak). Now, from inclusion (I6) we have that there exists
individual ` such that K |= P (ak, `), thus, from K |= A2(ak) and from inclusion
(I5) it follows that K |= A(`), therefore K |= ∃P .A(ak), and by inclusion (I4) it
follows that K |= D(ak).

(⇒) Suppose that A generates a empty language in G. We prove that K 6|=
D(a1). The proof is by induction on the structure of G. The key property

19



is that, from the definition of A it follows that, for each (new) individual i
in A corresponding to a right-hand side occurrence of the nonterminal symbol
A, K |= D(i) if and only if K |= D(a1), since the concept D “propagates
backward” only through the role L, and by definition of A, each new individual
i (representing a right-hand side occurrence of A) is connected through role L
only to the individual A.

For Case 2, the reduction (and the proof of its correctenss) is the same as in
Case 1, with the exception of the TBox assertions which are the following:

D v ∃L−.D (I1)
D v ∃R−.A1 (I2)
A1 v ∃R−.A2 (I3)

A v ∃P−.D (I4)
A2 v ∃P .A (I5)

A1 v ∃P (I6)
(funct L−) (I7)
(funct R−) (I8)
(funct P ) (I9)

Also for Case 3, the reduction (and the proof of its correctenss) is the same
as in Case 1, with the exception of the TBox assertions which are the following:

∃L.D v D (I1)
∃R.D v A1 (I2)
∃R.A1 v A2 (I3)
∃P .A v D (I4)
A2 v ∃P .A (I5)

A1 v ∃P (I6)
(funct P ) (I7)

Theorem 12 Instance checking (and hence query answering) is PTime-hard
with respect to data complexity for the cases where

1. Cl → A | ∃R.A | A1 u A2

Cr → A
R → P
TBox assertions: Cl v Cr

2. Cl → A | A1 u A2

Cr → A | ∀R.A
R → P
TBox assertions: Cl v Cr

20



3. Cl → A | A1 u A2

Cr → A | ∃R.A
R → P
TBox assertions: Cl v Cr , (funct R)

Proof. For Case 1, the proof is by a LogSpace reduction from Path System
Accessibility, which is PTime-complete [15]. An instance of Path System Acces-
sibility is defined as PS = (N,E, S, t), where N is a set of nodes, E ⊆ N×N×N
is an accessibility relation (we call its elements edges), S ⊆ N is a set of source
nodes, and t ∈ N is a terminal node. PS consists in verifying whether t is
accessible, where a node n ∈ N is accessible if n ∈ S or if there exist accessible
nodes n1 and n2 such that (n, n1, n2) ∈ E.

We define the KB K = (T ,A), where the TBox T is constituted by the
inclusion assertions

∃P1.A v B1 ∃P2.A v B2 B1 uB2 v A ∃P3.A v A

and the ABox A makes use of the nodes in N and the edges in E as constants.
Consider a node n ∈ N , and let e1, . . . , ek be all edges in E that have n as
their first component, taken in some arbitrarily chosen order. Then the ABox
A contains the following membership assertions:

• P3(n, e1), and P3(ei, ei+1) for i ∈ {1, . . . , k − 1},
• P1(ei, j) and P2(ei, k), where ei = (n, j, k), for i ∈ {1, . . . , k − 1}.

Additionally, A contains one membership assertion A(n) for each node n ∈ S.
Again, it is easy to see that K can be constructed in LogSpace from PS . We
show that t is accessible in PS if and only if K |= A(t).

“⇐” Suppose that t is not accessible in PS . We construct a model I of
K such that tI 6∈ AI . Consider the interpretation I with ∆I = N ∪ E, and in
which each constant of the ABox is interpreted as itself, P I

1 , P I
2 , and P I

3 consist
of all pairs of nodes directly required by the ABox assertions, BI

1 consists of all
edges (i, j, k) such that j is accessible in PS , BI

2 consists of all edges (i, j, k)
such that k is accessible in PS , and AI consists of all nodes n that are accessible
in PS union all edges (i, j, k) such that both j and k are accessible in PS . It is
easy to see that I is a model of K, and since t is not accessible in PS , we have
that t 6∈ AI .

“⇒” Suppose that t is accessible in PS . We prove by induction on the
structure of the derivation of accessibility that if a node n is accessible, then
K |= A(n). Base case (direct derivation): n ∈ S, hence, by definition, A contains
the assertion A(n) and K |= A(n). Inductive case (indirect derivation): there
exists an edge (n, j, k) ∈ E and both j and k are accessible. By the inductive
hypothesis, we have that K |= A(j) and K |= A(k). Let e1, . . . , eh be the edges

21



in E that have n as their first component, up to eh = (n, j, k) and in the same
order used in the construction of the ABox. Then, by P1(eh, j) in the ABox
and the assertions ∃P1.A v B1 we have that K |= B1(eh). Similarly, we get
K |= B2(eh), and hence K |= A(eh). By exploiting assertions P3(ei, ei+i) in the
ABox, and the TBox assertion ∃P3.A v A, we obtain by induction on h that
K |= A(e1). Finally, by P3(n, e1), we obtain that K |= A(n).

For Cases 2 and 3, the proof follows from Case 1 and observations analogous
to the ones for Theorem 10.

7 coNP-hard DLs

Finally, we show three cases where the TBox language becomes so expressive
that the data complexity of query answering goes beyond PTime (assuming
PTime 6= NP).

Theorem 13 Query answering is coNP-hard with respect to data complexity for
the cases where

1. Cl → A | ¬A
Cr → A
R → P
TBox assertions: Cl v Cr

2. Cl → A
Cr → A | A1 t A2

R → P
TBox assertions: Cl v Cr

3. Cl → A | ∀R.A
Cr → A
R → P
TBox assertions: Cl v Cr

Proof. In all three cases, the proof is an adaptation of the proof of coNP-
hardness of instance checking for ALE presented in [14]. In the following, we
first consider case 2.

coNP-hardness of query answering is proved by a reduction from 2 + 2-CNF
unsatisfiability (which is showed to be coNP-complete in [14]). A 2 + 2-CNF
formula on an alphabet P is a CNF formula in which each clause has exactly
four literals: two positive and two negative ones, where the propositional letters
are elements of P ∪{true, false}. Given a 2+2-CNF formula F = C1∧ . . .∧Cn,
where Ci = Li

1+ ∨ Li
2+ ∨ ¬Li

1− ∨ ¬Li
2−, we associate with it a knowledge base

22



KF = (TF ,AF ) and a query Q as follows. KF has one constant ` for each letter L
in F , one constant ci for each clause Ci, plus two constants true and false for the
corresponding propositional constants. The atomic roles of KF are P1, P2, N1, N2

and the atomic concepts are O, At, and Af . Then, we pose

TF = {O v At ∪ Af},
AF = { At(true), Af (false)

O(`1
1+), O(`1

2+), O(`1
1−), O(`1

2−),
. . .
O(`n

1+), O(`n
2+), O(`n

1−), O(`n
2−),

P1(c1, `
1
1+), P2(c1, `

1
2+), N1(c1, `

1
1−), N2(c1, `

1
2−),

. . .
P1(cn, `n

1+), P2(cn, `n
2+), N1(cn, `n

1−), N2(cn, `
n
2−) }, and

Q = { | ∃ x, y, z, w1, w2.P1(x, y)Af (y)P2(x, z)Af (z)N1(x,w1)At(w1)N2(x,w2)At(w2)}.
Intuitively, the membership to the extension of Af or At corresponds to

the truth values true and false respectively and checking KF |= Q (i.e., the
query evaluates to true in KF ) corresponds to checking whether in every truth
assignment for the formula F there exists a clause whose positive literals are
interpreted as false, and whose negative literals are interpreted as true, i.e., a
clause that is not satisfied. Note that the ABox AF contains the assertions
At(true) and Af (false) in order to guarantee that in each model I of KF the
constants true and false are in the extension of (possibly both) AI

t and AI
f ,

respectively.
Now, it remains to prove that the formula F is unsatisfiable if and only if
KF |= Q.

“⇐” Suppose that F is unsatisfiable. Consider a model I of KF (which
always exists since KF is always satisfiable), and let δI be the truth assignment
for F such that δI(`) = true iff `I ∈ AI , for every letter ` in F (and correspond-
ing constant in KF ). Since F is unsatisfiable, there exists a clause Ci that is not
satisfied by δI , and therefore δI(Li

1+) = false, δI(Li
2+) = false, δI(Li

1−) = true
and δI(Li

2−) = true. It follows that in KF the interpretation of the constants
related to ci through the roles P1 and P2 is not in AI

t , and consequently is in
the AI

f , and the interpretation of constants related to ci through the roles N1

and N2 is in AI
t . Thus, there exists a substitution σ which assigns variables in

Q to constants in KF in such a way that σ(Q) evaluates to true in I (notice
that this holds even if the propositional constants true or false occur in F ).
Therefore, since this argument holds for each model I of KF , we can conclude
that KF |= Q.

“⇒” Suppose that F is satisfiable, and let δ be a truth assignment satisfying
F . Let Iδ be the interpretation for KF defined as follows:

• OIδ = {`Iδ | ` occurs in F},

23



• AIδ
t = {`Iδ | δ(`) = true} ∪ {true},

• AIδ
f = {`Iδ | δ(`) = false} ∪ {false},

• ρIδ = {(aIδ , bIδ) | ρ(a, b) ∈ AF} for ρ = P1, P2, N1, N2.

It is easy to see that Iδ is a model of KF . On the other hand, since F is sat-
isfiable, for every clause in F there exists a positive literal interpreted as true or
a negative literal interpreted as false. It follows that for every constant ci, there
exists either a role (P1 or P2) that relates ci to a constant whose interpretation
is in AIδ

t or there exists a role (N1 or N2) that relates ci to a constant whose
interpretation is in AIδ

f . Since the query Q is evaluated to true in Iδ only if there
exists at least a constant ci in KF such that the interpretations of the constants
related to ci by roles P1 and P2 are both in AIδ

f and the interpretations of the

constants related to ci by roles N1 and N2 are both in AIδ
t , it follows that the

query Q evaluates to false in Iδ and therefore KF 6|= Q.
Proofs for cases 1 and 3 are obtained by analogous reductions from 2+2-CNF

unsatisfiability. More precisely, for case 1 the knowledge base KF = (TF ,AF )
has the same constants and the same atomic roles as for case 2, and has only
the atomic concepts At and Af . Then, TF = {¬At v Af} and AF is as for
case 2 but without the assertions involving the concept O. Finally, the query Q
is as for case 2. For case 3, KF has the same constants as for cases 1 and 2, the
same atomic roles as for cases 1 and 2 plus the atomic role P , and the atomic
concepts A and Af . Then, TF = {∀P.A v Af} and AF is as for case 1 but
without the assertion At(true), which is substituted by the assertion P (true, d),
where d is a new constant not occurring elsewhere in KF . Finally, the query Q
is as follows

Q = { | ∃ x, y, z, w1, w2.P1(x, y)Af (y)P2(x, z)Af (z)N1(x,w1)
P (w1, w2)N2(x,w2)P (w3, w4)}.

Soundness and completeness of the above reductions can be proved as done
for the reduction of case 2. We finally point out that the intuition behind the
above results is that in all three cases it is possible to require a reasoning by
case analysis, caused by set covering assertions. Indeed, whereas in case 2 we
have explicitly asserted O v At t Af , for the other cases this can be seen by
considering that At and Af , and ∀P.A and ∃P cover the entire domain in case 1
and case 3, respectively.

8 Related work

All the DLs studied in this paper are fragments of expressive DLs with asser-
tions and inverses studied in the 90’s (see [8] for an overview), which are at

24



the base of current ontology languages such as OWL, and for which optimized
automated reasoning systems such as Fact [1], Racer [4] and Pellet [2] have been
developed. Indeed, one could use, off-the-shelf, a system like Racer or Pellet to
perform instance checking in such DLs. Also, reasoning with conjunctive queries
in these DLs has been studied (see e.g., [12, 13]), although not yet implemented
in systems. Unfortunately, the known reasoning algorithms for these DLs are
in 2ExpTime with respect to combined complexity, and more importantly they
are not tailored towards obtaining tight complexity bounds with respect to data
complexity (they are in ExpTime). Alternative reasoning procedures that allow
for clearly isolating data complexity have recently been proposed, how they will
work in practice still needs to be understood. A coNP upper bound for data
complexity of instance checking in the expressive DL SHIQ has been shown
by making use of a reduction to Disjunctive Datalog and then exploiting resolu-
tion [18, 19]. It remains open whether such a technique can be extended to deal
efficiently with conjunctive queries. In [21], making use of an algorithm based
on tableaux, a coNP, upper-bound with respect to data complexity is given for a
DL with arbitrary inclusion assertions, but lacking inverse roles. Recently, build-
ing on such techniques, coNP-completeness of answering conjunctive queries for
SHIQ, which includes inverse roles, and number restrictions (that generalize
functionality) has been shown [22]. It is interesting to observe that the results
in this paper (Theorem 13) tell us that we get coNP-completeness already for
very small fragments of SHIQ.

In [19], a fragment of SHIQ, called Horn-SHIQ, which subsumes both DL-
LiteF and DL-LiteR, is studied and a PTime upper bound in data complexity
for instance checking is shown. The results in the current paper (Theorem
11) tell us that instance checking in Horn-SHIQ is also PTime-hard. Indeed,
Horn-SHIQ allows for qualified existential quantification ∃P .A in both sides of
inclusion assertions and (an extended form) of functionality restrictions.

DL-LiteR captures (the DL-subset of) RDFS extended with participation
constraints (i.e., inclusion assertions with ∃R on the right-hand side). Hence,
query answering over an RDFS ontology, even extended with participation con-
straints, is FOL-reducible. Finally, if we move from RDFS to DLP [16], query
answering becomes PTime-hard, since DLP is a superset of the DL in case 1 of
Theorem 12.

9 Conclusions

We have presented first fundamental results on the data complexity (complexity
with respect to the size of the ABox only) of query answering in DLs. In par-
ticular, we have concentrated on the FOL-reducibility boundary of the problem,
based on the observation that, when we go above this boundary, query answering

25



Cl Cr F R Data complexity
of query answering

DL-LiteF
√ − in LogSpace

DL-LiteR − √
in LogSpace

DLR-LiteF
√ − in LogSpace

DLR-LiteR − √
in LogSpace

A | ∃P .A A − − NLogSpace-hard
A A | ∀P .A − − NLogSpace-hard
A A | ∃P .A

√ − NLogSpace-hard
A | ∃P .A | ∃P−.A A | ∃P − − PTime-hard

A A | ∃P .A | ∃P−.A
√ − PTime-hard

A | ∃P .A A | ∃P .A
√ − PTime-hard

A | ∃P .A | A1 u A2 A − − PTime-hard
A | A1 u A2 A | ∀P .A − − PTime-hard
A | A1 u A2 A | ∃P .A

√ − PTime-hard
A | ¬A A − − coNP-hard

A A | A1 t A2 − − coNP-hard
A | ∀P .A A − − coNP-hard

Legenda: A (possibly with subscript) = atomic concept, P = atomic role,
Cl/Cr = left/right-hand side of inclusion assertions, F = functionality
assertions allowed, R = role/relationship inclusions allowed. NLogSpace and
PTime hardness results hold already for instance checking.

Figure 1: Data Complexity of Query Answering in Description Logics

is no longer expressible as a first-order logic formula (and hence an SQL query)
over the data. The results provided in this paper are summarized in Figure 1.

We are currently following several directions to continue the work reported in
this paper. First, we conjecture that for all NLogSpace and PTime-hardness
results presented here a matching upper bound holds. Second, although here
we focused on data complexity only, we are also working on characterizing the
complexity of query answering with respect to the size of the TBox, with respect
to the size of the query, and with respect to combined complexity. Finally, while
in this paper we considered conjunctive queries, our general goal is to come up
with a clear picture of how the complexity of query answering is influenced not
only by different TBox languages, but also by different query languages.

26



References

[1] http://www.cs.man.ac.uk/∼horrocks/FaCT/.

[2] http://www.mindswap.org/2003/pellet/.

[3] http://www.omg.org/uml/.

[4] http://www.sts.tu-harburg.de/∼r.f.moeller/racer/.

[5] http://www.w3.org/TR/owl-features/.

[6] http://www.w3.org/TR/rdf-schema/.

[7] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison
Wesley Publ. Co., Reading, Massachussetts, 1995.

[8] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implementa-
tion and Applications. Cambridge University Press, 2003.

[9] A. Borgida, R. J. Brachman, D. L. McGuinness, and L. A. Resnick. CLAS-
SIC: A structural data model for objects. In Proc. of the ACM SIGMOD
Int. Conf. on Management of Data, pages 59–67, 1989.

[10] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.
Data complexity of query answering in description logics. In Proc. of the
2005 Description Logic Workshop (DL 2005). CEUR Electronic Workshop
Proceedings, http://ceur-ws.org/Vol-147/, 2005.

[11] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.
DL-Lite: Tractable description logics for ontologies. In Proc. of the 20th
Nat. Conf. on Artificial Intelligence (AAAI 2005), pages 602–607, 2005.

[12] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of
query containment under constraints. In Proc. of the 17th ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Systems (PODS’98),
pages 149–158, 1998.

[13] D. Calvanese, G. De Giacomo, and M. Lenzerini. Answering queries using
views over description logics knowledge bases. In Proc. of the 17th Nat.
Conf. on Artificial Intelligence (AAAI 2000), pages 386–391, 2000.

[14] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Deduction in con-
cept languages: From subsumption to instance checking. J. of Logic and
Computation, 4(4):423–452, 1994.

27



[15] M. R. Garey and D. S. Johnson. Computers and Intractability — A guide
to NP-completeness. W. H. Freeman and Company, San Francisco (CA,
USA), 1979.

[16] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic pro-
grams: Combining logic programs with description logic. In Proc. of the
12th Int. World Wide Web Conf. (WWW 2003), pages 48–57, 2003.

[17] J. Heflin and J. Hendler. A portrait of the semantic web in action. IEEE
Intelligent Systems, 16(2):54–59, 2001.

[18] U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ-description logic to
disjunctive datalog programs. In Proc. of the 9th Int. Conf. on Principles
of Knowledge Representation and Reasoning (KR 2004), 2004.

[19] U. Hustadt, B. Motik, and U. Sattler. Data complexity of reasoning in
very expressive description logics. In Proc. of the 19th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2005), 2005.

[20] M. Lenzerini. Data integration: A theoretical perspective. In Proc. of the
21st ACM SIGACT SIGMOD SIGART Symp. on Principles of Database
Systems (PODS 2002), pages 233–246, 2002.

[21] A. Y. Levy and M.-C. Rousset. Combining Horn rules and description logics
in CARIN. Artificial Intelligence, 104(1–2):165–209, 1998.

[22] M. M. Ortiz de la Fuente, D. Calvanese, T. Eiter, and E. Franconi. Data
complexity of answering conjunctive queries over SHIQ knowledge bases.
Technical report, Faculty of Computer Science, Free University of Bozen-
Bolzano, July 2005. Also available as CORR technical report at http:

//arxiv.org/abs/cs.LO/0507059/.

[23] M. Y. Vardi. The complexity of relational query languages. In Proc. of
the 14th ACM SIGACT Symp. on Theory of Computing (STOC’82), pages
137–146, 1982.

28


