
On-line Appendix to the Paper
“Automatic Composition of Transition-based Semantic Web

Services with Messaging”

Daniela Berardi1, Diego Calvanese2, Giuseppe De Giacomo1, Richard Hull3, Massimo Mecella1

1Università di Roma “La Sapienza”
berardi@dis.uniroma1.it
degiacomo@dis.uniroma1.it
mecella@dis.uniroma1.it

2Libera Università di Bolzano/Bozen
calvanese@inf.unibz.it

3Bell Labs, Lucent Technologies
hull@lucent.com

This appendix includes some additional formal defin-
itions and details for selected aspects of the Colombo
framework and the Colombok,b model, described in the
paper D. Berardi, D. Calvanese, G. De Giacomo, R. Hull,
and M. Mecella, “Automatic Composition of Transition-
based Semantic Web Services with Messaging”, Proc. of
VLDB 2005.

1 Selected Formal Details of the Model
1.1 Atomic Processes

Remark 1.1: Unlike OWL-S atomic processes, we do
not use a “pre-condition”, or equivalently, we assume that
the pre-condition is uniformly true. We do this to en-
able a more uniform treatment of atomic process execu-
tions: when a web service invokes an atomic process in
Colombo, the invoking service will transition to a new
state whether or not the atomic process “succeeds”. Op-
tionally, the designer of the atomic process can include
an output boolean variable ‘flag’, which is set to true if
the execution “succeeded” and is set to false if the execu-
tion “failed”. These are conveniences that simplifies book-
keeping, with no real impact on expressive power. 2

Definition: An atomic process is an object p which has a
signature of form (I, O,CE) with the following properties.
Input Signature: I is a sequence 〈u1 : d1, . . . , un : dn〉
where the ui’s are distinct variables, and each dj ∈ {Bool ,
‘=’, ‘≤’}. For example, if di = ‘=’, then the value associ-
ated with ui in an invocation of p should be an element of
Dom= (or ω).
Output Signature: O is a sequence 〈v1 : d1, . . . , vm :
dm〉 where the vj’s are distinct variables and each dj ∈

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the title of the publication and its date appear, and notice is
given that copying is by permission of the authors.

Università di Roma “La Sapienza”
Technical Report 06-05, 2005

{Bool , ‘=’, ‘≤’}. For example, if dj ‘=’, then the value
assigned to vj by an invocation of p will be an element of
Dom= (or ω).
Conditional Effects: CE is a set of pairs of form (c, E),
where c is a (atomic process) condition and E is a finite
non-empty set of (atomic process) effect (specifications).
Condition c is a boolean expression over atoms over acces-
sible terms over some family of constants and the variables
u1, . . . , un.

An effect e ∈ E is a pair (es, ev) where:
Effect on World State: es is a set of expressions having the
forms

(i) insert R(t1, . . . , tk; s1, . . . , sl)

(ii) delete R(t1, . . . , tk)

(iii) modify R(t1, . . . , tk; r1, . . . , rl)

where R ranges over relations in the world schema, R has
key of length k and l additional columns, where the ti’s
and sj’s are accessible terms over some set of constants
and over the variables u1, . . . , un, and where each rj is
either an accessible term over some set of constants and
u1, . . . , un or the special symbol ‘−’ (denoting that that
position of the identified tuple in R should be unchanged).
Effect on Output Variables: ev is a set of expressions of the
form

(iv) vj := t, where j ∈ [1..m] and t is an accessible
term over some set of constants and over the variables
u1, . . . , un,

(v) vj := ω, where j ∈ [1..m]

There must be exactly one expression for each vj , j ∈
[1..m].

We now describe the semantics associated with atomic
process execution. An atomic process p with characteristics
as specified above will be invoked in the context of (i) an
assignment α over a set X of variables (which typically

corresponds to the local store of a web service); (ii) a world
state I, and (iii) a family Σ of integrity constraints on the
world schema.

A semantics is associated with the execution of p as fol-
lows. (This semantics is straightforward but intricate, so we
include the detailed definition to avoid ambiguity.) Atomic
process p is invoked in the context of variable set X us-
ing an expression having form p(y1, . . . , yn; z1, . . . , zm)
where the yi’s are distinct elements of X , and the zj’s are
distinct elements of X . The result of executing this spec-
ification will depend on α, I, and Σ, and will result in an
assignment α′ and world state I ′ (which may be identical
to α and I, respectively).

(a) If no conditions in CE are true in I under α then this
execution of p has a “no-op” effect, i.e., α′ is simply α
and I ′ is simply I. If two or more conditions in CE
are both true under α then again this execution of p
has no-op effect.

For the remainder, assume that (c, E) is the pair in
CE where c is the unique condition in CE that is true
in I under α. Assume further that (es, ev) is a (non-
deterministically chosen) element of E.

(b) If in any of the insert, delete and/or modify expres-
sions, as interpreted using α, there is an ω value oc-
curring in a key field, then execution of p has no-op
effect.

(c) If there is a “conflict” between any of the insert,
delete and/or modify expressions in es, as inter-
preted using α (e.g., the expressions under α call for
inserting two tuples with the same key, or inserting a
tuple with a given key but also deleting a tuple with
that key, etc.), then execution of p has no-op effect.

We now define the potential effect (on the world state)
of executing es, assuming assignment α, world state I, and
constraint set Σ, and assuming that item (c) above does not
apply. After defining the notion of potential effect, we de-
scribe the conditions under which it will actually be applied
(namely, if applying it does not violate any constraints in
Σ.)

(d) For each expression insert R(t1, . . . , tk; s1, . . . , sl),
in I ′ the tuple 〈α(t1), . . . , α(tk), α(s1), . . . , α(sl)〉
is in R. If there was different tuple
〈α(t1), . . . , α(tk), c1, . . . , cl〉 in R in I, that tu-
ple is not present in R in I ′.

(e) For each expression delete R(t1, . . . , tk), in I ′
there is no tuple in R with first k fields being
〈α(t1), . . . , α(tk)〉.

(f) For each expression modify R(t1, . . . , tk;
r1, . . . , rl), there are two cases. If in I there
is no tuple in R having key 〈α(t1), . . . , α(tk)〉,
then in I ′ there is no tuple in R having
that key. If in I there is a tuple of form

〈α(t1), . . . , α(tk), c1, . . . , cl〉, then in I ′ there is
a tuple having form 〈α(t1), . . . , α(tk), c′1, . . . , c

′
l〉,

where for each j ∈ [1..l], c′j = α(rj), if rj is not ‘−’,
and c′j is cj otherwise.

(g) (Frame condition): The potential effect state I ′ is
identical to I except as indicated in items (d), (e), and
(f).

Finally, we describe the conditions under which the ef-
fect of executing (es, ev) should actually be applied to I
and α, and describe the impact on both of those.

(h) Assume that item (b) does apply, item (c) does not ap-
ply, that (es, ev) is a non-deterministic choice from
E, and that the potential effect of executing es is as
described as in items (d), (e), (f), and (g). If I ′ satis-
fies all of the integrity constraints in Σ, then the world
state becomes I ′ after this execution of (es, ev).

(i) Also, assume that the conditions of item (h) hold.
Then the new assignment α′ is constructed from α as
follows. For each variable zj , j ∈ [1..m], if ‘zj := t’
occurs in es, then α′(zj) is given the value of α(t) as
interpreted over I ′; and is given the value ω otherwise.
Assignment α′ is identical to α on local variables of S
not occurring among z1, . . . , zm.

Remark 1.2: A broad variety of generalizations are pos-
sible in the Colombo framework, e.g., to move away from
exclusively key-based look-ups; letting variables range
over sets of tuples in addition to single tuples, etc. 2

1.2 Linkages, Stores, Transmit, Read

Remark 1.3: The notion of linkage is closely related to
the notion of linkage in BPEL, and is used implicitly in
the “service schema” of the Conversation model. The no-
tion of link is inspired by, and closely related to, channels
as typical of process algebras, and as found in the emerg-
ing SWSL ontology. In Colombok,bwe do not change the
linkage at runtime, but in principle such dynamic changes
can be supported in the Colombo framework. Other vari-
ations can be represented in Colombo, such as allowing
multiple services to give input to a channel, or having mul-
tiple services read a message in a channel. 2

Let S be a web service, which is not a client. The local
store of S, typically denoted as LStore or LStoreS , is a
finite set {v1 : d1, . . . , vn : dn}where the vi’s are distinct
variables and the di’s are types from {Bool ,Eq ,Leq}. For
each incoming port (m, in) of S we assume that there is a
distinguished boolean variable πm in LStoreS , called the
message-present flag or variable; intuitively, this will be set
to true if a message has arrived into the queue of (m, in),
and is set to false when that message is read by the service
(see below).

In Colombo we assume that a message that has been
transmitted is held in a queue associated to the incom-
ing port of the receiving service. In general, the queues

might be bounded or unbounded. For the current paper, in
Colombok,b we assume that the queues are bounded and
have length one.

In addition to the local store, each non-client service
S has a queue store, typically denoted by QStore or
QStoreS . This store is used to hold the parameter values of
incoming messages, which can be thought of as being held
by a queue. Specifically, for each incoming port (m, in) of
S, where m has signature 〈d1, . . . , dl〉, we include l vari-
ables denoted as vm

k , for k ∈ [1..l].
We use Store or StoreS to denote the union

LStoreS ∪ QStoreS .
For passing messages between services we have two ba-

sic operations: transmit and read. The syntax of opera-
tor transmit, used in the process specification of the send-
ing service S, is !m(r1, . . . , rl), where each rk is either
a constant or a variable in LSS , of appropriate type. Let
(S, m, S′, n) be a link between services S and S′, let α be
a variable assignment for LStoreS at some point during an
enactment of a system involving S and S′. Execution of
!m(r1, . . . , rl) at this point will succeed iff the queue of S′

for (n, in) has room (in our case, if the queue is empty).
In this case, the variable vn

k of QStoreS′ will be assigned
the value α(rk), for k ∈ [1..l], and πn in QStoreS′ is set
to true. As far as the processing of S′, the receiving of a
transmitted message is essentially an asynchronous event,
and is not explicitly represented in the process model spec-
ification for S′.

What happens if the queue for (n, in) is full? Several
options are available in the general Colombo framework.
A natural option, which makes the transmit operator sim-
ilar to Colombo atomic processes, is to assume that this
operator is “executed”, but that it has no impact on S′, and
that a flag is set in S (e.g., so that the transmit could be
attempted again later on). However, in Colombok,b, we
assume that this operator blocks until the queue of S′ has
room.

We now turn to the read operation. The syntax of
this operator, specified in the process specification of the
service S′ that receives messages transmitted over a link
(S, m, S′, n), is ?n(v1, . . . , vl), where each vk is a variable
in LSS (but not any of the distinguished message-present
flags), of appropriate type. Let α be the assignment in
effect for LStoreS′ and β the assignment for QStoreS′ ,
and assume that α(πn) is true. The effect of executing
?n(v1, . . . , vl) is that α is modified to become α′, where
α′(vk) = β(vn

k) for k ∈ [1..l], that α′(πn) is set to false,
and α′ is identical to α elsewhere.

What happens if service S′ with assignment α on
LStoreS′ attempts to execute ?n(v1, . . . , vl), but α(πn)
is false? As with transmit, several options are available
in the general Colombo framework. A natural option,
which makes the read operator similar to Colombo atomic
processes, is to assume that this read operator is “exe-
cuted”, but that it has no impact on S′, except perhaps for
setting a flag. Alternatively, the designer of S′ could in-
clude a test on πn before attempting to execute the read.

However, in Colombok,b, we assume that the read op-
erator ?n blocks until there is a message in the queue of
(n, in).

Remark 1.4: The assumption that all queues have length
one, along with a subsequent restriction on web services
that they are “blocking” as just described, end up implying
that all message transmissions are essentially synchronous,
as typical of process algebras, in that a message send and
the receiving/reading of the message must happen with no
intervening activities (neither atomic process invocations
nor other message sends). However, we maintain the for-
malism of queues in Colombok,b, because we expect that
the results obtained in the current paper can be generalized
to support broader models for message passing as typically
arise in the web service standards and research literature.
In particular, it is easy to see how the notion of queue store
can be extended to support queues with arbitrary bounded
size. 2

We now describe how message passing works with a
client service. We assume that a client C has access to
a finite set ConstantsC of elements from Dom , which
are the constants available to C at any time. For client
C we also maintain a unary relation, denoted HasSeen or
HasSeenC , which holds elements of Dom . Intuitively, at a
given time in an execution of C, HasSeenC will include all
of ConstantsC , and also all domain elements that occur
in messages that have been transmitted to C.

What happens if a service S with assignment α exe-
cutes a transmit operation !m(r1, . . . , rl) directed at C?
In Colombok,b we assume that this always succeeds, and
that HasSeenC is replaced with HasSeenC ∪ {α(rk) | k ∈
[1..l]}. Intuitively, then, when a message is transmitted to
C is is also read by C immediately.

In Colombok,b, we assume that a client C can transmit
a message at the beginning of its enactment, but after that,
it can transmit a message only after it has received a mes-
sage. We assume that C acts non-deterministically, and
that after receiving a message it can execute any transmit
!m(c1, . . . , cl) where (m, out) is a port of C (that occurs
in some link of the system) and ck ∈ HasSeenC for each
k ∈ [1..l]. Aside from these restrictions on transmit and
HasSeenC , we do not model in Colombok,b the internal
workings of client C.

1.3 Internal process model, services, clients, systems

Let S be a service with signatures Port(S), GA(S). An
instantaneous description, or id, of S over world schema
W and constraints Σ is a tuple (s, α, β) where s is a state
of GA(S), α is an assignment for LStoreS , β is an assign-
ment for QStoreS . In general we consider pairs of the form
(idS , I), where idS is an id over S and I is a world state
over W that satisfies Σ. We sometimes use id to denote
idS , if S is understood from the context.

An id idS = (s, α, β) is initial if s is the start state of
S, α(πn) is false for each n where (n, in) ∈ Port(S) and
α is ω elsewhere, and β is uniformally set to ω.

We now define the “moves-to” relation and the “trace”
for individual services. The moves-to relation `S (or sim-
ply ` if S is understood from the context) will hold be-
tween pairs of the form (idS , I), (idS ′, I ′) under condi-
tions presented below, and corresponds intuitively to cases
where service S can move from one internal state to the
next, and/or where the global store can change (e.g., if a
message is received.) The definition is more-or-less stan-
dard, except that we build in the possibility that moves by
other services might be interspersed (see items (b), (c),
and (d) below). The trace of a pair (idS , I), (idS ′, I ′)
(where (idS , I) `S (idS ′, I ′)) will provide, intuitively,
a grounded record or log of salient aspects of the transi-
tion from (idS , I) to (idS ′, I ′), including, e.g., what pa-
rameter values were input/output from an atomic process
invocation, or were received, read or sent. We define `
and trace simultaneously. Let (idS , I), (idS ′, I ′) satisfy
idS = (s, α, β) and idS′ = (s′, α′, β′).

(a) Atomic Process: Suppose that GA(S) has a transition
from s to s′ labeled by (g, p(r1, . . . , rn; v1, . . . , vm))
where g[α] evaluates to true; if

((α, I), p(r1, . . . , rn; v1, . . . , vm)) ` (α′, I ′);

and β′ is β. Then (idS , I) ` (idS ′, I ′).
Also, the trace of pair (idS , I), (idS ′, I ′),
denoted trace((idS , I), (idS ′, I ′)), is
(p(c1, . . . , cn; d1, . . . , dm), I, I ′), where ci = α(ri)
for i ∈ [1..n] and dj = α′(vj) for j ∈ [1..m].

(b) Receive Message:1 Suppose that Port(S) includes
(n, in) for some message type n(r1, . . . , rl) with ar-
ity l; α(πn) is false (i.e., the queue for message n is
empty), and also β(vn

k) = ω for k ∈ [1..l]; α′(πn)
is true and α′ is identical to α elsewhere; β′(vn

k) has
arbitrary values (consistent with the signature of n)
and β′ is identical to β elsewhere. Then (idS , I) `
(idS ′, I ′). In this case, trace((idS , I), (idS ′, I ′))
is (?n(c1, . . . , ck), I ′), where ci = α(ri) for i ∈
[1..l].

(Note in this case, and cases (c) and (d) below, there
are no restrictions on I to I ′. Intuitively, this free-
dom is incorporated to reflect the possibility that in
a system of services, S might move into (idS , I) at
some time t1, then other services might make a va-
riety of moves including some that change the world
state to I ′ at time t2, and finally a service might send
a message of type n to S at time t2. So as far as S
is concerned, it was in (idS , I) just after time t1, and
then at time t2 it moves to (idS′ , I ′).)

(c) Read Message: Suppose that GA(S) has a transition
from s to s′ labeled by (g, ?m(v1, . . . , vl)) where g[α]
evaluates to true; α(πm) is true; α′(vk) = β(vm

k)

1Cases (b), (c), and (d) are for the case of Colombok,b; variations of
these will be appropriate for other variants of Colombo.

for k ∈ [1..l], α′(πm) is false, and α′ equals α else-
where; β′(vm

k) = ω for k ∈ [1..l] and β′ equals β

elsewhere. Then (idS , I) ` (idS ′, I ′). In this case,
trace((idS , I), (idS ′, I ′)) is (?n(d1, . . . , dl), I ′),
where dk = α′(vk) for k ∈ [1..l].

(d) Transmit Message: Suppose that GA(S) has a tran-
sition from s to s′ labeled by (g, !m(r1, . . . , rl))
where g[α] evaluates to true; α′ is identical to
α; and β′ is identical to β. Then (idS , I) `
(idS ′, I ′). In this case, trace((idS , I), (idS ′, I ′))
is (!m(c1, . . . , cl), I ′), where ck = α(rk) for k ∈
[1..l].

An enactment of S is a finite sequence E =
〈(id1, I1), . . . , (idq, Iq)〉, q ≥ 1, where (a) id1 is an ini-
tial id for S, and (b) (idp, Ip) ` (idp+1, Ip+1) for each
p ∈ [1..(q − 1)]. The enactment is successful if idq is in a
final state of GA(S).

The notion of execution tree for S is now defined. (This
can be viewed as a stepping stone for defining execu-
tion tree for a system S .) Intuitively, an execution tree
is an infinitely branching tree T that records all possi-
ble enactments. The root is not labeled, and all other
nodes are labeled by pairs of form (id, I) where id is
an id of S and I is a valid world state. For the chil-
dren of the root, the id is the initial id of S and I is ar-
bitrary. An edge ((id, I), (id′, I ′)) is included in the tree
if (id, I) ` (id′, I ′); in this case the edge is labeled by
trace((id, I), (id′, I ′)). A node (id, I) in the execution
tree is terminating if id is in a final state of GA(S).

We now turn to clients; we model clients as a special
kind of web service. Clients correspond intuitively to a
human (or automated) agent which interacts with one or
more web service to accomplish some goals. While ab-
stract properties of the internal model of non-client web
services is specified in considerable detail (using notions
of local store, automata-based process model, etc.), the ab-
stract properties of the client are described with only salient
details.

At this point we are focused primarily on Colombok,b,
but make our definitions slightly more general, so that they
can be used with other studies in the broader Colombo
framework. An instantaneous description (id) for a client
C (in the case of Colombok,b) is a pair (s, HasSeen),
where s ∈ {ReadyToTransmit, ReadyToRead} and
HasSeen is a unary relation over elements of Dom (hold-
ing, intuitively, all domain elements that C has “seen”
up to this point in an execution). This id is initial if
s = ReadyToTransmit and HasSeen is the set of con-
stants present in the definition of C.

We now define the moves-to relation and notion of
trace for clients, in the restricted case of Colombok,b.
Let (idC , I), (idC ′, I ′) satisfy idC = (s, HasSeen) and
idC ′ = (s′, HasSeen′). For clients in Colombok,b, we
combine the read activity with the receive activity. (As with
receive, read, and send for services, the values of I, I ′ are
not restricted for receive. We insist that I = I ′ for send,

to capture the intuition that in Colombok,b nothing can
happen in between the client reading a message and then
transmitting another one.)

(a) Receive Message (which includes Read): Sup-
pose that Port(C) includes (n, in) for some mes-
sage type n with arity l; s = ReadyToRead;
s′ = ReadyToTransmit; let 〈d1, . . . , dl〉 be a se-
quence of l (not necessarily distinct) domain ele-
ments; and let HasSeen′ = HasSeen∪{d1, . . . , dl}
where the di’s are a set of at most l (not neces-
sarily distinct) domain elements. Then (idS , I) `
(idS ′, I ′). In this case, trace((idS , I), (idS ′, I ′))
is (receive n(d1, . . . , dl), I ′).

(b) Transmit Message: Suppose that Port(C) includes
(m, out) for some message type m with arity l;
HasSeen′ = HasSeen; 〈c1, . . . , cl〉 is a sequence
of (not necessarily distinct) elements from HasSeen;
s = ReadyToTransmit; s′ = ReadyToRead; and
I = I ′. Then (idS , I) ` (idS ′, I ′). In this case,
trace((idS , I), (idS ′, I ′)) is (!m(c1, . . . , cl), I ′).

Note that in Colombok,b there are several forms of
non-determinism in the execution of a client C. This in-
cludes which kind of message to send, and which elements
from HasSeen to send in that message. Other forms of
non-determinism are present based on how C interacts with
other services; these include that there are no restrictions
on: I, I ′ for receives, the timing of receives, and the para-
meter values of incoming messages.

The notion of (successful) enactment and execution tree
for clients is defined analogously as for services.

The notion of instantaneous description (id) for system
S is defined in a natural fashion, based on a generalization
of id for individual services. Specifically, an id for S is a
tuple idS = (idC , {idS | S ∈ F}) where idC is an id of
C and idS is an id of S for each S ∈ F . This id is initial
if the id’s for C and the S’s are initial.

Because of the blocking behaviors incorporated into
Colombok,b, it turns out that in an enactment at most one
service (or the client) will be “executing” at any time (i.e.,
no concurrency).

2 Selected Formal Details of the PDL Encod-
ing

2.1 Preliminaries on PDL

Propositional Dynamic Logic (PDL) is a well-known logic
of programs developed to verify properties of program
schemas [2]. PDL formulas are formed by starting from a
set P of atomic propositions and a set A of atomic actions,
according to the following abstract syntax:

φ −→ P | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈r〉φ | [r]φ
r −→ a | φ? | r1; r2 | r1 ∪ r2 | r∗

where P is an atomic proposition in P , a is an atomic
action in A. That is, PDL formulas are composed from

atomic propositions by applying arbitrary propositional
connectives, and modal operators 〈r〉φ and [r]φ, where r is
a program formed as a regular expression over the atomic
actions in A and the tests φ?.

Intuitively, the modal operators, 〈r〉φ expresses that
there exists an execution of r reaching a state where φ
holds, while [r]φ expresses that all terminating executions
of r reach a state where φ holds (i.e., it express a partial
correctness condition). As for programs, a means “execute
action a”; φ? means “proceed only if φ is true”; r1 ∪ r2

means “choose non deterministically between r1 and r2”;
r1; r2 means “first execute r1 then execute r2”; r∗ means
“execute r a non deterministically chosen number of times
(zero or more)”.

A PDL interpretation is a Kripke structure of the form
M = (∆M, ·M), where ∆M is a non-empty set of
states, and ·M is an interpretation function which interprets
atomic propositions PM ⊆ ∆M – denoting the states in
∆M were P is true – and atomic actions aM ⊆ ∆M×∆M

– denoting the state transition caused by the atomic action
a. The interpretation function ·M is extended to arbitrary
formulas and programs as follows:

PM ⊆ ∆M

(¬φ)M = ∆M/φM

(φ1 ∧ φ2)M = φM1 ∩ φM2
(φ1 ∨ φ2)M = φM1 ∪ φM2

(〈r〉φ)M = {s | ∃s′.(s, s′) ∈ rM ∧ φM}
([r]φ)M = {s | ∀s′.(s, s′) ∈ rM → φM}

aM ⊆ ∆M ×∆M

(φ?)M = {(s, s) | s ∈ φM}
(r1 ∪ r2)M = rM1 ∪ rM2

(r1; r2)M = rM1 ; rM2
(r∗)M = (rM)∗

A PDL formula is satisfiable iff φM is nonempty.
Checking PDL satisfiability of a PDL formula is
EXPTIME-complete in the size of the formula [1].

PDL enjoys two properties that are of particular interest
for our aims. The first is the tree model property, which
says that every model of a formula can be unwound to a
(possibly infinite) tree-shaped model (considering states in
∆M as nodes and relations interpreting actions as edges).
The second is the small model property, which says that
every satisfiable formula admits a finite model whose num-
ber states |∆M| is at most exponential in the size of the
formula itself.

We use the standard abbreviations for booleans, (e.g.,
true, false,→). We also use “−” as an abbreviation for
program (∪a∈Aa), which denotes the execution of the next
action, “−a” to denote all the actions in A except a, and
“u” as an abbreviation for the program (∪a∈Aa)∗. Notice
that [u] represents the master modality, which can be used
to state universal assertions [2].

2.2 Encoding in PDL

Assume that all services are in Colombok,b, and assume
No External Modifications. Let G = (C, {G}, L) be a goal
system and U = {S1, . . . , Sn} a finite family of available
web services, all of which satisfy Blocking Behavior and
Bounded Access. Let p be the number of states and q the
size of the local store of the mediator to be synthesized.

We present selected parts of the PDL formula ΦG,U
p,q en-

coding the composition synthesis problem. The formula is
formed by a conjunction including the following formulas.

General constraints. There are several bookkeeping con-
straints that need to be formulated in PDL. The most im-
portant are:

[∗](execq → ¬execp)

for p 6= q and p, q = 0, 1, . . . , n. This says that only one
component service or the mediator can be in execution at
each step (sometimes the goal also will be executing).

[∗](stpi ∧ ¬execp → [−]stpi)

which says that if Sp, p = 0, 1, . . . , n, g, is not executing,
it does not change state.

There are some requirements on final states.

[∗](Finalg → Final1 ∧ . . . ∧ Finaln ∧ FINAL0)

that says that when the goal is in a final state then also the
component services and the (to be synthesized) mediator is
in a final state.

Final is defined in the obvious way

[∗](stp → Finalp)

for every final state stp of the service Sp with p =
1, . . . , n, g.

Constraints on guessing the Mediator behavior. The fol-
lowing constraints force the mediator to make exactly the
same choices every time it finds itself in the same circum-
stances.

〈∗〉(exec0 ∧ st0i ∧ ̂̂α0 ∧ ̂̂γ ∧DO(!m)) →
[∗](exec0 ∧ st0i ∧ ̂̂α ∧ ̂̂γ → DO(!m))

〈∗〉(exec0 ∧ st0i ∧ ̂̂α0 ∧ ̂̂γ ∧NEXT (st0j)) →
[∗](exec0 ∧ st0i ∧ ̂̂α ∧ ̂̂γ → NEXT (st0j))

〈∗〉(exec0 ∧ st0i ∧ ̂̂α0 ∧ ̂̂γ ∧MAP (~q0
m, ~u)) →

[∗](exec0 ∧ st0i ,
̂̂α ∧ ̂̂γ → MAP (~q0

m, ~u))

〈∗〉(exec0 ∧ st0i ∧ ̂̂α0 ∧ ̂̂γ ∧MAP (~u, ~qi
m)) →

[∗](exec0 ∧ st0i ,
̂̂α ∧ ̂̂γ → MAP (~u, ~qi

m))

〈∗〉(st0i ∧ FINAL0) → [∗](st0i → FINAL0)

As an example, the first formula states that, if the medi-
ator is executing with current assignment ̂̂α and it guessed
to send the message !m with parameters ~u to the service

Si, then next the assignment would be changed to ̂̂
α′ that

differs from ̂̂α for the values assigned to the port for m in
Si. Also next the execution is left to Si while the goal will
not be (in fact will continue not to be) in execution.

Note that all guessed propositions are disjoint from
guessed propositions in the same family. Note also that
if S0 is not executing then the values of the guessed propo-
sition is irrelevant.

Mediator reads message from a service. These are the
subformulas that characterize the mediator reading from a
component service.

If the mediator is prescribed to do next ?m then it does
it, and goes to a guessed state:

[∗](exec0 ∧DO(?m) ∧NEXT (st0l imp
(〈?m〉> ∧ [−?m]⊥ ∧
[?m]st0j))

In doing ?m it is possible to guess in which variable of
its local store the mediator put the contents of the massage:

[∗](exec0 ∧DO(?m) ∧ ̂̂α ∧∧
i MAP (~q0

m, ~u) → [?m] ̂̂α′)

where ̂̂
α′ is the result of updating ̂̂α by assigning the values

in the queues ~q0
m associated with the port for the message

m to the variables ~u in the local store of S0. Notice that in
fact only α′0 is in general different from α0, while α′i, and
α′g remain equal to αi, and αg, respectively.

If the mediator does ?m then next it will continue exe-
cuting while the goal will not:

[∗](exec0 ∧DO(?m) → [?m](exec0 ∧ ¬execg))

The svc and the world state instance remain unchanged:

[∗](exec0 ∧DO(?m) ∧ ̂̂γ → [?m]̂̂γ)

[∗](exec0 ∧DO(?m) ∧ ̂̂I → [?m]̂̂I)

Mediator sends a message to a service. These are the sub-
formulas that characterize the mediator sending a message
to a component service.

If we guess that the mediator does !m next then it does
it, and goes to a guessed state:

[∗](exec0 ∧DO(!m) ∧NEXT (st0j) →
(〈!m〉> ∧ [−!m]⊥) ∧
[!m]st0j)

In doing !m we guess in which variable of its local store
the mediator puts in the contents of the massage; next the
chosen service will be in execution while the goal will not:

[∗](exec0 ∧DO(!m) ∧ ̂̂α ∧∧
i MAP (~u, ~qi

m) →
[!m](̂̂

α′ ∧ execi ∧ ¬execg))

where ̂̂
α′ is the result of updating ̂̂α by assigning the values

in the variables ~u of the local store of S0 to the the queue
~qi
m associated with the port for the message m of the ser-

vice Si; the execution is given to service Si. Notice that in
fact only the part of α′ that is different from α′ is the part
relative to the port variables for message m in service Si.

The svc and the world state instance remain unchanged:

[∗](exec0 ∧DO(!m) ∧ ̂̂γ → [!m]̂̂γ)

[∗](exec0 ∧DO(!m) ∧ ̂̂I → [!m]̂̂I)

Service Si receives a message. These are the subformulas
that characterize a service receiving a message from the
mediator.

Let Si being in execution in a state stih with current svc
̂̂γ and current assignment ̂̂α. Let also assume that Si in
stih has a transition labeled by an guarded action φ/?m(~x)
getting to a state stih′ and that φ evaluates true wrt ̂̂α and ̂̂γ.
Then we have

[∗](execi ∧ stih ∧ ̂̂γ ∧ ̂̂α →(〈?m〉> ∧ [−?m]⊥ ∧
[?m]stih′ ∧
[?m] ̂̂α′))

where ̂̂
α′ is obtained from ̂̂α by coping the symbolic values

from the port ~qi
m to the variables ~x. The above formula

says that: (1) next the action ?m will be performed (and no
other action are possible); (2) next state for Si will be stih′ ;

(3) the assignment is changed to ̂̂
α′.

The execution remains to service Si, which now follows
the goal service Sg:

[∗](execi ∧ 〈?m〉> → [?m](execi ∧ execg))

The svc and the world state instance remain unchanged:

[∗](execi ∧ 〈?m〉> ∧ ̂̂γ → [?m]̂̂γ)

[∗](execi ∧ 〈?m〉> ∧ ̂̂I → [?m]̂̂I)

Service Si sends a message. These are the subformulas
that characterize a service sending a message to the media-
tor.

Let Si being in execution in a state stih with current svc
̂̂γ and current assignment ̂̂α. Let also assume that Si in
stih has a transition labeled by an guarded action φ/!m(~x)

getting to a state stih′ and that φ evaluates true wrt ̂̂α and ̂̂γ.
Then we have

[∗](execi ∧ stih ∧ ̂̂γ ∧ ̂̂α →
(〈!m〉> ∧ [−!m]⊥ ∧
[!m]stik ∧
[!m] ̂̂α′))

where ̂̂
α′ is obtained from ̂̂α by coping the symbolic values

from the variables ~x to the port ~q0
m. The above formula

says that: (1) next the action !m will be performed (and no
other action are possible); (2) next state for Si will be stih′ ;

(3) the assignment is changed to ̂̂
α′.

The execution is given to the mediator S0 and the goal
execution is interrupted and the execution of a read ?m in
the mediator is prescribed:

[∗](execi ∧ 〈!m〉> →
[!m](exec0 ∧ ¬execg ∧DO(?m)))

The svc and the world state instance remain unchanged:

[∗](execi ∧ 〈!m〉> ∧ ̂̂γ → [!m]̂̂γ)

[∗](execi ∧ 〈!m〉> ∧ ̂̂I → [!m]̂̂I)

For brevity, we do not report the characterization of the
client and the interaction with the client. As for the exe-
cution of atomic process we refer to the main body of the
paper.

References
[1] M. J. Fischer and R. E. Ladner. Propositional Dynamic

Logic of Regular Programs. J. of Computer and System
Sciences, 18:194–211, 1979.

[2] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic.
The MIT Press, 2000.

