
Decidable Containment of Recursive Queries

Diego Calvanese1, Giuseppe De Giacomo1, and Moshe Y. Vardi2

1 Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”

Via Salaria 113, I-00198 Roma, Italy
lastname@dis.uniroma1.it,

http://www.dis.uniroma1.it/˜lastname/
2 Department of Computer Science

Rice University, P.O. Box 1892
Houston, TX 77251-1892, U.S.A.

vardi@cs.rice.edu
http://www.cs.rice.edu/˜vardi/

Abstract. One of the most important reasoning tasks on queries is
checking containment, i.e., verifying whether one query yields necessar-
ily a subset of the result of another one. Query containment, is cru-
cial in several contexts, such as query optimization, query reformulation,
knowledge-base verification, information integration, integrity checking,
and cooperative answering. Containment is undecidable in general for
Datalog, the fundamental language for expressing recursive queries. On
the other hand, it is known that containment between monadic Datalog
queries and between Datalog queries and unions of conjunctive queries
are decidable. It is also known that containment between unions of con-
junctive two-way regular path queries (UC2RPQs), which are queries
used in the context of semistructured data models containing a lim-
ited form of recursion in the form of transitive closure, is decidable. In
this paper we combine the automata-theoretic techniques at the base of
these two decidability results to show that containment of Datalog in
UC2RPQs is decidable in 2EXPTIME.

1 Introduction

Querying is the fundamental mechanism for extracting information from a
database. The basic reasoning task associated to querying is query answering,
which amounts to computing the information to be returned as result of a query.
There are, however, other reasoning services involving queries that data and
knowledge representation systems should support. One of the most important
is checking containment, i.e., verifying whether one query yields necessarily a
subset of the result of another one. Query containment, called subsumption in
AI [1,2], is crucial in several contexts, such as query optimization, query reformu-
lation, knowledge-base verification, information integration, integrity checking,
and cooperative answering; cf. [3,4,5,6,7,8,9,10,11,12,13]. Thus, it is fair to de-
scribe query containment as one of the most fundamental database reasoning
tasks.

D. Calvanese et al. (Eds.): ICDT 2003, LNCS 2572, pp. 330–345, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [595.276 824.882] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil: ¡M
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile (¡M)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

Decidable Containment of Recursive Queries 331

Needless to say, query containment is undecidable if we do not limit the
expressive power of the query language; it is clearly undecidable for first-order
logic. In fact, in knowledge representation suitable query languages have been
designed for retaining decidability. The same is true in databases, where the no-
tion of conjunctive query is the basic one in the investigation of reasoning about
queries [14]. A conjunctive query (CQ) is simply a conjunction of atoms, where
each atom is built out from relation symbols and (existentially quantified) vari-
ables. Relationally, a CQ is a project-join query. By adding union and recursion
to conjunctive queries, one gets Datalog, the language of logic programs (known
also as Horn-clause programs) without function symbols [15], which is essen-
tially a fragment of fixpoint logic [16,17]. Datalog consists, in a pure way, only
of the most fundamental elements of relational queries: join, projection, union,
and recursion. With respect to query containment, CQs and Datalog span the
spectrum in terms of computational complexity. In [14] it is shown that CQ con-
tainment is equivalent to CQ evaluation (NP-complete). (For some extensions,
see [18,19,20,21].) On the other hand, it is shown in [22] that containment of
Datalog queries is undecidable; the proof is by reduction from the containment
problem for context-free grammars.

The most powerful query-containment results for Datalog are given in [23,24,
25]. In [23] it is pointed out that tree-automata techniques can be used to prove
the decidability of query containment for monadic Datalog, where rule heads use
a single variable (which means that intermediate result of the query, as well as
the final one, are sets of data elements). The other results apply to the relation-
ship between Datalog and non-recursive Datalog (non-recursive Datalog queries
are in essence unions of conjunctive queries). In [24] it is shown that checking
containment of nonrecursive Datalog queries in Datalog queries is decidable in
exponential time. In [25] (see also [21]) it is shown, using tree-automata tech-
niques, that containment of Datalog queries in nonrecursive Datalog queries is
decidable in triply exponential time. When the non-recursive query is repre-
sented, via unfolding, as a union of CQs, the complexity is doubly exponential,
rather than triple exponential. (These bounds are known to be optimal, see [26,
4] for studies of special cases and some extensions.)

In this paper we address the problem of query containment in the context
of semistructured data models. Our goal is to capture the essential features
found in databases, both traditional and semistructured, as well as knowledge
bases in semantic networks, conceptual graphs, and description logics. For this
purpose, we conceive a database as an edge-labeled graph, where nodes represent
objects, and a labeled edge between two nodes represents the fact that the binary
relation denoted by the label holds for the objects. This model captures data
expressed using XML-like languages [27,28] and is accepted as a standard model
for semistructured data [29,30].

In this framework, a basic querying mechanism is the one of regular path
queries (RPQ) [29,31,32], which ask for all pairs of objects that are connected
by a path conforming to a regular expression. Regular path queries are extremely
useful for expressing complex navigations in a graph. In particular, union and

332 D. Calvanese, G. De Giacomo, and M.Y. Vardi

transitive closure are crucial when we do not have a complete knowledge of the
structure of the database. In our regular path queries, we include also the inverse
operator, which enables us to navigate edges backwards [29,7], for example, from
a child to its parent. We denote these queries by 2RPQs (two-way regular path
queries). Using 2RPQs as the basic querying mechanism, one can construct con-
junctive 2-way regular path queries (C2RPQs), which enables us to perform joins
and projections over 2RPQs. C2RPQs are the basic building blocks for querying
semistructured data [33,13,31]. The containment problem for C2RPQs (actually
for UC2RPQs, unions of such C2RPQs) was studied in [34] (see also [33]), where
it was shown, using two-way automata, to be EXPSPACE-complete.

The notable fact about the decidability of containment for C2RPQs is that
C2RPQs are a fragment of recursive Datalog, due to the transitive closure oper-
ator. Thus, the result in [33,34] is the first decidability result for containment of
non-monadic recursive Datalog queries. The fact that automata-theoretic tech-
niques are used both in [25] and in [34] suggests that perhaps the two decidability
results can be combined. We show here that this is indeed the case by proving the
decidability of the containment of Datalog queries in UC2RPQs (which, implies
the known decidability result for containment of UC2RPQs). The automata-
theoretic techniques combine tree automata with two-way automata; we use
alternating two-way tree automata [35]. The upper bound is doubly exponential
time, just as in [25], which we conjecture is optimal (see Conclusions).

2 Databases and Queries

We consider a semistructured database (DB) G as an edge-labeled graph (D, E),
where D is the set of nodes, and E is the set of edges labeled with elements of an
alphabet ∆. A node represents an object, and an edge between nodes d1 and d2
labeled e, denoted e(d1, d2), represents the fact that the binary relation e holds
for the pair (d1, d2).

The basic querying mechanism on a DB is that of regular path queries
(RPQs). An RPQ E is expressed as a regular expression or a finite automa-
ton, and computes the set of pairs of nodes of the DB connected by a path that
conforms to the regular language L(E) defined by E. We consider unions of con-
junctive 2-way regular path queries (UC2RPQs) [34], which extend regular path
queries with the possibility to traverse edges backwards, with conjunctions and
variables, and with union.

Formally, Let ∆ be a set of binary relation symbols, and let ∆± = ∆ ∪∆−,
with ∆− = {e− | e ∈ ∆}. Intuitively, e− denotes the inverse of the binary
relation e. If r ∈ ∆±, then we use r− to mean the inverse of the relation r, i.e.,
if r is e, then r− is e−, and if r is e−, then r− is e.

2-way regular path queries (2RPQs) are expressed by means of regular ex-
pressions or finite word automata over ∆±. Thus, in contrast with RPQs,
2RPQs may use also the inverse e− of e, for each e ∈ ∆. When evaluated
over a DB G, a 2RPQ E computes the set E(G) of pairs of nodes (d0, dq) such
that r1(d0, d1), r2(d1, d2), . . . , rq(dq−1, dq) hold in G and r1r2 · · · rq is in the reg-

Decidable Containment of Recursive Queries 333

ular language L(E) defined by E. Observe that, when q = 0, we have that
r1r2 · · · rq = ε and d0 = dq.

Conjunctive 2-way regular path queries (C2RPQs) are conjunctions of atoms,
where each atom specifies that one 2RPQ holds between two variables. More
precisely a C2RPQ γ of arity n is a formula of the form

Q(x1, . . . , xn) ← E1(y1, y′
1), . . . , Em(ym, y

′
m)

where x1, . . . , xn, y1, y
′
1 . . . , ym, y

′
m range over a set {u1, ..., uk} of variables, each

xi, called a distinguished variable, is one of y1, y′
1 . . . , ym, y

′
m, and E1, . . . , Em

are 2RPQs. The answer set γ(G) to a C2RPQ γ over a DB G = (D, E) is the set
of tuples (d1, . . . , dn) of nodes of G such that there is a total mapping σ from
{u1, . . . , uk} to D with σ(xi) = di for every distinguished variable xi of γ, and
(σ(y), σ(y′)) ∈ E(G) for every conjunct E(y, y′) in γ.

Finally, a union of conjunctive 2-way regular path queries (UC2RPQ) of arity
n has the form ∪iγi, where each γi is a C2RPQ of arity n. The answer set to
a UC2RPQ Γ = ∪iγi over a DB G is simply Γ (G) = ∪iγi(G). Notice that
traditional conjunctive queries (resp., unions of conjunctive queries) (cf. [15])
are just a special case of C2RPQs (resp., UC2RPQ) in which each 2RPQ in an
atom is simply a relation symbol.

A Datalog program consists of a set of Horn rules. A (Horn) rule is a first
order material implication between a head and a body, where the head con-
sists of a single atom, and the body consists of a conjunction of atoms. Each
atom is a formula of the form R(x1, . . . , xn) where R is a predicate symbol and
x1, . . . , xn are variables. All variables are implicitly universally quantified outside
the rule. The predicates that occur in heads of rules are called intensional (IDB)
predicates. The rest of the predicates are called extensional (EDB) predicates.
Since we consider Datalog programs that are evaluated over a semistructured
database, the EDB predicates have to be among the predicates in ∆, which are
all binary. Observe, however, that IDB predicates, which are not in ∆, may be
of arbitrary arity.

Let Π be a Datalog program. Let Qi
Π(G) be the collection of facts about an

IDB predicateQ that can be deduced from a database G by at most i applications
of the rules in Π, and let Q∞

Π (G) be the collection of facts about Q that can be
deduced from G by any number of applications of the rules in Π, that is,

Q∞
Π (G) =

⋃

i≥0

Qi
Π(G)

We say that a Datalog program Π with goal predicate Q is contained in a
UC2RPQ Γ if Q∞

Π (G) ⊆ Γ (G) for every database G.

334 D. Calvanese, G. De Giacomo, and M.Y. Vardi

3 Containment of Datalog in Unions of Conjunctive
Queries

A containment mapping from a conjunctive query ψ to a conjunctive query ϕ is a
renaming of variables subject to the following constraints: (a) every distinguished
variable must map to itself, and (b) after renaming, every literal in ψ must be
among the literals of ϕ. It is well known that containment of conjunctive queries
can be characterized in terms of containment mappings (cf. [15]). In fact this
characterization has been extended in [19] to unions of conjunctive queries, and
holds also for infinite unions.

Theorem 1 ([19]). Let Φ = ∪iϕi and Ψ = ∪iψi be (possibly infinite) unions
of conjunctive queries. Then Φ is contained in Ψ (i.e., Φ(G) ⊆ Ψ(G) for every
database G) if and only if each ϕi is contained in some ψj , i.e., there is a
containment mapping from ψj to ϕi.

As for containment of Datalog in (unions) of conjunctive queries, it is known
(cf. [36,37]) that the relation defined by an IDB predicate in a Datalog program
Π, i.e., Q∞

Π (G), can be defined by an infinite union of conjunctive queries. That
is, for each IDB predicate Q there is an infinite sequence ϕ0, ϕ1, . . . of conjunctive
queries such that, for every database G, we have Q∞

Π (G) =
⋃∞

i=0 ϕi(G). The ϕi’s
are called the expansions of Q. In [25], expansions of a Datalog program Π are
described in terms of so-called expansion trees, in which each node is labeled
with an instance of a rule of Π. We call head and body of a node the head and
the body of the rule labeling the node, respectively. In an expansion tree for an
IDB predicate Q, the root is labeled by a rule whose head is a Q-atom. If a node
g is labeled by a rule instance

R(t) ← R1(t1), . . . , Rm(tm)

where the IDB atoms in the body of the rule are Ri1(t
i1), . . . , Ri�

(ti�), then g
has children g1, . . . , g� labeled with rule instances whose heads are respectively
the atoms Ri1(t

i1), . . . , Ri�
(ti�). In particular, if all atoms in the body of g are

EDB atoms, then g must be a leaf. The query corresponding to an expansion tree
is the conjunction of all EDB atoms in the nodes of the tree, with the variables
in the head of the root as the free variables. Thus, we can view an expansion
tree τ as a conjunctive query. Let trees(Q,Π) denote the set of expansion trees
for an IDB predicate Q in Π. (Note that trees(Q,Π) is an infinite set.) Then for
every database G, we have

Q∞
Π (G) =

⋃

τ∈trees(Q,Π)

τ(G)

It follows that Π is contained in a conjunctive query ϕ if there is a containment
mapping from ϕ to each expansion tree τ in trees(Q,Π), i.e., a mapping, which
maps distinguished variables to distinguished variables and maps the atoms of
ϕ to atoms in the bodies of rules labeling nodes of τ .

Decidable Containment of Recursive Queries 335

Unfortunately, the number of variables, and hence the number of node labels
in expansion trees is not bounded, and thus expansion trees are not directly
suited for an automata-theoretic approach to containment. In [25], the notion of
proof tree is introduced, with the idea of describing expansion trees using a finite
number of labels. The number of labels is bound by bounding the set of variables
that can occur in labels of nodes in the tree. If r is a rule of a Datalog program
Π, then let num var(r) be the number of variables occurring in IDB atoms in
r (head or body). Let num var(Π) be twice the maximum of num var(r) for
all rules r in Π. Let var(Π) be the set {x1, . . . , xnum var(Π)}. A proof tree for
Π is simply an expansion tree for Π all of whose variables are from var(Π).
We denote the set of proof trees for a predicate Q of a Datalog program Π by
p trees(Q,Π).

A proof tree represents an expansion tree where variables are re-used. In
other words, the same variable is used to represent a set of distinct variables
in the expansion tree. Intuitively, to reconstruct an expansion tree for a given
proof tree, we need to distinguish among occurrences of variables. Let g1 and g2
be nodes in a proof tree τ , with a lowest common ancestor g0, and let x1 and
x2 be occurrences, in g1 and g2, respectively, of a variable x. We say that x1
and x2 are connected in τ if the head of every node, except perhaps for g0, on
the simple path connecting g1 and g2 has an occurrence of x. We say that an
occurrence x of a variable x in τ is a distinguished occurrence if it is connected
to an occurrence of x in the head of the root of τ .

We want to define containment mappings from conjunctive queries to proof
trees such that there is a containment mapping from a conjunctive query to a
proof tree if and only if there is a containment mapping from the conjunctive
query to the expansion corresponding to the proof tree. To do so, we need to
force a variable in the conjunctive query to map to a unique variable in the
expansion corresponding to the proof tree. A strong containment mapping from
a conjunctive query ϕ to a proof tree τ is a containment mapping h from ϕ to
τ with the following properties:

– h maps distinguished occurrences in ϕ to distinguished occurrences in τ , and
– if x1 and x2 are two occurrences of a variable x in ϕ, then the occurrences
h(x1) and h(x2) in τ are connected.

The following characterization of containment of a union of conjunctive
queries in a Datalog program was shown in [25].

Theorem 2 ([25]). Let Π be a Datalog program with goal predicate Q, and
let Φ = ∪iϕi be a (possibly infinite) union of conjunctive queries. Then Π is
contained in Φ if and only if for every proof tree τ ∈ p trees(Q,Π) there is a
strong containment mapping from some ϕi to τ .

The above theorem is shown in [25] for finite unions of conjunctive queries only.
However, it is easy to see that the proof carries through also for infinite unions.

Notice that Theorem 2 by itself does not provide decidability of containment
of Datalog in (possibly infinite) unions of conjunctive queries, since one needs a

336 D. Calvanese, G. De Giacomo, and M.Y. Vardi

method to check the existence of a strong containment mapping. Undecidability
of containment between Datalog queries [22] shows that such a method will not
exist in general for (infinite) unions that are expansions of Datalog programs.
However, in [25] the above result is exploited to show that containment of a
Datalog query in a finite union of conjunctive queries is in 2EXPTIME (and in
fact 2EXPTIME-complete).

To exploit Theorem 2 for containment of Datalog queries in UC2RPQs, we
need to characterize the problem in terms of containment between Datalog and
(infinite) unions of conjunctive queries. An expansion of a C2RPQ

Q(x1, . . . , xn) ← E1(y1, y′
1), . . . , Em(ym, y

′
m)

is a CQ of the form

Q(x1, . . . , xn) ← r11(y1, z
1
1), r21(z

1
1 , z

2
1), . . . , rn1

1 (zn1−1
1 , y′

1),
...

r1m(ym, z
1
m), r2m(z1

m, z
2
m), . . . , rnm

m (znm−1
m , y′

m)

where, for each i ∈ {1, . . . ,m}, we have that ni ≥ 0, that r1i · · · rni
i ∈ L(Ei), and

that all variables zj
i are pairwise distinct. Observe that, when ni = 0, we have

that r1i · · · rni
i = ε, and r1i (yi, z

1
i), r2i (z1

i , z
2
i), . . . , rni

i (zni−1
i , y′

i) becomes simply
yi = y′

i. Notice that, due to transitive closure, a C2RPQ has in general an infinite
number of expansions.

The following lemma is an easy consequence of Theorem 2 and of the seman-
tics of UC2RPQs.

Lemma 1. Let Π be a Datalog program with goal predicate Q, and let Γ = ∪iγi

be a finite union of C2RPQs γi. Then Π is contained in Γ if and only if for
every proof tree τ ∈ p trees(Q,Π) there is a γi and an expansion ϕ of γi such
that there is a strong containment mapping from ϕ to τ .

We show how to check this condition using tree automata.

4 Two-Way Alternating Tree Automata

We present the basic notions on automata used in the rest of the paper. We as-
sume familiarity with the standard notions of (one-way) word automata (1NFAs)
and (one-way) nondeterministic tree automata (1NTAs), and concentrate on
two-way alternating tree automata (2ATAs).

Trees are represented as prefix closed finite sets of words over N (the set of
positive natural numbers). Formally, a tree T is a finite subset of N, such that
if g·c ∈ T , where g ∈ N

∗ and c ∈ N, then also g ∈ T and if c > 1 then also
g·(c−1) ∈ T . The elements of T are called nodes, and for every g ∈ T , the nodes
g·c ∈ T , with c ∈ N, are the successors of g. By convention we take g·0 = g, and
g·c·(−1) = g. By definition, the empty sequence ε is a member of every tree,
and is called the root. Note that ε · −1 is undefined. The branching degree d(g)

Decidable Containment of Recursive Queries 337

of a node g denotes the number of successors of g. If the branching degree of all
nodes of a tree is bounded by k, we say that the tree has branching degree k.
Given a finite alphabet Σ, a Σ-labeled tree τ is a pair (T, V), where T is a tree
and V : T → Σ maps each node of T to an element of Σ. Σ-labeled trees are
often referred to as trees, and if τ = (T, V) is a (labeled) tree and g is a node of
T , we use τ(g) to denote V (g).

Two-way alternating tree automata (2ATAs) [35,23], are a generalization of
standard nondeterministic top-down tree automata (1NTAs) [38,39]) with both
upward moves and with alternation. Let B(I) be the set of positive Boolean
formulae over I, built inductively by applying ∧ and ∨ starting from true,
false, and elements of I. For a set J ⊆ I and a formula ϕ ∈ B(I), we say that
J satisfies ϕ if and only if, assigning true to the elements in J and false to
those in I \ J , makes ϕ true. For a positive integer k, let [k] = {−1, 0, 1, . . . , k}.
A two-way alternating tree automaton (2ATA) over an alphabet Σ running over
trees with branching degree k, is a tuple A = (Σ,S, δ, s0, F), where S is a finite
set of states, δ : S × Σ → B([k] × S) is the transition function, s0 ∈ S is the
initial state, and F ⊆ S is the set of final states. The transition function maps a
state s ∈ S and an input letter σ ∈ Σ to a positive Boolean formula over [k]×S.
Intuitively, if δ(s, σ) = ϕ, then each pair (c, s′) appearing in ϕ corresponds to a
new copy of the automaton going to the direction suggested by c and starting
in state s′.

A run ν of a 2ATA A over a labeled tree τ = (T, V) is a labeled tree (Tν , Vν)
in which every node is labeled by an element of T ×S. A node f of Tν labeled by
(g, s) describes a copy of A that is in the state s and reads the node g of τ . The
labels of adjacent nodes have to satisfy the transition function of A. Formally,
a run (Tν , Vν) is a (T × S)-labeled tree satisfying:

1. ε ∈ Tν and Vν(ε) = (ε, s0).
2. Let f ∈ Tν , with Vν(f) = (g, s) and δ(s, V (g)) = ϕ. Then there is a (possibly

empty) set C = {(c1, s1), . . . , (cn, sn)} ⊆ [k]× S such that:
– C satisfies ϕ and
– for all i ∈ {1, . . . , n}, we have that f ·i ∈ Tν , g·ci is defined, and Vν(f ·i) =

(g·ci, si).

A run ν = (Tν , Vnu) on a tree τ is accepting if, whenever a leaf of Tν is labeled
by (g, s), then s ∈ F . A accepts a labeled tree τ if it has an accepting run on τ .
The set of trees accepted by A is denoted T (A). The nonemptiness problem for
tree automata consists in deciding, given a tree automaton A, whether T (A) is
nonempty.

As shown in [23], 2ATAs can be converted to complementary 1NTAs with
only a single exponential blowup. Moreover, it is straightforward to see that
one can construct a 2ATA of polynomial size accepting the finite union of the
languages accepted by n 2ATAs.

Proposition 1 ([23]). Given a 2ATA A over an alphabet Σ, there is a 1NTA
A of size exponential in the size of A such that A accepts a Σ-labeled tree τ if
and only if τ is rejected by A.

338 D. Calvanese, G. De Giacomo, and M.Y. Vardi

Proposition 2. Given n 2ATAs A1, . . . ,An over an alphabet Σ, there is a
2ATA A∪ of size polynomial in the sum of the sizes of A1, . . . ,An such that
T (A∪) = T (A1) ∪ · · · ∪ T (An).

We make also use of the following standard results for 1NTAs.

Proposition 3 ([40]). Given 1NTAs A1 and A2 over an alphabet Σ, there is
a 1NTA A∩ of size polynomial in the size of A1 and A2 such that T (A∩) =
T (A1) ∩ T (A2).

Proposition 4 ([38,39]). The nonemptiness problem for 1NTAs is decidable
in polynomial time.

5 Containment of Datalog in Unions of C2RPQs

The main feature of proof trees is the fact that the number of possible labels
is finite; it is actually exponential in the size of Π. Because the set of labels is
finite, the set of proof trees p trees(Q,Π), for an IDB predicate Q in a program
Π, can be described by a tree automaton.

Theorem 3 ([25]). Let Π be a Datalog program with a goal predicate Q. Then
there is a 1NTA Ap trees

Q,Π , whose size is exponential in the size of Π, such that
T (Ap trees

Q,Π) = p trees(Q,Π).

The automaton Ap trees
Q,Π = (Σ, I ∪ {accept}, IQ, δ, {accept}) defined in [25]

is as follows. The state set I is the set of all IDB atoms with variables among
var(Π). The start-state set IQ is the set of all atoms Q(s), where the variables
of s are in var(Π). The alphabet is Σ = I ×R, where R is the set of instances
of rules of Π over var(Π). The transition function δ is constructed as follows.
Let � be the body of a rule instance in R

R(t) ← R1(t1), . . . , Rm(tm)

– If the IDB atoms in � are Ri1(t
i1), . . . , Ri�

(ti�), then there is a transition1

〈1, Ri1(t
i1)〉 ∧ · · · ∧ 〈�, Ri�

(ti�)〉 ∈ δ(R(t), (R(t)← �))

– If all atoms in � are EDB atoms, then there is a transition

〈0, accept〉 ∈ δ(R(t), (R(t)← �))

It is easy to see that the number of states and transitions in Ap trees
Q,Π is expo-

nential in the size of Π.

We now show that strong containment of proof trees in a C2RPQ can be
checked by tree automata as well. Let Π be a Datalog program with binary
1 For uniformity, we use the notation of 2ATAs to denote the transitions of 1NTAs.

Decidable Containment of Recursive Queries 339

EDB predicates in ∆ and with goal predicate Q, and let γ be a C2RPQ over
∆± of the same arity as Q. We describe the construction of a 2ATA Aγ

Q,Π that
accepts all proof trees τ in p trees(Q,Π) such that there is an expansion ϕ of γ
and a strong containment mapping from ϕ to τ .

We view γ as a set of atoms E(x, y), where E is a 1NFA E =
(∆±, SE , sE , δE , fE), with sE , fE ∈ SE , and where, w.l.o.g., δE does not contain
ε-transitions. Also, w.l.o.g., we assume that for two distinct atoms E1(x1, y1)
and E2(x2, y2), E1 and E2 are distinct automata with disjoint sets of states, i.e.,
SE1 ∩ SE2 = ∅. For a 1NFA E, we use Ef

s to denote the 1NFA identical to E,
except that s ∈ SE and f ∈ SE are respectively the initial and final state of Ef

s .
Let Vγ be the set of variables appearing in the C2RPQ γ, and V +

γ = {v̄1
E , v̄

2
E |

E(x, y) ∈ γ}, i.e., for each 1NFA E(x, y) ∈ γ, V +
γ contains two special variables

v̄1
E and v̄2

E . We denote with B the set of all sets β of atoms, such that β contains,
for each atom E(x, y) ∈ γ, at most one atom Ef

s (x′, y′), for some s, f ∈ SE , with
x′ either x or v̄1

E and y′ either y or v̄2
E . Notice that the size of B is exponential

in the size of γ. Indeed, let k be the number of atoms in γ and let m be an
upper bound on the number of states of each 1NFA in γ. All possible variants of
a 1NFA obtained by changing the initial state and/or final state are m2. Hence,
the number of possible sets of 1NFAs of at most k elements is (m2)k = 2O(m·k).

The automaton Aγ
Q,Π is (Σ,S ∪ {accept}, SQ, δ, {accept}).

– The alphabet Σ is I × R. Recall that I is the set of all IDB atoms with
variables among var(Π), and R is the set of instances of rules of Π over
var(Π).

– The state set S is the set I ×B×2Vγ×var(Π)×2V +
γ ×var(Π). The second com-

ponent represents the collection of automata accepting sequences of atoms
that have to be mapped to atoms in the tree τ accepted by Aγ

Q,Π , and the
third and fourth component contain the set of partial mappings respectively
from Vγ and V +

γ to var(Π).
– The start-state set SQ consists of all tuples (Q(s), γ,Mγ,s, ∅), where the

variables of s are in var(Π) and Mγ,s is a mapping of the distinguished
variables of γ into the variables of s.

The transition function δ of Aγ
Q,Π is constructed as follows. Let � be the body

of a rule instance in R

R(t)← R1(t1), . . . , Rm(tm)

1. There is an “atom mapping” transition

〈0, (R(t), β′,M,M ′
+)〉 ∈ δ((R(t), β,M,M+), (R(t)← �))

if there is an EDB atom e(a, b) among R1(t1), . . . , Rm(tm) and if β′ coincides
with β, except that one element Ef

s (x, y) in β is replaced in β′ by Ef
s′(x′, y),

and one of the following holds:
– s′ ∈ δE(s, e) and
• if x ∈ Vγ (i.e., x is a variable of γ), M maps x to a, and M+ does

not map v̄1
E , then x′ = v̄1

E and M ′
+ = M+ ∪ {(v̄1

E , b)};

340 D. Calvanese, G. De Giacomo, and M.Y. Vardi

• if x = v̄1
E ∈ V +

γ (i.e., x is the first special variable for the 1NFA E)
and (v̄1

E , a) ∈ M+, then x′ = x = v̄1
E , and M ′

+ = M+ \ {(v̄1
E , a)} ∪

{(v̄1
E , b)};

– s′ ∈ δE(I, e−) and
• if x ∈ Vγ (i.e., x is a variable of γ), M maps x to b, and M+ does

not map v̄1
E , then x′ = v̄1

E and M ′
+ = M+ ∪ {(v̄1

E , a)};
• if x = v̄1

E ∈ V +
γ (i.e., x is the first special variable for the 1NFA E)

and (v̄1
E , b) ∈ M+, then x′ = x = v̄1

E , and M ′
+ = M+ \ {(v̄1

E , b)} ∪
{(v̄1

E , a)}.
Intuitively, an “atom mapping” transition maps the next atom recognized
by some 1NFA in β to some EDB atom in ρ, and modifies M+ accordingly.
Note that the variable x (either a variable of Vγ or the special variable v̄1

E)
must already be mapped (respectively by M or M+) to some variable in the
current node of τ .

2. There is a “splitting” transition

〈0, (R(t), β′,M,M ′
+)〉 ∧ 〈0, (R(t), β′′,M,M ′′

+)〉 ∈
δ((R(t), β,M,M+), (R(t)← �))

if the following hold:
– M ′

+ and M ′′
+ coincide with M+, except for the changes described in the

following point;
– β can be partitioned into β1, β2, and β3; moreover β′ = β1 ∪ β′

3 and
β′′ = β2 ∪ β′′

3 , where β′
3 and β′′

3 are sets of elements that consist of one
element for each element Ef

s (x, y) in β3, obtained as follows: for some
state s′ of E and some variable a ∈ var(Π) appearing in R(t)← �, one
of the following holds:
• β′

3 contains the element Es′
s (x, v̄2

E), β′′
3 contains the element

Ef
s′(v̄1

E , y), M
′
+ (re-)maps v̄2

E to a, and M ′′
+ (re-)maps v̄1

E to a;
• β′

3 contains the element Ef
s′(v̄1

E , y), β′′
3 contains the element

Es′
s (x, v̄2

E), M ′
+ (re-)maps v̄1

E to a, and M ′′
+ (re-)maps v̄2

E to a;
– β′ and β′′ can share a variable in Vγ only if this variable is in the domain

of M . (Notice that two occurrences of a special variable in V +
γ shared

by β′ and β′′ are not related to each other.)
A “splitting” transition partitions the atoms in β into two parts. The goal is
to enable the two parts to be manipulated separately. For example, one part
may correspond to those atoms that are intended to be “moved” together to
an adjacent node in a future transition, while the other part may correspond
to those atoms that are meant to stay together in the current node for further
processing, e.g., by further splitting or by mapping to EDB atoms. During
splitting, some atoms in β may be actually split into two subatoms. The
mappings M and M+ have to “bind” together variables that are in common
to the two conjuncts of the transition.

3. There is a “moving” transition

〈j, (Rij (t
ij), β,M,M+)〉 ∈ δ((R(t), β,M,M+), (R(t)← �))

Decidable Containment of Recursive Queries 341

with j ∈ {−1, 1, . . . , �}, where � is the number of IDB atoms in �, the atom
Rij (t

ij), for j ∈ {1, . . . , �}, is the j-th IDB atom, Ri−1 stands for R, and ti−1

stands for t, if for all variables that occur in β and that are in the domain
of either M or M+, their image is in tij .
A “moving” transition moves to an adjacent node, and is intended to be
applied whenever no next atom can be mapped and no further splitting is
possible. Moving is possible only if variables that are both in atoms still to
be mapped (and thus in β) and have already been mapped (and thus are in
the domain of either M or M+) can be propagated through the head of the
rule where the automaton moves.

4. There is an “equality checking” transition

〈0, (R(t), β′,M,M+)〉 ∈ δ((R(t), β,M,M+), (R(t)← �))

if the following hold:
– β can be partitioned into β0 and β′;
– for all atoms Ef

s (x, y) ∈ β0 we have that
• s = f ,
• (x, a) and (y, a) are in M ∪M+, for some variable a in � or t, i.e.,

both x and y are in the domain of M or of M+ and they are mapped
to the same variable a;

An “equality checking” transition gets rid of those elements in β all of whose
atoms have already been mapped to atoms in τ . While doing so, it checks
that M and M+ are compatible with the equalities induced by such atoms.

5. There is a “mapping extending” transition

〈0, (R(t), β,M ′,M+)〉 ∈ δ((R(t), β,M,M+), (R(t)← �))

if M ′ is a partial mapping that extends M .
A “mapping extending” transition adds some variables to the mapping M .
This may be necessary to be able to apply some other transition that requires
certain variables to appear in M .

6. There is a “final” transition

〈0, accept〉 ∈ δ((R(t), ∅,M,M+), (R(t)← �))

A “final” transition moves to the accepting state whenever there are no
further atoms in β that have to be processed.

It is easy to see that the number of states and transitions in Aγ
Q,Π is ex-

ponential in the size of Π and γ. The following two basic lemmas establish the
correctness of the above construction.

Lemma 2. Let τ be a proof tree in p trees(Q,Π). If there is an expansion ϕ of
γ and a strong containment mapping h from ϕ to τ , then τ is accepted by Aγ

Q,Π .

Lemma 3. Let τ be a proof tree in p trees(Q,Π). If τ is accepted by Aγ
Q,Π ,

then there is an expansion ϕ of γ and a strong containment mapping from ϕ to
τ .

342 D. Calvanese, G. De Giacomo, and M.Y. Vardi

Theorem 4. Let Π be a Datalog program with binary EDB predicates in ∆ and
with goal predicate Q, and let Γ = ∪iγi be a finite union of C2RPQs γi over
∆±. Then Π is contained in Γ if and only if

T (Ap trees
Q,Π) ⊆

⋃
i T (Aγi

Q,Π)

Proof. By Lemma 1, Π is contained in Γ if and only if for every proof tree
τ ∈ p trees(Q,Π) there is a γi and an expansion ϕ of γi such that there is a
strong containment mapping from ϕ to τ . By Theorem 3 and Lemmas 2 and 3,
the latter conditions is equivalent to T (Ap trees

Q,Π) ⊆
⋃

i T (Aγi

Q,Π).

This allows us to establish the main result of the paper.

Theorem 5. Containment of a recursive Datalog program in a UC2RPQ is in
2EXPTIME.

Proof. By Proposition 2, we can construct a 2ATA AΓ
Q,Π , whose size is exponen-

tial in the size of Π and Γ , such that T (AΓ
Q,Π) =

⋃
i T (Aγi

Q,Π). By Proposition 1,
we can construct a 1NTA A¬Γ

Q,Π , whose size is doubly exponential in the size of
Π and Γ , such that a Σ-labeled tree is accepted by A¬Γ

Q,Π if and only if it is not
accepted by AΓ

Q,Π . By Proposition 3, we can construct a 1NTA Acont , whose
size is still doubly exponential in the size of Π and Γ , such that Acont accepts
a Σ-labeled tree if and only if it is accepted by Ap trees

Q,Π but not accepted by
any of the Aγi

Q,Π . By Theorem 4, Acont is nonempty if and only if Π is not
contained in Γ . By Proposition 4, nonemptiness of Acont can be checked in time
polynomial in its size, and hence doubly exponential in the size of Π and Γ . The
claim follows.

6 Conclusions

We have presented an upper-bound result for containment of Datalog queries in
unions of conjunctive regular path queries with inverse (UC2RPQ). This is the
most general known decidability result for containment of recursive queries, apart
from the result in [23] for monadic Datalog. The class UC2RPQ has several fea-
tures that are typical of modern query languages for knowledge and data bases.
In particular, it is the largest fragment of query languages for XML data [41] for
which containment is known to be decidable [34].

The 2EXPTIME upper-bound result shows that adding transitive closure to
conjunctive queries does not increase the complexity of query containment with
respect to Datalog queries, as it matches the bound obtained in [25] for con-
tainment of Datalog queries in union of conjunctive queries. For containment in
union of conjunctive queries, the 2EXPTIME bound is shown in [25] to be tight.
It is an open question whether our bound here is also tight. The lower bound
in [25] is shown using relation symbols of arity up to 8. If that arity can be
reduced to 2, then it would follow that our bound here is tight. We conjecture
this to be the case. Currently, we have an EXPSPACE lower bound that directly

Decidable Containment of Recursive Queries 343

follows from EXPSPACE-completeness of containment of UC2RPQs [34] (which
is a special case of containment of Datalog in UC2RPQs). Observe that contain-
ment in the converse direction, as well as equivalence, is undecidable already for
RPQs. Indeed, universality of context free grammars can be reduced to contain-
ment of RPQs in Datalog, by following the line of the undecidability proof of
containment between Datalog queries in [22].

Query containment is typically the first step in addressing various problems
of query processing, such as view-based query processing. We predict that the
decidability result for containment obtained in this paper would prove useful for
a broad range of query processing applications.

Acknowledgements. The first and second author were supported in part by
MIUR project D2I (Integration, Warehousing and Mining of Heterogeneous Data
Sources), by EU Project INFOMIX (Boosting Information Integration) IST-
2001-33570, and by EU Project SEWASIE (Semantic Webs and AgentS in Inte-
grated Economies) IST-2001-34825. The third author was supported in part by
NSF grants CCR-9988322, CCR-0124077, IIS-9908435, IIS-9978135, and EIA-
0086264.

References

1. Buchheit, M., Jeusfeld, M.A., Nutt, W., Staudt, M.: Subsumption between queries
to object-oriented databases. Information Systems 19 (1994) 33–54 Special issue
on Extending Database Technology, EDBT’94.

2. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: Reasoning in description
logics. In Brewka, G., ed.: Principles of Knowledge Representation. Studies in
Logic, Language and Information. CSLI Publications (1996) 193–238

3. Gupta, A., Ullman, J.D.: Generalizing conjunctive query containment for view
maintenance and integrity constraint verification (abstract). In: Workshop on De-
ductive Databases (In conjunction with JICSLP), Washington D.C. (USA) (1992)
195

4. Levy, A.Y., Sagiv, Y.: Semantic query optimization in Datalog programs. In: Proc.
of the 14th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database
Systems (PODS’95). (1995) 163–173

5. Chaudhuri, S., Krishnamurthy, S., Potarnianos, S., Shim, K.: Optimizing queries
with materialized views. In: Proc. of the 11th IEEE Int. Conf. on Data Engineering
(ICDE’95), Taipei (Taiwan) (1995)

6. Adali, S., Candan, K.S., Papakonstantinou, Y., Subrahmanian, V.S.: Query
caching and optimization in distributed mediator systems. In: Proc. of the ACM
SIGMOD Int. Conf. on Management of Data. (1996) 137–148

7. Buneman, P., Davidson, S., Hillebrand, G., Suciu, D.: A query language and
optimization technique for unstructured data. In: Proc. of the ACM SIGMOD Int.
Conf. on Management of Data. (1996) 505–516

8. Motro, A.: Panorama: A database system that annotates its answers to queries
with their properties. J. of Intelligent Information Systems 7 (1996)

9. Levy, A.Y., Rousset, M.C.: Verification of knowledge bases: a unifying logical view.
In: Proc. of the 4th European Symposium on the Validation and Verification of
Knowledge Based Systems, Leuven, Belgium (1997)

344 D. Calvanese, G. De Giacomo, and M.Y. Vardi

10. Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Description
logic framework for information integration. In: Proc. of the 6th Int. Conf. on
Principles of Knowledge Representation and Reasoning (KR’98). (1998) 2–13

11. Fernandez, M.F., Florescu, D., Levy, A., Suciu, D.: Verifying integrity constraints
on web-sites. In: Proc. of the 16th Int. Joint Conf. on Artificial Intelligence (IJ-
CAI’99). (1999) 614–619

12. Friedman, M., Levy, A., Millstein, T.: Navigational plans for data integration. In:
Proc. of the 16th Nat. Conf. on Artificial Intelligence (AAAI’99), AAAI Press/The
MIT Press (1999) 67–73

13. Milo, T., Suciu, D.: Index structures for path expressions. In: Proc. of the 7th Int.
Conf. on Database Theory (ICDT’99). Volume 1540 of Lecture Notes in Computer
Science., Springer (1999) 277–295

14. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in
relational data bases. In: Proc. of the 9th ACM Symp. on Theory of Computing
(STOC’77). (1977) 77–90

15. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley
Publ. Co., Reading, Massachussetts (1995)

16. Chandra, A.K., Harel, D.: Horn clause queries and generalizations. J. of Logic and
Computation 2 (1985) 1–15

17. Moschovakis, Y.N.: Elementary Induction on Abstract Structures. North-Holland
Publ. Co., Amsterdam (1974)

18. Aho, A.V., Sagiv, Y., Ullman, J.D.: Equivalence among relational expressions.
SIAM J. on Computing 8 (1979) 218–246

19. Sagiv, Y., Yannakakis, M.: Equivalences among relational expressions with the
union and difference operators. J. of the ACM 27 (1980) 633–655

20. Klug, A.C.: On conjunctive queries containing inequalities. J. of the ACM 35
(1988) 146–160

21. van der Meyden, R.: The Complexity of Querying Indefinite Information. PhD
thesis, Rutgers University (1992)

22. Shmueli, O.: Equivalence of Datalog queries is undecidable. J. of Logic Program-
ming 15 (1993) 231–241

23. Cosmadakis, S.S., Gaifman, H., Kanellakis, P.C., Vardi, M.Y.: Decidable optimiza-
tion problems for database logic programs. In: Proc. of the 20th ACM SIGACT
Symp. on Theory of Computing (STOC’88). (1988) 477–490

24. Sagiv, Y.: Optimizing Datalog programs. In Minker, J., ed.: Foundations of De-
ductive Databases and Logic Programming. Morgan Kaufmann, Los Altos (1988)
659–698

25. Chaudhuri, S., Vardi, M.Y.: On the equivalence of recursive and nonrecursive
datalog programs. J. of Computer and System Sciences 54 (1997) 61–78

26. Chaudhuri, S., Vardi, M.Y.: On the complexity of equivalence between recursive
and nonrecursive Datalog programs. In: Proc. of the 13th ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS’94). (1994) 107–116

27. Bray, T., Paoli, J., Sperberg-McQueen, C.M.: Extensible Markup Language (XML)
1.0 — W3C recommendation. Technical report, World Wide Web Consortium
(1998) Available at http://www.w3.org/TR/1998/REC-xml-19980210.

28. Calvanese, D., De Giacomo, G., Lenzerini, M.: Representing and reasoning on
XML documents: A description logic approach. J. of Logic and Computation 9
(1999) 295–318

29. Buneman, P.: Semistructured data. In: Proc. of the 16th ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS’97). (1997) 117–121

http://www.w3.org/TR/1998/REC-xml-19980210

Decidable Containment of Recursive Queries 345

30. Florescu, D., Levy, A., Mendelzon, A.: Database techniques for the World-Wide
Web: A survey. SIGMOD Record 27 (1998) 59–74

31. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: from Relations to
Semistructured Data and XML. Morgan Kaufmann, Los Altos (2000)

32. Abiteboul, S., Vianu, V.: Regular path queries with constraints. J. of Computer
and System Sciences 58 (1999) 428–452

33. Florescu, D., Levy, A., Suciu, D.: Query containment for conjunctive queries with
regular expressions. In: Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp.
on Principles of Database Systems (PODS’98). (1998) 139–148

34. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Containment of con-
junctive regular path queries with inverse. In: Proc. of the 7th Int. Conf. on
Principles of Knowledge Representation and Reasoning (KR 2000). (2000) 176–
185

35. Slutzki, G.: Alternating tree automata. In: Theoretical Computer Science. Vol-
ume 41. (1985) 305–318

36. Maier, D., Ullman, J.D., Vardi, M.Y.: On the foundations of the universal relation
model. ACM Trans. on Database Systems 9 (1984) 283–308

37. Naughton, J.F.: Data independent recursion in deductive databases. J. of Com-
puter and System Sciences 38 (1989) 259–289

38. Doner, J.E.: Tree acceptors and some of their applications. J. of Computer and
System Sciences 4 (1970) 406–451

39. Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an appli-
cation to a decision problem of second order logic. Mathematical Systems Theory
2 (1968) 57–81

40. Costich, O.L.: A Medvedev characterization of sets recognized by generalized finite
automata. Mathematical Systems Theory 6 (1972) 263–267

41. Deutsch, A., Fernandez, M.F., Florescu, D., Levy, A., Maier, D., Suciu, D.: Query-
ing XML data. Bull. of the IEEE Computer Society Technical Committee on Data
Engineering 22 (1999) 10–18

	Introduction
	Databases and Queries
	Containment of Datalog in Unions of Conjunctive Queries
	Two-Way Alternating Tree Automata
	Containment of Datalog in Unions of C2RPQs
	Conclusions

