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Università di Roma “La Sapienza”
Via Salaria 113, I-00198 Roma, Italy

{degiacomo,tmancini}@dis.uniroma1.it

Abstract

Reiter’s variant of the Situation Calculus is tightly related to
relational databases, when complete information on the ini-
tial situation is available. In particular, the information on
the initial situation can be seen as a relational database, and
actions, as specified by the preconditions and successor state
axioms, can be seen as operations that change the state of the
database. In this paper, we show how to exploit such a corre-
spondence to build systems for reasoning about actions based
on standard relational database technology. Indeed, by ex-
ploiting standard relational DBMS services, a system may be
able to perform both Projection, exploiting DBMS querying
services, and Progression, exploiting DBMS update services,
in very large action theories. A key result towards such a re-
alization, is that under very natural conditions Reiter’s basic
action theories turn out to be made of “safe formulas” (where
basically negation is used as a form of difference between
predicates only) and that regression and progression preserve
such a safeness. This is a fundamental property to efficiently
exploit relational database technology for reasoning. We then
show that, even when action theories are not “safe”, they can
be made so while trying to retain efficiency as much as pos-
sible. Finally, we briefly discuss how such results can be ex-
tended to certain forms of incomplete information.

Introduction
Typically, in Cognitive Robotics, we assume that the cog-
nitive agent, the robot, is equipped with a representation of
the world and a specification of how its and other agents ac-
tions affect the world. There are several choices for the rep-
resentation and reasoning formalism to adopt for this task.
Among them the Situation Calculus as revised by Reiter and
others is emerging as a general tool to express action theo-
ries (Reiter 1991; 2001).

Often in modelling the world we have to deal with incom-
plete information of various forms. In the Situation Calculus
we typically have incomplete information on the initial sit-
uation. However, at least in certain domains, the main issue
is not how to cope with incomplete information, but how to
deal with hundred thousand facts that describe the current
state of the world. In order to do this, we need to be able to
scale up action theories, and especially to be able to reason
with so many facts.

It is known that Reiter’s basic action theories are tightly
related to relational databases, when complete information
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on the initial situation is available. In particular, the in-
formation on the initial situation can be seen as a rela-
tional database, and actions, as specified by the precon-
ditions and successor state axioms, can be seen as oper-
ations that change the state of the database (Reiter 2001;
Fangzhen & Reiter 1997).

In this paper we show how to exploit such a correspon-
dence to build systems for reasoning about actions based
on standard relational database technology (cf., e.g., (Abite-
boul, Hull, & Vianu 1995)). In particular, by exploiting a
relational DBMS, systems may be able to perform in very
large action theories both Projection, i.e., evaluate a cer-
tain (either open or closed) formula in the world resulting
from executing a sequence of actions, and Progression, i.e.,
progress from the initial situation to the situation resulting
from executing a sequence of actions. In order to perform
the first task, one can exploit standard DBMS querying ser-
vices, while to perform the second task one can exploit stan-
dard DBMS update services.

A key result towards such a realization, is that under very
natural conditions Reiter’s basic action theories turn out to
be made of “safe formulas” (e.g., negation can be used as
a form of difference between predicates only) and that re-
gression and progression preserve safeness. This is a fun-
damental property to exploit relational database technology
for reasoning, since these are the only formulas that a DBMS
can evaluate. It is possible, under very general assumptions
(domain closure), to transform any formula into a safe for-
mula, however this requires the use of very large relations
(suitable Cartesian products of a relation containing all do-
main elements), which put in serious jeopardy the ability of
the DBMS to efficiently evaluate queries (formulas). In the
paper, we discuss such a problem showing methods to try to
retain efficiency as much as possible when transforming a
formula into an equivalent safe one.

It is important to stress that the crux of this setting (i.e.,
using standard relational database technology) is perform-
ing reasoning through query evaluation (i.e., formula evalu-
ation), not deduction. This can certainly be done in the case
we have complete information of the initial state of the rea-
soning about the action system, and this is the case we will
focus on in this paper. But this can also be done in case miss-
ing information can be supplied by sensors (see the notion of
just-in-time-histories in (De Giacomo & Levesque 1999)).
Our results can in principle be extended to such cases of in-
complete information.



Finally, we observe that the ability of performing Projec-
tion allows for using a reasoning about action system based
on relational technology in conjunction with high level robot
language interpreters so as to exploit its formula evalua-
tion capabilities for evaluating tests and action precondi-
tions (Levesque et al. 1997; De Giacomo, Lespérance, &
Levesque 2000).

Situation Calculus and basic action theories
Our account of action and change is formulated in the
language of Situation Calculus (McCarthy & Hayes 1969;
Reiter 2001). We will not go over the language here, except
to note the following components. The language is multi-
sorted, in particular we have a sort action for actions, a sort
state for situations, and a sort object for all other terms. In
fact, we may allow for specializing the sort object, creating
sorts corresponding to the various types of objects in the do-
main, but, for simplicity, here we will stick to a single sort
object. A special constant S0 is used to denote the initial
situation, namely the one in which no actions have yet oc-
curred. There is a distinguished binary function symbol do
where do(a, s) denotes the successor situation to s resulting
from performing action a. Relations whose truth values vary
from situation to situation are called (relational) fluents 1, and
are denoted by predicate symbols taking a situation term as
their last argument. A special predicate Poss(a, s) is used to
state that action a is executable in situation s.

Within this language, we can formulate action theories
that describe how the world changes as the result of the
available actions. In this paper, we focus on Reiter’s basic
action theories (Reiter 1991; 2001). A basic action theoryD
is formed by:

• Axioms (denoted by DS0 ) describing the initial situation
S0 which form the initial database D0.

• Action precondition axioms (Dap) of the form:

Poss(a(�x), s) ≡ φa(�x, s)

one for each primitive action a, characterizing Poss(a, s).
• Successor state axioms (Dss) of the form:

F (�x, do(α, s)) ≡ γ+
F (�x, α, s)∨(

F (�x, s) ∧ ¬γ−
F (�x, α, s)

)
one for each fluent F , stating under what conditions
F (�x, do(α, s)) holds as function of what holds in situa-
tion s. For successor state axioms the following consis-
tency requirement must hold:

¬∃�x, α, s.[γ+
F (�x, α, s) ∧ γ−

F (�x, α, s)]

which states that it is never the case that both γ+
F and γ−

F
hold for the same arguments. Successor state axioms take
the place of the so called effect axioms, and provide also a
solution to the frame problem (Reiter 1991). In fact they
are generated automatically starting from standard effect
axioms of the form:

γ+
F (�x, α, s)⊃F (�x, do(α, s))

γ−
F (�x, α, s)⊃¬F (�x, do(α, s))

by applying the so called causal completeness assumption
that intuitively says that the first (second) effect axiom

1We do not consider functional fluents here.

above characterize all the conditions under which action a
causes F to become true (false) in the successor situation
(cf. (Reiter 2001) for details).

• Unique names axioms (Duna) for the primitive actions,
plus some foundational, domain independent axioms.

In this paper we will only consider Situation Calculus for-
mulas φ(s) that are uniform in s. Intuitively, φ(s) is uniform
in s if it talks only about facts that hold in the situation s (cf.
(Reiter 2001)).

One of the main reasoning services that a reasoning
about actions system must support is solving the so-called
projection problem: Given a formula φ(s) uniform in s,
and a sequence of actions a1, . . . , an, determine whether
a given formula φ(σ) is entailed by the action theory,
where σ = do(an, do(an−1, · · · do(a1, S0) · · · )), also writ-
ten in the following as do([α1, . . . , αn], S0), in the (ground)
situation resulting by performing the sequence of actions
a1, . . . , an from the initial situation S0 (cf. (Reiter 2001)).
That is, to decide whether:

D |= φ (do([a1, . . . , an], S0)) .

One of the main results of Reiter’s variant of Situation Cal-
culus is that the projection problem can be reduced to check-
ing whether a certain formula R[φ(σ)](S0) holds in the ini-
tial situation, formally:

DS0 ∪ Duna |= R[φ(σ)](S0)

whereR[·](S0) is the so called regression operator (cf. (Re-
iter 2001)) which, intuitively, recursively eliminates Poss
atoms in favor of their definitions in Dap, and replaces flu-
ent atoms about do(ai, σi−1) by logically equivalent ex-
pressions about σi−1 as given in Dss. Applying the re-
gression operator to a uniform formula φ(σ) results into
a formula uniform in the initial situation S0, such that:
D |= φ(σ) ⇐⇒ DS0 ∪ Duna |= R[φ(σ)](S0) (Reiter
2001). Notice that the regression operator can be applied
to open formulas as well, and in this case the above state-
ment holds for all instantiations of the open formula (Reiter
2001).

Relational databases
At the highest abstraction level, a relational database is a
first-order relational structure DB formed by a finite set of
relations of different arities, each associated to a predicate
name and formed by a finite set of tuples over a fixed do-
main. Such a domain can in general be infinite2. Unique
name assumption and domain closeness is enforced on such
a domain, i.e., we have a distinct constant for each object in
the domain.

A first-order query q(�x) over a database DB is an
open first-order function-free formula with free variables �x,
whose predicates are among those associated with the rela-
tions of DB. The answer to a query q(�x) is the set of tuples
constants (domain elements) such that

{�c | DB |= q(�c)}
that is, substituting �c to the free variables in q(�x), the
(closed) formula q(�c) is true in DB.

2As long as, we limit our interest to safe query only, see later.



An important issue in databases is the concept of safe for-
mula (Abiteboul, Hull, & Vianu 1995). As mentioned, re-
lations in a database may be over an infinite domain (e.g.,
including the naturals, or strings). Due to this, the prob-
lem of avoiding those queries that return infinite answers
arises. Suppose, as an example, to deal with a database made
of a single monadic relation R(·) on the naturals, with ex-
tension R(0), and suppose to write a query q that asks for
those tuples that do not belong to R, i.e., q = {x|¬R(x)}.
The answer to the query q will be made of an infinite num-
ber of tuples, namely {1, 2, . . .}. The same happens if we
have the additional relation S(·, ·) and want to compute
q′ = {〈x, y〉|R(x) ∨ S(x, y)}.

It is usual in databases to consider queries that always
return answers that are both finite and independent on the
database domain. To this end, restrictions on their syntax is
needed, mainly on the use of negation and disjunction. We
don’t go into details here, but just observe that, intuitively,
negation is safe when can be written as difference, while
disjunction is safe when the two operands relations have the
same schema. We will present a formal definition of safe
formula specialized for uniform Situation Calculus formu-
las on a given situation, in the next section.

Before closing the section, we need to mention that usu-
ally first-order queries in databases are not expressed in first-
order logic but in relational algebra (RA). This is because
relational algebra can be seen as a direct abstraction for
queries written in SQL, the standard query language adopted
by virtually all relational database systems. It is well known
(Abiteboul, Hull, & Vianu 1995) that a strong relationship
can be identified in general between FO formulas and RA
expressions. In particular, Maier (1983) proposes a very
simple extension to original Codd’s RA, in order to make
translation between FO formulas and RA expressions more
effective. This extension relies on the concept of indexed re-
lational table, i.e., a pair 〈T, �x〉 where T is a set of n-tuples
of constants, for some n, and �x is an n-tuple of distinct vari-
ables. The intuitive idea behind indexed relational tables is
that they represent a first-order query φ(�x) with free vari-
ables �x by 〈T, �x〉, thus allowing to refer both to tuples in T
and to the free variables �x of φ(�x), T was computed from.
This extension of RA is equivalent to the original one pro-
posed by Codd. In particular, all traditional RA operators
(i.e., ∪, σ, π, �,−,�) can be straightforwardly defined by
means of operations in the domain of indexed relational ta-
bles.

Situation Calculus and relational databases
In this section we show how to relate the Situation Calculus
formalism and relational database technology. To do so, we
need to introduce some more constraints on the basic action
theories we consider.

• We reinforceDuna by requiring unique name assumption
and closure of the sort object. In this way we force each
element of object to be uniquely denoted by a single dis-
tinct constant.

• We additionally require that, for each fluent F and each
tuple of objects �c, the theory DS0 either logically implies
F (�c, S0) or ¬F (�c, S0). That is, we have complete infor-
mation on the initial situation. Under this assumption we
have that F is characterized, in the initial situation, simply

by the set of facts of the form F (�c, S0) that are logically
implied by the theory, DS0 and Duna.

The above constraints are quite severe and certainly are
not suitable for certain applications (Reiter 2001). How-
ever, if our application does allow us to make such assump-
tions, then we can use, without loss of generality, formula
evaluation instead of logical implication (exchanging entail-
ment with truthness) thus getting a quite efficient method
to base reasoning on (De Giacomo & Levesque 2000;
Liu & Levesque 2003).

These observations indicate that we can exploit standard
relational database technology as the base of a system for
reasoning about actions. In particular, we can use relational
database querying techniques to perform formula evalua-
tion, thus being able to exploit sophisticated optimization
techniques developed for databases in order to deal with
very large amounts of facts. Relational database technol-
ogy promises to be a good vehicle to scaling up reasoning
about actions (though of a limited form) to realistic domains
that require dealing with a lot of information.

In order to develop such a system, we need to decide how
to tackle the following issues: (i) how to represent fluents
and their values as database states; (ii) how to represent uni-
form Situation Calculus formulas as queries on the database.
We deal with each of these issues in turn.

Representing system states as database states We as-
sume that the database does not explicitly store objects of
sort state inside the tables, but the database itself may be
considered as a “snapshot” taken of each fluent in the cur-
rent situation. In other words, the database keeps track of
the truth values of the fluents for all objects in the current
situation.

Here we consider, as the current situation, the initial sit-
uation S0, and represent it as a database DBS0 defined as
follows: each fluent F (�x, s) of arity k + 1 defined in the ac-
tion theory is associated a table F composed by k columns
(f1, ..., fk). Table F is populated by the k-tuples of objects
that make the fluent F true in the situation S0. That is:

F = {�c | DS0 ∪ Duna |= F (�c, S0)}

Uniform Situation Calculus formulas as queries For the
moment, we concentrate on safe formulas.

Definition 1 (Safe Situation Calculus formulas). The set
of safe Situation Calculus formulas is the smallest set of for-
mulas uniform in s such that:

• Atoms of the form x = c, a(�x) = b(�c), F (�x, s) are safe,
where with x and �x are variables of sort object, c and �c
are constants of sort object, a and b are (possibly distinct)
function symbols of sort action, and F is a fluent.

• If φ, φ′ and φ′′ are safe, then also φ∧(x1 = x2), φ∧(x1 �=
x2), φ′ ∧ φ′′, φ′ ∧ ¬φ′′ (provided that every free variable
of sort object of φ′′ is also free in φ′), (∃x)φ are safe, with
x1 and x2 variables of sort object occurring free in φ.

• If φ′ and φ′′ are safe, then also φ′ ∨ φ′′ is safe, provided
that the free variables of sort object in φ′′ are the same as
in φ′.



Let now φ be a safe Situation Calculus formula uniform in
S0. Then, we can easily define a function || · ||, which maps
φ into an indexed relational table (or, equivalently, into a
relational algebra expression).
Definition 2 (The function || · ||). Let φ be a safe Situation
Calculus formula uniform in S0. Then ||φ|| is defined as
follows:

1. If φ is atomic of the form:
• x = c, then ||φ|| = 〈{c}, x〉;
• a(�c) = a(�x), then ||φ|| = 〈{�c}, �x〉;
• a(�c) = b(�x), then ||φ|| = 〈{}, �x〉;
• F (�y, S0), then ||φ|| = 〈{�c(1), . . . ,�c(n)}, �y〉;
where x, �x and �y are variables of sort object, c, �c, and
�c(1), . . . ,�c(n) are constants of sort object, a and b are dis-
tinct function symbols of sort action, and the axiom for
fluent F in DS0 is F (�x, S0) ≡ �x = �c(1) ∨ · · · ∨ �c(n).

2. If φ is of the form:
• φ′ ∧ (x = y) (resp. x �= y), then ||φ|| = σ

x=y
(||φ′||)

(resp. x �= y);
• φ′ ∧ φ′′, then ||φ|| = ||φ′|| � ||φ′′||;
• φ′∧¬φ′′, provided that every free variable of sort object

of φ′′ is also free in φ′, then ||φ|| = ||φ′|| � ||φ′′||;
• φ′ ∨ φ′′, provided that the free variables of sort object

in φ′′ are the same as is φ′, then ||φ|| = ||φ′|| ∪ ||φ′′||;
• (∃x)φ′, where φ′ is a safe formula, then ||φ|| =

π
x

(||φ′||);
where x and y are variables of sort object.

With these definitions in place we formally express how
we can make inference on the initial situation by evaluating
queries over the corresponding database DBS0 .
Theorem 1. Let DS0 and Duna be as above, and let
φ(�x, S0) be a safe Situation Calculus formula uniform in
the initial situation S0, and Qφ = ||φ(�x, S0)||. Then

{�c | DS0 ∪ Duna |= φ(�c, S0)} = ans(Qφ, DBS0).

In other words, the answer over the database DBS0 to the
query modelled by the indexed table corresponding to a safe
Situation Calculus formula φ over the initial situation S0

are exactly all the tuples of constants that substituted to the
free variables of φ make the resulting formula entailed from
DS0 ∪ Duna, i.e., entailed by the information on the initial
situation and the assumptions on constants above.

Safe basic action theories
If we aim at using formula evaluation as the reasoning en-
gine, it is natural to assume to be able to evaluate at least
those formulas for checking if an action is possible, and how
a fluent changes by performing such an action. Hence in the
relational setting proposed here it is natural to assume that
queries for checking action precondition and effect axioms
are safe. In other words, it is natural to consider basic action
theories where:
• The precondition axioms have the form

Poss(a(�x), s) ≡ φa(�x, s)

where φa(�x, s) is safe;

• The effect axioms have the form

γ+
F (�x, α, s)⊃F (�x, do(α, s))

γ−
F (�x, α, s)⊃¬F (�x, do(α, s))

where both γ+
F (�x, α, s) and γ−

F (�x, α, s) are safe.

Let us concentrate for a moment on the effect axioms. Does
the safeness of the premises of the effect axioms guaran-
tee the safeness of the corresponding successor state axiom
obtained by applying the causal completeness assumption?
Interestingly, the answer to this question is positive.

Theorem 2. Let γ+
F (�x, α, s)⊃F (�x, do(α, s)) and

γ−
F (�x, α, s)⊃¬F (�x, do(α, s)) be the effect axioms for

the fluent F , and let both γ+
F (�x, α, s) and γ−

F (�x, α, s) be
safe. Then the formula

γ+
F (�x, α, s) ∨ (

F (�x, s) ∧ ¬γ−
F (�x, α, s)

)
in the corresponding successor state axiom
F (�x, do(α, s)) ≡ γ+

F (�x, α, s) ∨ (
F (�x, s) ∧ ¬γ−

F (�x, α, s)
)

is also safe.

Observe that assuming precondition and effect axioms hav-
ing safe premises seems quite in the spirit of the idea of
checking conditions by evaluating them on a database. It is
not so for successor state axioms, since they embed a quite
sophisticated technique to deal with the frame problem. The
theorem above comes about as a nice and welcome surprise.

After this discussion, we feel comfortable in introducing
the notion of safe basic action theory.

Definition 3 (Safe basic action theory). A safe basic action
theory is a basic action theory in which the right part of
each action precondition axiom and the right part of each
successor state axiom are safe formulas.

Safe basic action theories have a very interesting property,
namely that regression preserves safeness.

Theorem 3 (Regression in safe basic action theories). Let
D be a safe basic action theory, and φ(�x, σ) a safe Sit-
uation Calculus formula uniform in the (ground) situation
σ = do([a1, . . . , an], S0). Then, the regression operator R
applied to φ(�x, σ), returns a formula R[φ(�x, σ)](S0), uni-
form in S0, that is safe.

Observe that this theorem, together with Theorem 1, gives
us the mean to exploit database technology to deal with the
projection problem.

Theorem 4. Let D be a safe basic action theory, φ(�x, σ)
be a safe Situation Calculus formula uniform in the situ-
ation σ = do([a1, . . . , an], S0), R[φ(�x, σ)](S0) the for-
mula on the initial situation obtained by regression, and
Qφr = ||R[φ(�x, σ)](S0)||. Then

{�c | D |= φ(�c, σ)} = ans(Qφr , DBS0).

This theorem tells us how to exploit relational databases to
solve the projection problem, i.e., to get all tuples of con-
stants �c such that φ(�c, do([a1, . . . , an], S0) is entailed by the
action theory D. In particular, we can proceed as follows:

1. Apply regression to get a Situation Calculus formula on
the initial situation, (we are guaranteed that such a new
formula is safe);



2. Transform it into an SQL query (which is immediate once
the formula has been transformed into relational algebra);

3. Compute and return the answer of the resulting query over
the database DBS0 .

Dealing with unsafe formulas
For now we have a nice solution in case of safe formulas.
What about if we cannot enforce safeness? Then Database
Theory tells us that we need to enforce the finiteness of the
domain, and in fact introduce an additional relation in our
database corresponding to the domain itself.

Under the hypothesis of finite domain, every query can be
made safe in a trivial way: as an example, the query q =
{x|¬R(x)} can be rewritten as q′′ = {x|U(x) ∧ ¬R(x)},
where the relation U is the relation that stores all domain
values for x.

Observe however that the new relation U , and even more
Cartesian products such as U × U × · · · × U that may be
involved in a query, are likely to store an huge number of
tuples, thus making query answering efficiency critical.

To extend our approach to deal with unsafe formulas, we
need to further reinforce the assumption of Duna and state
that the sort object is finite. This corresponds to introduce a
new fluent obj(·, s), which contains initially (i.e., in S0) a fi-
nite number of elements (the same in every model), each de-
noted by a distinct constant, and such that its successor state
axiom states that it does not change with actions. Predicate
obj(·, s) defines the extension of the sort object. To reflect
such an assumption, we introduce in the database DBS0 a
relation Obj which denotes exactly the objects in obj(·, s).

With obj(·, s) and Obj in place, it is straightforward to
make every uniform Situation Calculus formula safe. How-
ever caution must be put in order to retain al least some ef-
ficiency of query answering once we reduce reasoning to
query evaluation on the initial database.

The problem is that, to make a query safe, we are forced
to introduce occurrences of the Obj table, which is typically
formed by a huge number of tuples. Unfortunately, we can-
not in general overcome this, but can often carefully choose,
among the different alternatives, the best way to translate an
unsafe uniform Situation Calculus formula into a query on
the current database.

Of course, several functions || · ||′ can be defined that re-
duce to || · || given in Definition 2 when dealing with safe
formulas, and several heuristics can be defined for choosing
the most efficient translation. In this paper, we give a possi-
ble heuristic, under the (reasonable) assumption that the size
of the Obj relation is much larger than the size of any other
relation in the database. Under this assumption, our heuristic
allows us to choose at each step whether to apply De Morgan
laws to our formula or not, by computing a cost for each al-
ternative. Let the Obj relation consists of n tuples: the cost
of evaluating a RA formula is given by the sum of n |�x| fac-
tors, one of each time a table 〈Obj × · · · × Obj︸ ︷︷ ︸

|�x|times

, �x〉 (denoted

in the following as 〈Obj |�x|, �x〉) has to be built. Moreover,
the cost is given in an incremental fashion, i.e., by consider-
ing constant the cost of evaluating subformulas. In this way,
we are allowed to independently choose at each level of the
formula tree whether to apply De Morgan laws or not.

In the following, both φ1(�x, �y, S0) and φ2(�y, �z, S0) are
uniform Situation Calculus formulas in the initial situation
S0, which do not have ‘¬’ as the outermost operator, and
such to have �y as common free variables of sort object.
Moreover, φ1 has �x as additional free variables of sort object
that not occur in φ2, and φ2 has �z as additional free variables
of sort object not occurring in φ1. We describe in detail only
one case, the others are analogous.

Let the Situation Calculus formula φ(�x, �y, �z, S0) to be
translated be

¬ (φ1(�x, �y, S0) ∨ φ2(�y, �z, S0)) . (1)

We identify two possible alternatives for translating it: the
first is to translate it directly, the other is to apply De Morgan
laws in order to obtain the equivalent formula

¬φ1(�x, �y, S0) ∧ ¬φ2(�y, �z, S0). (2)

Translation of option (1) is the following:

||φ||′ = ||¬(φ1 ∨ φ2)||′ = 〈Obj|�x|+|�y|+|�z|, �x; �y; �z〉 −(
||φ1(�x, �y, S0)||′ × 〈Obj|�z|, �z〉 ∪ (3)

〈Obj|�x|, �x〉 × ||φ2(�y, �z, S0)||′
)

while translation of option (2) is:

||φ||′ = ||¬φ1 ∧ ¬φ2||′ =(
〈Obj|�x|+|�y|, �x; �y〉 − ||φ1(�x, �y, S0)||′

)
� (4)

(
〈Obj|�y|+|�z|, �y; �z〉 − ||φ2(�y, �z, S0)||′

)
.

Assuming that RA expressions ||φ1||′ and ||φ2||′ have
already been computed, the cost for formula (3) is
n|�x|+|�y|+|�z| + n|�x| + n|�z|, while that for formula (4) is
n|�x|+|�y| + n|�y|+|�z|. If we assume for simplicity that |�x| ≈
|�y| ≈ |�z|, the cost of the second alternative is lower, so the
formula is rewritten by pushing negation in.

Using these calculations, in the full paper we rewrite all
kind of unsafe formulas in order to achieve the most efficient
translation (i.e., the one with less occurrences of Cartesian
products of the Obj table). Then, we define the function
|| · ||′ by firstly applying our heuristic, and then by inserting
suitable Cartesian products of the Obj table. Details are
omitted for lack of space and will be given in the full paper.

Performing actions and changing the database
Normally, we are interested in querying the current database
state, possibly exploiting regression, in order to make some
projection on the future. On the other hand, from time to
time we want to perform progression, i.e., to transform the
action theory by updating the current situation according to
the results of performing a given sequence of actions. This
results in changing the database content, in order to reflect
this new situation.

Under the assumptions we have made (i.e., unique name
assumption, closure of the object domain, and complete in-
formation on the initial situation), results in (Fangzhen &
Reiter 1997) show that progression, which is very difficult in
general, becomes simple. Moreover, relational technology
can potentially allow to perform progression by exploiting
the standard update mechanisms developed for databases,



and take advantage of the transactional support to guarantee
consistency, even in case of a failure during the progression.

With these observations in mind, we develop an account
of progression that is based on the relational setting pro-
posed so far. In order to do this, we need to clarify how the
successor state axioms can be exploited as a specification of
the updates to perform.

Let the successor state axiom for the fluent F be:

F (�x, do(α, s)) ≡ γ+
F (�x, α, s) ∨ F (�x, s) ∧ ¬γ−

F (�x, α, s).

We can extract from it effect axioms instantiated for each
(ground) action a:

γ−
F (�x, a, s) ⊃ ¬F (�x, do(a, s))

γ+
F (�x, a, s) ⊃ F (�x, do(a, s)).

In order to change the database accordingly, assuming
GammaFminus a, and GammaFplus a being the tables
corresponding to γ−

F (�x, a, s) and γ+
F (�x, a, s) respectively,

we need to perform the following SQL commands as a
unique transaction:
delete from F where exists (

select x1, ..., xn from GammaFminus_a
where x1 = f1 and ... and xn = fn );

insert into F (
select x1 as f1, ... xn as fn
from GammaFplus_a );

That is, a tuple is contained in table F after the update as-
sociated with action a if and only if, either the update has
inserted it in the table, or the tuple was already in the table
and the update has not deleted it. This clearly corresponds
to what specified by the successor state axiom instantiated
for action a. Since the following consistency requirement
holds:

¬∃�x, s.[γ+
F (�x, a, s) ∧ γ−

F (�x, a, s)],
tables GammaFplus a and GammaFminus a are disjoint.
Hence, exchanging the order of the two statements would
not change the result.

Once we have defined the above updates, by exploiting
the result on progression mentioned above we get the fol-
lowing theorem:

Theorem 5. Let D be a safe basic action theory, with DS0

and Duna defined as usual. Let φ(�x, σ) be a safe Situ-
ation Calculus formula uniform in the (ground) situation
σ = do([a1, . . . , an], S0), DBσ be the database obtained
from DBS0 by performing the updates corresponding to
each action ai in σ in order, and Qφ = ||φ(�x, S0)||. Then

{�c | D |= φ(�c, σ)} = ans(Qφ, DBσ).

In other words, in order to evaluate a formula on the sit-
uation resulting from executing a sequence of actions, we
can update the database, using the above update commands,
and evaluate the formula on the resulting database. That is,
the above update commands can be used to progress, in the
sense of (Fangzhen & Reiter 1997), the database and hence
the action theory it represents.

It is worth noting that the transactional support of the rela-
tional DBMS can be exploited to avoid leaving the database
in an undesired state in case the progression fails, by issu-
ing a commit statement only when the progression is suc-
cessfully completed. Actually, it can be exploited further. In

those cases where regression generates a query that is too big
and complex to be efficiently evaluated, progression can be
used as an alternative, with the proviso that after the evalua-
tion, the transaction corresponding to the progression gives
an explicit roll back command to restore the initial situa-
tion. In fact, this technique has shown to be quite effec-
tive in practice in dealing with projections involving very
long sequences of actions. We also observe that state-of-the-
art DBMSs do most of their computations in main memory
cashes and not on disks directly, so the updates mentioned
so far are usually performed in a fast way in main memory
before issuing the commit statement.

Conclusions
In this paper we have described how reasoning about ac-
tions, under complete information, can be potentially scaled
up exploiting standard relational technology. A prototype of
such a system, based on the implementation work reported
in (De Giacomo & Palatta 2000), is currently under con-
struction, and first experimental results are very promising.

It is important to stress that more advanced form of rea-
soning that can still rely on formula evaluation can poten-
tially take advantage from the relational technology pro-
posed here. Along this line, we are currently working on
extending such an approach to reasoning with incomplete
information when missing information can be supplied by
sensors as in the setting of (De Giacomo & Levesque 1999).
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