On Ability to Autonomously Execute Agent Programs with Sensing
— Extended Abstract

Sebastian Sardifia Giuseppe De Giacomo

Dept. of Computer Science Dip. Informatica e Sistemistica

University of Toronto Univer. di Roma “La Sapienza”

Toronto, Canada Roma, Italy

ssardina@cs.toronto.edu degiacomo@dis.uniromal..it

There has been much work already on formal models of
deliberation/planning under incomplete information, where
an agent can perform sensing actions to acquire additional
information. But most of it has been set in epistemic logic-
based frameworks and is hard to relate to work on agent pro-
gramming languages (e.g. 3APL, AgentSpeak(L)). Here,
we develop new non-epistemic formalizations of deliber-
ation that are much easier to relate to standard agent pro-
gramming language semantics based on transition systems.

When doing deliberation/planning under incomplete in-
formation, one typically searches over a set of states, each of
which is associated with a knowledge base (KB) or theory
that represents what is known in the state. To evaluate tests
in the program and to determine what transitions/actions are
possible, one looks at what is entailed by the current KB.
To allow for future sensing results, one looks at which of
these are consistent with the current KB. We call this type
of approach to deliberation “entailment and consistency-
based” (EC-based). In this paper, we argue that EC-based
approaches do not always work, and propose an alterna-
tive. Our accounts are formalized within the situation calcu-
lus and use a simple programming language based on Con-
Golog to specify agent programs, but we claim that the re-
sults generalize to most proposed agent programming lan-
guages/frameworks.

Our accounts rely on a semantics for online executions of
programs with sensing. A configuration is a pair (9, o) in-
volving a program § and a history o specifying the actions
performed so far and the sensing results obtained. In the
full paper, we define a transition relation for this, i.e. when
a configuration (d, o) may evolve to configuration (4',0")
w.r.t. a model M (relative to an underlying theory of action
D). The definition requires that the theory D, augmented
with the sensing results in o, entail that the transition is pos-
sible. The model M is used to represent a possible environ-
ment and generate sensing results. We also define when a
configuration is final, i.e. may legally terminate.

Perhaps the first approach to come to mind for defining

Yves Lespérance

Dept. of Computer Science

Hector J. Levesque
Dept. of Computer Science

York University University of Toronto

Toronto, Canada Toronto, Canada

lesperan@cs.yorku.ca hector @cs.toronto.edu

when an agent knows how/is able to execute a deterministic
program ¢ in a history o goes as follows: the agent must al-
ways know what the next action prescribed by the program
is and be able to perform it such that no matter what sens-
ing output is obtained as a result of doing the action, she
can continue this process with what remains of the program
and, eventually, reach a configuration where she knows she
can legally terminate. We can formalize this idea as follows.

We define KHowgc(d,0) to be the smallest relation
R(4,0) such that:

(E1) if (5,) is final, then R (5, o);

(E2) if (8, 0) may evolve to configurations (6’0 - (a, i;))
w.r.t. some models M; of theory D with ¢ = 1..k for
some k > 1, and R(8',0 - (a, ;) holds for all i =
1.k, then R(4, 0).

The first condition states that every terminating configura-
tion is in the relation KHow g¢. The second condition states
that if a configuration performs an action transition and for
every consistent sensing result, the resulting configuration
is in KHow g, then this configuration is also in KHow g¢.
Note that the agent’s lack of complete knowledge in a
history ¢ is modeled by the theory D augmented with the
sensing results in o being incomplete and having many dif-
ferent models. KHow g uses entailment to ensure that the
information available is sufficient to determine which tran-
sition should be performed next. KHow g uses consistency
to determine which sensing results can occur, for which the
agent needs to have a subplan that leads to a final con-
figuration. So we say that KHowgc is an entailment and
consistency-based (EC-based) account of knowing how.
This EC-based account of knowing how seems quite in-
tuitive and attractive. However it has a fundamental lim-
itation: it fails on programs involving indefinite iteration.
The following simple example shows the problem. Con-
sider a situation in which an agent wants to cut down a
tree. Assume that the agent has a primitive action chop
to chop at the tree, and also assume that she can always

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
AAMAS'04, July 19-23, 2004, New York, New York, USA.
Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

find out whether the tree is down by doing the (binary)
sensing action look. If the sensing result is 1, then the
tree is down; otherwise the tree remains up. There is also
a fluent RemainingChops(s), which we assume ranges
over the natural numbers N and whose value is unknown
to the agent, and which is meant to represent how many
chop actions are still required in s to bring the tree down.
The agent’s goal is to bring the tree down, i.e., bring-
ing about a situation s such that Down(s) holds, where
Down(s) = RemainingChops(s) = 0. The example can
be specified by an action theory Dy, (see the full paper).
There exists some n € N, though unknown and unbounded,
such that the tree will fall after n chops. Because of this, in-
tuitively, we should have that the agent can bring the tree
down, since if the agent keeps chopping, the tree will even-
tually come down, and the agent can find out whether it
has come down by looking. Thus, for the program ;. =
while —Down do chop;look endWhile we should have
that KHow g (0., €) (note that &y, is deterministic). How-
ever, this is not the case:

Theorem 1 KHowgc (¢, €) does not hold.

Thus, the simple EC-based formalization of knowing
how gives the wrong result for this example. Why is this
so? Consider the hypothetical scenario in which an agent
keeps chopping and looking forever, always seeing that the
tree is not down. There is no model of D, where ;. yields
this scenario, as the tree is guaranteed to come down af-
ter a finite number of chops. However, KHow g is, in some
way, taking this case into account in determining whether
the agent knows how to execute .. This happens because
every finite prefix of this never-ending execution is indeed
consistent with D;.. The problem is that the set of all of
them together is not. This is why KHow g¢ fails. In the full
paper, we show that more generally, KHow g fails on prob-
lems that require unbounded iteration.

KHowgc fails on the tree chopping example because
“local consistency” is used to construct the configuration
tree, which keeps switching which model of D (represent-
ing the environment) is used to generate the next sensing re-
sult, postponing the observation that the tree has come down
forever. It seems reasonable to try to correct the problem by
fixing the model of D used in generating possible configu-
rations. Let’s do this.

We define when an agent knows how to execute a pro-
gram ¢ in a history o and a model M (which represents the
environment), KHowInM(6, o, M), as the smallest relation
R (4, 0) such that:

(T1) if (5,) is final, then R (S,);
(T2) if (d,0) may evolve to (8,0 - (a,u)) wrt. M and
R, 0 (a,n)), then R(d, 0);

The only difference between this and KHow g¢ is that
the sensing results come from the fixed model M. Given

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
AAMAS'04, July 19-23, 2004, New York, New York, USA.
Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

this, we obtain the following formalization of when an agent
knows how to execute a program ¢ in a history o

KHowgr (0, o) iff for every model M such that
M EDUC U {Sensed|o]}, KHowInM (6,0, M).

We call this type of formalization entailment and truth-
based, since it uses entailment to ensure that the agent
knows what transitions she can do, and truth in a model
to obtain possible sensing results.

We claim that KHow g is actually correct for programs
¢ that are deterministic. For instance, it handles the tree
chopping example correctly:

Theorem 2 KHow g1 (dyc, €) holds w.r.t. theory Dy..

We have also shown that whenever KHow g (6, o) holds,
so does KHowgr (4, o), but not vice versa. In the full pa-
per, we show how one can define the notion of ability to
achieve a goal in terms of our notions of knowing how, and
also account for knowing how to execute a nondeterminis-
tic program.

Our non-epistemic accounts of knowing how are easily
related to models of agent programming language seman-
tics and our results have important implications for this area.
While most work on agent programming languages (e.g.
3APL, AgentSpeak(L), etc.) has focused on reactive exe-
cution, sensing is acknowledged to be important and there
has been interest in providing mechanisms for run-time
planning/deliberation. Executing a program on-line with-
out deliberation/lookahead just involves repeatedly select-
ing some transition allowed in the current configuration and
performing it. However, one natural view is that delibera-
tion can simply be taken as a different control regime in-
volving search over the agent program’s transition tree. In
this view, a deliberating interpreter could first lookahead
and search the program’s transition tree to find a sequence
of transitions that leads to successful termination and later
execute this sequence. Clearly, in the presence of sensing,
this idea needs to be refined. One must find more than just a
path to a final configuration in the transition tree; one needs
to find some sort of conditional plan or subtree where the
agent has chosen some transition among those allowed, but
must have branches for all possible sensing results. The nat-
ural way of determining which sensing results are possible
is checking their consistency with the current belief base.
Thus, what is considered here is essentially an EC-based
approach. Our results show that this view of deliberation is
fundamentally flawed when sensing is present. It produces
an account that only handles problems that can be solved
in a bounded number of actions. As an approach to imple-
menting deliberation, this may be perfectly fine. But as a se-
mantics or specification, it is wrong. What is required is a
much different kind of account, like our ET-based one.

See www.cs. toronto.edu/cogrobo for the full paper.

