
IBIS: Semantic Data Integration at Work

Andrea Cal̀ı1, Diego Calvanese1, Giuseppe De Giacomo1, Maurizio Lenzerini1,
Paolo Naggar2, and Fabio Vernacotola2

1 Università di Roma “La Sapienza”
Dipartimento di Informatica e Sistemistica

via Salaria 113, I-00198 Roma, Italy
lastname@dis.uniroma1.it

2 CM Sistemi
via N. Sauro 1, I-00195 Roma, Italy
firstname.lastname@gruppocm.it

Abstract. In this paper we present IBIS (Internet-Based Information
System), a system for the semantic integration of heterogeneous data
sources, which adopts innovative and state-of-the-art solutions to deal
with all aspects of a complex data-integration environment, including
query answering under integrity constraints and limitations on source
access. IBIS is based on the global-as-view approach, using a relational
mediated schema to query the data at the sources. Sources are wrapped
so as to provide a relational view on them. A key issue is that the sys-
tem allows the specification of integrity constraints (modeling constraints
in the domain of interest) in the global schema. Since sources are au-
tonomous, the extracted data in general do not satisfy the constraints.
IBIS adapts and integrates the data extracted from the sources making
use of the constraints in the global schema, so as to answer queries at
best with the information available. IBIS deals with limitations in access-
ing data sources, and exploits techniques developed for querying sources
with access limitations in order to retrieve the maximum set of answers.
In particular, it may use integrity constraints available on the sources to
improve the efficiency of the extraction process.

1 Introduction

The goal of a data integration system is to provide a uniform access to a set of
heterogeneous data sources, freeing the user from the knowledge about how data
are structured at the sources and how they are to be reconciled in order to answer
queries. In this paper we present IBIS (Internet-Based Information System), a
system for the semantic integration of heterogeneous data sources, studied and
developed in the context of a collaboration between the University of Rome “La
Sapienza” and CM Sistemi. IBIS adopts innovative and state-of-the-art solutions
to deal with all aspects of a complex data integration environment, including
query answering under integrity constraints, limitations on source access, and
source wrapping. Despite there are several mediation systems for data integration
(see e.g., [7,6,11,18,22,21,12,9,1]), IBIS is the first system that fully exploits

J. Eder and M. Missikoff (Eds.): CAiSE 2003, LNCS 2681, pp. 79–94, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [594.962 841.96] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Abbrechen
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Error
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile (Ø©M)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

80 A. Cal̀ı et al.

all available information (including integrity constraints) for query answering.
Thus, to the best of our knowledge, IBIS is the first system actually devoted to
semantic data integration.

The problem of designing effective data integration systems has been ad-
dressed by several research and development projects in the last years. Data
integration systems are based on a unified view of data, called mediated or global
schema, and on a software module, called mediator that collects and combines
data extracted from the sources, according to the structure of the mediated
schema. A crucial aspect in the design and the realization of mediators is the
specification of the relation between the sources and the mediated schema. Two
basic approaches have been proposed in the literature, called global-as-view (or
simply GAV) and local-as-view (or simply LAV) [19,10,14]. In the GAV approach,
a view over the sources is associated to each element of the global schema, de-
scribing how to populate such an element using the data at the sources. Most
data integration systems adopt the GAV approach, e.g., TSIMMIS [7], Garlic [6],
COIN [9], Squirrel [23,22], and MOMIS [1].

IBIS follows the GAV approach, using a relational mediated schema to query
the data at the sources. The system is able to cope with a variety of hetero-
geneous data sources, including data sources on the Web, relational databases,
and legacy sources. Each non-relational source is wrapped to provide a relational
view on it. Also, each source is considered incomplete, in the sense that its data
contribute to the data integration system. A key issue is that the system allows
the specification of integrity constraints (modeling constraints in the domain of
interest) in the global schema. Since sources are autonomous and incomplete,
the extracted data in general do not satisfy the constraints. To deal with this
characteristic, IBIS adapts and integrates the data extracted from the sources
making use of the constraints in the global schema, so as to answer queries at
best with the information available. In this way, the intensional information in
the constraints over the global schema allows one to obtain additional answers
that would not be provided by the standard unfolding strategy associated with
GAV data integration systems. Indeed, current GAV data integration systems,
such as the above mentioned ones, answer a query posed over the global schema
by unfolding each atom of the query using the corresponding view [19]. The
reason why unfolding is sufficient in those systems is that the GAV mapping
essentially specifies a single database conforming to the global schema. Instead,
due to the presence of integrity constraints over the global schema there are sev-
eral potential global databases conforming to the data in the sources, and hence
query answering has to deal with a form of incomplete information [20,3,4].

A characterizing aspect of IBIS is the ability to deal with limitations in
accessing data sources, and in particular Web sources, e.g., those requiring filling
at least one field in a form. IBIS exploits and implements techniques developed
for querying sources with binding patterns in order to retrieve the maximum set
of answers [17,8,15,16]. Since the extraction process is the major bottleneck in
the integration of data over the Web, specific optimization techniques have been
developed. These allow one to take into account intentional knowledge holding

IBIS: Semantic Data Integration at Work 81

on the sources (in particular, integrity constraints) to limit the number of source
accesses.

In this paper we give an overview of IBIS, showing how the recent theoretical
results on query answering and optimization have been implemented in the sys-
tem. In particular, we first illustrate the data integration framework adopted in
IBIS. We then describe the query processing phase. After a brief overview of the
system architecture, we give some details on the data extraction techniques that
have been crucial for the actual deployment of the system. Finally, we discuss
the mechanisms provided by IBIS for the user interaction, and we conclude the
paper.

2 Framework for Data Integration in IBIS

The formal framework of IBIS is based on the relational model with integrity
constraints. As usual, a relational schema is constituted by a set of relation
symbols, each one with an associated arity, denoting the number of its attributes,
and a set of integrity constraints. Given a database DB and a relation symbol
r, we denote with rDB the set of tuples associated to r in DB. In IBIS, we deal
with four kinds of constraints (the notion of satisfaction is the usual one for the
first three):

1. Key constraints. Given a relation r in the schema, a key constraint over r is
expressed in the form key(r) = X, where X is a set of attributes of r.

2. Foreign key constraints. We express a foreign key constraint in the form
r1[X] ⊆ r2[Y], where r1, r2 are relations, X is a sequence of distinct at-
tributes of r1, and Y is a sequence formed by the distinct attributes forming
the key of r2.

3. Functional dependencies. A functional dependency over a relation r has the
form r : A→ B, where A and B are subsets of the set of attributes of r.

4. Simple full-width inclusion dependencies. A simple full-width inclusion de-
pendency between two relations r1 and r2 is denoted by r1 ⊆ r2; it is satisfied
in a database DB if rDB

1 ⊆ rDB
2 .

A data integration application in IBIS is modeled through a triple I =
〈G,S,M〉, where

– G is the global schema, expressed as a relational schema with key and foreign
key constraints.

– S is the source schema, constituted by one relation for each source. The
schema of each source relation is a relational schema with simple full-width
inclusion dependencies and functional dependencies.

– M is the mapping between G and S. The mapping is of type GAV: to each
relation r in the global schema, M associates a query ρ(r) over the source
schemas. The query ρ(r) is expressed in the language of union of conjunctive
queries, and specifies how to retrieve the data satisfying r in terms of a view
over the sources. In fact, such a query is also annotated by a description of

82 A. Cal̀ı et al.

the additional processing to be carried out on the data retrieved in order
not to violate the key constraint of r using a technique similar to that in [5].
That is, IBIS currently assumes that it is the responsibility of the designer
to specify suitable data cleaning methods in such a way as to guarantee that
the data retrieved for r satisfies its key constraint.

Finally, queries over the global schema are also unions of conjunctive queries.
In order to assign semantics to a data integration application I = 〈G,S,M〉,

we start with the data at the sources, and specify which data satisfy the global
schema. A source database D for I is a relational database constituted by one
relation rD for each source r in S. A source database is said to be legal for S if it
satisfies all the constraints in S. A global database B for I, or simply database for
I, is a database for G. Given a legal source database D for S, a global database
B is said to be legal for I with respect to D if:

– B satisfies the integrity constraints of G, and
– B satisfies the mapping M, that is, for each relation r in G, we have that

the set of tuples rB that B assigns to r contains the set of tuples ρ(r)D

that the query corresponding to r retrieves from the source database D, i.e.,
ρ(r)D ⊆ rB.

Observe that the previous assertion amounts to consider any view ρ(r) over S
as sound, i.e., the tuples provided by ρ(r) are sound but not necessarily complete.
Although other assumptions are possible [14], the sound views assumption is
usually considered the most natural in the context of data integration [10].

Given a data integration system I = 〈G,S,M〉 and a legal source database
D, the semantics of I is the set of global databases that are legal for I wrt D.
If such a set is not empty, the source database D is said to be consistent with I.

The fact that the semantics of a data integration system needs to be defined
in terms of a set of databases rather than a single one has a deep influence on the
nature of query answering in IBIS, which indeed needs to deal with incomplete
information [20]. In particular, IBIS aims at computing the certain answers of the
query. Given a query q over the global schema of a data integration application
I, and a legal source database D, the certain answers qI,D of q to I wrt D are
the tuples that satisfy the query in every database that belongs to the semantics
of I, i.e., in every global database that is legal for I wrt D.

3 Query Processing

Query processing in IBIS is separated in three phases: (1) the query is expanded
to take into account the integrity constraints in the global schema; (2) the atoms
in the expanded query are unfolded according to their definition in terms of the
mapping, obtaining a query expressed over the sources; (3) the expanded and
unfolded query is executed over the retrieved source database, to produce the
answer to the original query (see Section 5).

Query unfolding and execution are the standard steps of query processing in
GAV data integration systems, while the expansion phase is the distinguishing

IBIS: Semantic Data Integration at Work 83

feature of the IBIS query processing method. IBIS takes fully into account the
integrity constraints over the global schema, which reflect the semantics of the
application domain, and allows for retrieving all data that belong to the certain
answer.

Let I be a data integration system and D a source database. In order to show
how integrity constraints in the global schema are taken into account, we make
use of the notion of retrieved global database for a query q. Such a database is
obtained by populating each relation r in the global schema according to the
retrieved source database Dq for q and the mapping, i.e., by populating r with
the tuples obtained by evaluating the associated query ρ(r) on Dq. Note that, in
general, integrity constraints may be violated in the retrieved global database.

Regarding key constraints, IBIS assumes, as mentioned before, that the query
that the mapping associates to a global schema relation r is such that the data
retrieved for r do not violate the key constraint of r. In other words, the man-
agement of key constraints is left to the designer.

On the other hand, the management of foreign key constraints cannot be left
to the designer, since it is strongly related to the incompleteness of the sources.
Moreover, since foreign keys are interrelation constraints, they cannot be dealt
with in the GAV mapping, which, by definition, works on each global relation in
isolation. Indeed, IBIS provides full support for handling foreign key constraints
in an automated way.

The assumption of sound views asserts that the tuples retrieved for a relation
r are a subset of the tuples that the system assigns to r; therefore, we may think
of completing the retrieved global database by suitably adding tuples in order
to satisfy foreign key constraints, while still conforming to the mapping. When
a foreign key constraint is violated, there are several ways of adding tuples to
the retrieved global database to satisfy such a constraint. In other words, in the
presence of foreign key constraints in the global schema, the semantics of a data
integration system must be formulated in terms of a set of databases, instead of
a single one.

Since we are interested in the certain answers qI,D to a query q, i.e., the tu-
ples that satisfy q in all global databases that are legal for I wrt D, the existence
of several such databases complicates the task of query answering. To deal with
this problem, IBIS expands the query q by taking into account the foreign key
constraints on the global relations appearing in the atoms. The expansion tech-
nique exploits the fact that foreign key constraints can be rewritten as Datalog
programs with suitable Skolem functions in the head and is based on partial
evaluation of logic programs, see [3,4] for details. The expansion expG(q) of q is
a union of conjunctive queries, and it is possible to show that the evaluation of
expG(q) over the retrieved source database produces exactly the set of certain
answers of q to I wrt D [4]. Notably, the expanded query can be exponential
in the original query and the foreign key constraints, however it can still be
evaluated in polynomial time in the size of the data. As the construction of the
retrieved global database is computationally costly, in IBIS it is not constructed
explicitly. Instead, expG(q) is unfolded and the unfolded query unf M(expG(q))

84 A. Cal̀ı et al.

Expander Core Session

Unfolder

IBIS Application Interface

Extractor

Core

Configuration Subsystem

User Interface

Data Sources

Dynamic Optimizer

Static Optimizer

Metadata Repository

Configuration Manager

Data Store

Web Server

Wrapping Subsystem

Query Executor

Fig. 1. Architecture of IBIS

is evaluated over the retrieved source database, whose data are extracted by an
Extractor module (see next section). As shown in [4], this produces exactly the
same results. Observe that in this way the query expansion is decoupled from
the rest of the processing.

4 Architecture of IBIS

The system architecture of IBIS is shown in Figure 1. Four subsystems can be
identified:

– the wrapping subsystem, which provides a uniform layer for all the data
sources by presenting each source as a set of relations.

– the configuration subsystem, which supports system management and con-
figuration of all the meta-data;

– the IBIS core, which implements the actual data integration algorithms and
controls all the parts of the system;

– the user interface, which is divided in a Web interface and an application
interface.

In addition to these subsystems, a data store is used to store temporary data
which are used during query processing, and cached data extracted from the
sources during the processing of previous queries. We detail below the wrapping
subsystem and the IBIS core, which are the distinguishing elements of the IBIS
architecture. The user interface and the interaction with the user are described
in Section 6.

IBIS: Semantic Data Integration at Work 85

Wrapping Subsystem. The task of the wrapping subsystem is to provide a layer
in which all data stored at the sources are presented to the other components
of the system in a uniform way. Therefore, each component of IBIS sees the
sources represented in the relational model. The wrappers in IBIS also take
into account the limitations in accessing the sources; in fact, certain sources
require a set of fields to be bound to constants in order to be accessed. A typical
example is that of data accessible through Web forms, in which at least one
field has to be filled with a value. Except for access limitations, wrappers do
not need to expose any specific source behaviour. A set of properties, which can
be configured by means of the configuration subsystem, allows the designer to
specify the behavior of the wrapper according to source-dependent parameters
such as throughput or reliability. Wrappers accept multiple requests which are
buffered in a queue; thus the wrapping subsystem works asynchronously: each
request is managed assigning it a wrapper taken from a pool. Several wrappers
can work independently according to the capabilities of the source and of the
server system.

IBIS Core. The IBIS Core is the set of components that take care at runtime of
all the aspect of query processing. User queries are issued to the IBIS core by the
application interface; the core performs evaluation of a query by (1) extracting
data from the sources and (2) executing the query over such extracted data.
Data extraction, which in IBIS is quite sophisticated because each source may
present access limitations, is discussed in detail in Section 5. Query processing
is performed according to the technique discussed in Section 3; an important
feature is that the Expander module, which computes the expanded query, can
operate independently from the Unfolder and the Executor modules, which re-
spectively unfold the expanded query and evaluate it over the retrieved source
database.

5 Data Extraction

The extraction of the data from the sources to build the retrieved source database
for a given query is a key process in IBIS, and is complicated by the fact that
limitations exist in accessing the sources. This is typical of Web data sources
that are accessible through forms: usually a certain set of fields has to be filled
with values in order to query the underlying database. Also, very often legacy
databases have a limitation of this kind. To improve efficiency in data extraction
IBIS exploits specific techniques to deal with access limitations, and implements
several types of optimizations to avoid accesses that would produce already
retrieved data. In the following we describe in some detail these features of
IBIS.

5.1 Dealing with Access Limitations

In the presence of access limitations on the sources, simple unfolding is in general
not sufficient to extract all obtainable answers from the sources [17,8,16]. IBIS

86 A. Cal̀ı et al.

s1 :

a1 b1

a1 b2

a2 b3

a3 b1

s2 :
a2 b1

a2 b4
s3 : a4 b3 c1

Fig. 2. Extension of sources of Example 1

exploits techniques developed specifically for dealing with access limitations [16],
and extends them to make them deployable in practice. The extraction of data
according to such techniques is performed as follows: starting from the set of
initial values in the query, IBIS accesses as many sources as possible, according
to their access limitations. The new values in the tuples obtained (if any), are
used to access the sources again, getting new tuples, and so on, until there is no
way of doing accesses with new values. At each step, the values obtained so far
are stored in the data store.

In the following, without loss of generality, we assume that for each attribute
of a relation an abstract domain with the same name is defined. An abstract
domain is based on an underlying concrete domain, but represents information
at a higher level of abstraction, e.g., to distinguish, strings representing person
names from strings representing plate numbers. We call binding tuple a tuple of
values that match with the attributes that must be bound to values; we call bind-
ing values the values of a binding tuple. For example, for a source s(A�,B�,C),
where the attributes that must be bound are starred, binding tuples are pairs of
values (a, b), where a and b belong to the abstract domains DA, DB respectively,
and DA and DB in turn characterize attributes A, B respectively.

Example 1. Consider the following source relations:

s1(A�,B)
s2(A,B�)
s3(A,B�,C)

where, for the sake of simplicity, we have the same attribute names A, B, C
for all attributes that belong to the abstract domains DA, DB , DC respectively.
Suppose we have the following conjunctive query over the sources:

q(C) ← s1(a1, B), s3(A, B, C)

Now, assume the sources have the extension shown in Figure 2. Starting from
a1, the only constant in the query, we access s1 getting the tuples (a1, b1) and
(a1, b2). Now we have b1 and b2 with which to access s2 and s3; from s2 we get
(a2, b1), while from s3 we get nothing. With the new constant a2 we access s1
getting (a2, b3). Finally, we access s3 with b3 getting (a4, b3, c1) (with b3 we do
not get any tuple from s2). At this point, we have populated the retrieved source
database, on which we evaluate the query. The answer to q is therefore the tuple

IBIS: Semantic Data Integration at Work 87

(c1). Observe that (a3, b1) and (a2, b4) could not be extracted from s1 and s2
respectively.

Although the extraction algorithm is straightforward, in order to make it
efficient in practice, its implementation requires to take into account several
technological aspects. The way the data extraction process is realized in IBIS is
depicted in Figure 3, where the following elements can be identified:

– The retrieved source database (RSD) stores tuples retrieved during the data
extraction for a certain query. It consists of physical tables, one for each
source table defined in the source schema of IBIS.

– Domain tables store values that are used to produce binding tuples. There
is one table for each abstract domain, containing all the values belonging to
it. The values in the domain tables are contained in the set of values stored
in the retrieved source database. The domain tables, although containing
redundant data, are kept for efficiency reasons; indeed, experimental results
have shown that the time needed for the generation of the binding tuples
decreases significantly when domain tables are used.

– Binding tables are used to store binding tuples before submitting them to
the sources; there is a binding table for each source with limitations.

To avoid wrappers to be overloaded with a number of binding tuples (i.e.,
access requests) that exceeds the capacity of the wrappers, they are fed with
batches of binding tuples that do not exceed a prefixed maximum size. For each
wrapper, according to its capabilities, the system manager assigns the maximum
size of the batches it can accept.

Furthermore, the extraction strategy of IBIS tries to keep working as many
wrappers as possible. In order to do so, the IBIS Core constructs the binding
tuples to be sent to the wrappers independently from the order in which the
values have been delivered to the retrieved source database. In doing so, it tries
to generate the same amount of binding tuples for each wrapper.

Also, the new values in the tuples that are stored in the retrieved source
database are not immediately “poured” in the domain tables, so as not to cause
an excessive production of binding tuples: the transfer (see the arrow labeled
with “Leaking” in the figure), controlled by the Core, is such that the values are

WRAPPER

RSD

Leaking

Feeding

BINDING TABLES

DOMAIN TABLES

Fig. 3. Extraction process in IBIS

88 A. Cal̀ı et al.

homogeneously distributed among the different abstract domains to which they
belong.

The limitations in accessing the sources make the issue of data extraction
inherently complex and costly. Our experimentations have shown that the time
needed for the extraction of all obtainable tuples can be quite long. On the other
hand, experiments have also shown that the system retrieves tuples (and values)
that are significant for the answer in a time that is usually very short, compared
to the total extraction time. This is due to the recursive nature of the extraction
process, which obtains new values from the already retrieved ones; hence, a lower
number of steps is required to obtain values extracted earlier, and these values
have shown to be more likely part of the answer to the query.

5.2 Static Optimization

In general, having extracted a number of values at a certain point of the query
answering process, and given a source s to be accessed using the values extracted
so far as binding values, not all the possible accesses to s are necessary in order
to calculate the answer to the query. This is illustrated in the following example.

Example 2. Let S be a source schema with S = {s1, s2, s3}; the sources are
defined as follows:

s1(A�,B) s2(B�,C) s3(C �,B)

For simplicity, suppose again we have distinct abstract domains DA, DB , DC ,
one for each attribute name. Consider the following query:

q(C) ← s1(a0, B), s2(B, C)

We easily observe that it is not useful to use the values obtained from s2 to
access s3 in order to obtain new values of DC with which to access s2 again. In
fact, due to the join condition between s1 and s2, the only tuples extracted from
s2 which can be used to construct a tuple of the answer to q are those obtained
by binding the attribute B of s2 with a binding value extracted from s1.

In order to avoid unnecessary accesses, IBIS incorporates the optimization
techniques presented in [2]. The optimization is as follows. Given an unfolded
query on the sources, in order to optimise the query plan, information about
the structure of the query and access limitations on the sources is encoded in
a dependency graph. Intuitively, such a graph represents dependencies among
sources, i.e., for any source s, it shows the sources that may provide binding
values that are useful to access s. The dependency graph is pruned, taking into
account the join conditions in the query, so that only necessary dependencies
are left; the pruning procedure is performed in time polynomial in the size of
the graph. From the pruned dependency graph, an optimized query plan is de-
rived, which guarantees that only necessary accessed are performed during its
execution.

IBIS: Semantic Data Integration at Work 89

Notice that the static optimisation of [2] is applicable for conjunctive queries,
while an expanded and unfolded query in IBIS is a union of conjunctive queries.
To this regard, IBIS offers the system manager two different strategies for pro-
cessing a UCQ. The CQs can be either processed one by one, as if they were
independent, or they can be chained in an ordered sequence, so that, in the
extraction process for a CQ q, we can use as binding values the values extracted
while processing the CQs preceding q in the chain.

5.3 Dynamic Optimization

The Dynamic Optimizer of IBIS is capable of avoiding useless accesses to the
sources by exploiting already extracted tuples and integrity constraints on the
sources. Dynamic optimization based on integrity constraints comes into play
when a data source is accessible in several ways, i.e., the same underlying data
can be accessed with different limitations. The most relevant case is that of Web
sources, where the same form can be submitted by filling in different sets of
fields, but not by leaving all fields empty (see for example Amazon1 or the ACM
Sigmod Antology2). The different access patterns for a source s are represented
in IBIS as different sources s1, . . . , sn with different access limitations. To capture
the fact that the sources s1, . . . , sn have the same extension, simple full-width
inclusion dependencies s1 ⊆ s2, s2 ⊆ s3, . . . , sn−1 ⊆ sn, sn ⊆ s1 are used. More
generally, the situation in which the extension of a source s is contained in that
of another source s′ is captured by the simple full-width inclusion dependency
s ⊆ s′. Note that the abstract domains of s and s′ must match.

Simple full-width inclusion dependencies, together with functional depen-
dencies (which capture also key constraints), allow IBIS to performs runtime
optimization during data extraction, taking into account the tuples already ex-
tracted from the sources. We introduce the technique adopted in IBIS with an
example.

Example 3. Consider two sources

s1(Code,Surname,City�)
s2(Code�,Surname�,City)

where s1 stores identification code, surname and city of birth of employees, and
s2 stores the same information about persons. Assume that the simple full-
width inclusion dependency s1 ⊆ s2 holds and that the functional dependency
Code → Surname,City holds on s2.

Suppose that s1 and s2 have both the following extension:

Code Surname City
2 brown sidney
5 williams london
7 yamakawa tokyo
9 peretti rome

1 http://www.amazon.com/exec/obidos/ats-query-page/
2 http://www.informatik.uni-trier.de/˜ley/db/indices/query.html

http://www.amazon.com/exec/obidos/ats-query-page/
http://www.informatik.uni-trier.de/~ley/db/indices/query.html

90 A. Cal̀ı et al.

If our set of initial values is rome and tokyo, at the first step we access s1 and
we get the following tuples:

Code Surname City
7 yamakawa tokyo
9 peretti rome

Now we have four new values: the three codes 7 and 9, and the two surnames
yamakawa and peretti . With these values we could access source s1 to try and get
new values. But we can easily observe that, because of the functional dependency
on s2, if we bind the Code attribute with one of the known values, we get a tuple
we had already obtained from s2. Therefore the access to s1 is useless in this
case. Instead, if we get 2 as a code and brown as a surname from another source,
we could access s1 and get new tuples.

To consider the general case, let B1 and B2 the set of attributes that must be
bound in s1 and s2 respectively; let the dependency s1 ⊆ s2 hold. If a functional
dependency s2 : C → D holds, with C ⊆ B1 and D ⊇ B2, then if we access
s1 with a binding tuple ϑ such that ϑ = t[B1], where t is a tuple previously
extracted from s2, then the access with ϑ is useless, because it provides only
tuples that have been already extracted from s2 [2]. IBIS exploits this technique
by selecting only the binding tuples that are potentially useful from the binding
tables, just after their generation.

Another optimization is performed by IBIS when a key constraint holds on
a source s. Let K be the key of s, with K ⊆ B, where B is the set of attributes
of s that must be bound. Then, if we access s1 with a binding tuple ϑ such that
ϑ = t[B], where t is a tuple previously extracted from s, then the access with ϑ
is useless, because it provides only tuples that have been already extracted from
s. This is again exploited by IBIS, by a suitable selection on the binding tuples.

6 Interaction with the User

IBIS is equipped with a user-friendly Web interface. In practice, the time required
for answering a query may be significantly long; the bottleneck is constituted
by the extraction phase, which has to cope with the usually very long response
time of remote sources (Web sources and legacy systems) and with the intrinsic
complexity of dealing with access limitations. Therefore, the traditional “submit-
and-wait” interaction with Web-based systems is not suitable for IBIS. In order
to offer the user a suitable form of interaction, IBIS has been designed with the
following capabilities:

– the capability of incrementally presenting answers while they are computed;
– the capability of enhancing the query answering process by using additional

data provided by the user together with the query;
– the capability of chaining queries to each other.

IBIS: Semantic Data Integration at Work 91

Incremental Generation of Answers. While one of the goals of IBIS is to provide
the maximum set of answers, in practice this often requires an amount of time
that could be unacceptable for a user operating in an interactive Web session.
In order to cope with this problem, IBIS provides two strategies. The first one
consists in showing tuples to the user as soon they are obtained, while the an-
swering process is going on. In fact, the asynchronous extraction process allows
evaluating the query over the source retrieved database before the end of the
process itself. In this way, the user will see a continuous upgrade of the result set.
Moreover, the user has the opportunity to stop the process at any time, when
he is satisfied with the answers obtained so far. The second feature is the ability
to continue the answering process also while a user is logged off, and present the
obtained answers as soon as the user logs on again. E-mail and pager alerts are
also available, to signal the user that a query has been completed.

Use of Domain-related Values. When a user query is processed, the set of con-
stants appearing in the query is crucial, because at the beginning of data ex-
traction such values represent the only way to access the sources. Therefore,
adding values before starting the extraction process may significantly alter the
extraction process itself. IBIS offers the user the possibility of expanding the set
of initial values according to his knowledge of the domain of the global schema.

These constants influence the process in two ways: first, they may enlarge
the set of tuples in the answer, because it is possible that the additional values
lead to the generation of binding tuples for accessing the sources that would
not be generated starting from the original set of values. Furthermore, in our
experimentations of the system, the addition of domain-related values has short-
ened the time required for retrieving significant answers in most cases. This is
due to the “proximity” that in many cases exists between the added values and
the tuples in the answer. Obviously, the effectiveness of this feature depends
on the user knowledge of the domain. Experiments have been carried out with
non-expert users, unaware of the underlying sources, with data sources coming
from the context of Government Institutions; the addition of initial values has
proven to be useful in the majority of cases.

Chainable Queries. IBIS offers the possibility of using tuples extracted while
answering a set of queries (the retrieved source databases of the queries) to
answer another query related to the previous ones. When the freshness of data is
not required by the user, the retrieved source databases obtained while answering
previous queries can be seen as a cache for the new query. With this feature,
queries can be chained, in the sense that each query uses the retrieved source
databases of all the queries preceding it in the chain. IBIS is able to avoid
producing binding tuples which have already been issued to the sources during
the extraction of previous queries.

At the interface level, before submitting the query to the system, the user
can choose if he wants to tie it to a particular set of already executed queries.
At the end of the answering process he can also choose to save the extracted
tuples or to discard them. This feature can also be used in a multi-user context:

92 A. Cal̀ı et al.

Fig. 4. Query interface in IBIS

the user who has issued a query q can allow a set of other users to use the data
extracted from the sources while processing q.

Figure 4 shows a screen-shot of the IBIS Web interface to a stored query
Phone numbers, and Figure 5 shows the result of evaluating such a query over a
set of Web sources.

7 Conclusions

We have presented IBIS, a system for the semantic integration of heterogeneous
data sources based on the GAV approach, adopting various innovative and state-
of-the-art solutions to deal with source wrapping, source incompleteness, and
limitations in accessing data sources. In particular, to the best of our knowledge,
IBIS is the only data integration system capable of fully exploiting integrity
constraints over the global schema and the sources in query answering.

Fig. 5. Query result in IBIS

IBIS: Semantic Data Integration at Work 93

IBIS has been already released as a beta version and its final release is cur-
rently under active development. We are working on extending the system in
various directions. In particular, we are studing techniques to deal with the prob-
lem of key constraint violations without requiring intervention of the designer. A
first step in this direction is based on a weaker non-monotonic semantics for the
mapping, based on suitable preference criteria in case of key constraint violations
[13].

References

1. Sonia Bergamaschi, Silvana Castano, Maurizio Vincini, and Domenico Beneven-
tano. Semantic integration of heterogeneous information sources. Data and Knowl-
edge Engineering, 36(3):215–249, 2001.

2. Andrea Cal̀ı and Diego Calvanese. Optimized querying of integrated data over the
Web. In Proc. of the IFIP WG8.1 Working Conference on Engineering Information
Systems in the Internet Context (EISIC 2002), pages 285–301. Kluwer Academic
Publisher, 2002.

3. Andrea Cal̀ı, Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini.
Accessing data integration systems through conceptual schemas. In Proc. of the
20th Int. Conf. on Conceptual Modeling (ER 2001), pages 270–284, 2001.

4. Andrea Cal̀ı, Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini.
Data integration under integrity constraints. In Proc. of the 14th Conf. on Ad-
vanced Information Systems Engineering (CAiSE 2002), volume 2348 of Lecture
Notes in Computer Science, pages 262–279. Springer, 2002.

5. Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi, and
Riccardo Rosati. Data integration in data warehousing. Int. J. of Cooperative
Information Systems, 10(3):237–271, 2001.

6. M. J. Carey, L. M. Haas, P. M. Schwarz, M. Arya, W. F. Cody, R. Fagin, M. Flick-
ner, A. Luniewski, W. Niblack, D. Petkovic, J. Thomas, J. H. Williams, and E. L.
Wimmers. Towards heterogeneous multimedia information systems: The Garlic
approach. In Proc. of the 5th Int. Workshop on Research Issues in Data Engi-
neering – Distributed Object Management (RIDE-DOM’95), pages 124–131. IEEE
Computer Society Press, 1995.

7. Sudarshan S. Chawathe, Hector Garcia-Molina, Joachim Hammer, Kelly Ireland,
Yannis Papakonstantinou, Jeffrey D. Ullman, and Jennifer Widom. The TSIMMIS
project: Integration of heterogeneous information sources. In Proc. of the 10th
Meeting of the Information Processing Society of Japan (IPSJ’94), pages 7–18,
1994.

8. Daniela Florescu, Alon Y. Levy, Ioana Manolescu, and Dan Suciu. Query opti-
mization in the presence of limited access patterns. In Proc. of the ACM SIGMOD
Int. Conf. on Management of Data, pages 311–322, 1999.

9. Cheng Hian Goh, Stéphane Bressan, Stuart E. Madnick, and Michael D. Siegel.
Context interchange: New features and formalisms for the intelligent integration
of information. ACM Trans. on Information Systems, 17(3):270–293, 1999.

10. Alon Y. Halevy. Answering queries using views: A survey. Very Large Database
J., 10(4):270–294, 2001.

11. Joachim Hammer, Hector Garcia-Molina, Jennifer Widom, Wilburt Labio, and
Yue Zhuge. The Stanford data warehousing project. Bull. of the IEEE Computer
Society Technical Committee on Data Engineering, 18(2):41–48, 1995.

94 A. Cal̀ı et al.

12. Matthias Jarke, Maurizio Lenzerini, Yannis Vassiliou, and Panos Vassiliadis, edi-
tors. Fundamentals of Data Warehouses. Springer, 1999.

13. Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati. Source inconsis-
tency and incompleteness in data integration. In Proc. of the 9th Int. Workshop
on Knowledge Representation meets Databases (KRDB 2002). CEUR Electronic
Workshop Proceedings, http://ceur-ws.org/Vol-54/, 2002.

14. Maurizio Lenzerini. Data integration: A theoretical perspective. In Proc. of the
21st ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS 2002), pages 233–246, 2002.

15. Chen Li and Edward Chang. Query planning with limited source capabilities.
In Proc. of the 16th IEEE Int. Conf. on Data Engineering (ICDE 2000), pages
401–412, 2000.

16. Chen Li and Edward Chang. Answering queries with useful bindings. ACM Trans.
on Database Systems, 26(3):313–343, 2001.

17. Chen Li, Ramana Yerneni, Vasilis Vassalos, Hector Garcia-Molina, Yannis Pa-
pakonstantinou, Jeffrey D. Ullman, and Murty Valiveti. Capability based media-
tion in TSIMMIS. In Proc. of the ACM SIGMOD Int. Conf. on Management of
Data, pages 564–566, 1998.

18. Yannis Papakonstantinou, Hector Garcia-Molina, and Jennifer Widom. Object
exchange across heterogeneous information sources. In Proc. of the 11th IEEE Int.
Conf. on Data Engineering (ICDE’95), pages 251–260, 1995.

19. Jeffrey D. Ullman. Information integration using logical views. In Proc. of the
6th Int. Conf. on Database Theory (ICDT’97), volume 1186 of Lecture Notes in
Computer Science, pages 19–40. Springer, 1997.

20. Ron van der Meyden. Logical approaches to incomplete information. In Jan
Chomicki and Günter Saake, editors, Logics for Databases and Information Sys-
tems, pages 307–356. Kluwer Academic Publisher, 1998.

21. Jennifer Widom (ed.). Special issue on materialized views and data warehousing.
Bull. of the IEEE Computer Society Technical Committee on Data Engineering,
18(2), 1995.

22. Gang Zhou, Richard Hull, Roger King, and Jean-Claude Franchitti. Data integra-
tion and warehousing using H20. Bull. of the IEEE Computer Society Technical
Committee on Data Engineering, 18(2):29–40, 1995.

23. Gang Zhou, Richard Hull, Roger King, and Jean-Claude Franchitti. Using object
matching and materialization to integrate heterogeneous databases. In Proc. of
the 3rd Int. Conf. on Cooperative Information Systems (CoopIS’95), pages 4–18,
1995.

http://ceur-ws.org/Vol-54/

	Introduction
	Framework for Data Integration in IBIS
	Query Processing
	Architecture of IBIS
	Data Extraction
	Dealing with Access Limitations
	Static Optimization
	Dynamic Optimization

	Interaction with the User
	Conclusions

