
A Foundational Framework for e-Services

Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo
Maurizio Lenzerini, and Massimo Mecella

Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

lastname @dis.uniroma1.it

Abstract. In this paper we propose a foundational vision of e-Services,
in which we distinguish between the external behavior of an e-Service
as seen by clients, and the internal behavior as seen by a deployed ap-
plication running the e-Service. Such behaviors are formally expressed
as execution trees describing the interactions of the e-Service with its
client and with other e-Services. Using these notions we formally de-
fine e-Service composition in a general way, without relying on any spe-
cific representation formalism. We have also provide a classification of
e-Services based on relevant properties of the execution trees.

1 Introduction

Since the last few years, we are witnessing a great change in business paradigms.
Different companies are able to pool together their services, in order to offer more
complex, value added products and services. Thanks to the spreading of network
and business-to-business technologies [18], that makes services easily accessible
to a vast number of customers, companies are able to cooperate in very flexible
ways, giving rise to the so called virtual enterprises and communities [11, 9].

Inter-organization cooperation can be supported by Cooperative Informa-
tion Systems (CIS’s) [8]. Many approaches have been proposed for the design
and development of CIS’s: business process coordination and service-based sys-
tems [7], agent-based technologies and systems [6], schema and data integration
techniques [19, 13]. In particular, the former approach focuses on cooperation
among different organizations that export services as semantically defined func-
tionalities; cooperation is achieved by composing and integrating services over
the Web. Such services, usually referred to as e-Services or Web Services, are
available to users or other applications and allow them to gather data or to per-
form specific tasks. Service Oriented Computing (SOC) is a new emerging model
for distributed computing that enables to build agile networks of collaborating
business applications distributed within and across organizational boundaries 1.

Cooperation of e-Services poses many interesting challenges regarding, in
particular, composability, synchronization, coordination, correctness verifica-
tion [25]. However, in order to address such issues in an effective and well-founded
way, e-Services need to be formally represented.
1 cf., Service Oriented Computing Net: http://www.eusoc.net/

Up to now, research on e-Services has mainly concentrated on three issues,
namely (i) service description and modeling, (ii) service discovery and (iii) ser-
vice composition, i.e., how to compose and coordinate different services, to be
assembled together in order to support more complex services and goals.

Current research in description and modeling of e-Services is mainly founded
on the work on workflows, which model business processes as sequences of (pos-
sibly partially) automated activities, in terms of data and control flow among
them. In [20] an e-Service is described in terms of interface and implementation,
through Activity State Machine Types (ASMT’s), i.e., state machines which
specify valid states of the e-Service and valid state transitions, caused either by
operation requests or by internal transitions of the e-Service. In [12], e-Services
are modelled as views of complex inter-organization processes, and in [17] e-
Services are represented as statecharts.

As for discovery, in [22] e-Services are considered as the composition of sub-
e-Services, thus modeled as a hierarchy of parts (expressing functionalities of
e-Services), based on a common ontology. On the assumption that all descrip-
tions of available e-Services are stored in a common directory, an algorithm that
select the service that best fits a given description (i.e., the request for specific
capabilities) is presented, based on similarity notions.

Composition addresses the situation when a client request cannot be satisfied
by any available e-Service, whereas a composite e-Service, obtained by combining
a set of available component e-Services, might be used. Composition involves two
different issues: the one of composing by synthesis a new e-Service starting from
available ones, thus producing a composite e-Service specification, and the one of
enacting, i.e., instantiating and executing, the composite e-Service by correctly
coordinating the component ones; the latter is often referred to as orchestration,
and it is concerned with monitoring control and data flow among the involved
e-Services, in order to guarantee the correct execution of the composite e-Service.

The DAML-S Coalition [2] is defining a specific ontology and a related lan-
guage for e-Services, with the aim of composing them in automatic way. In [24]
the issue of service composition is addressed, in order to create composite ser-
vices by re-using, specializing and extending existing ones; in [14] composition of
e-Services is addressed by using Golog and providing a semantics of the com-
position based on Petri Nets. In [1] a way of composing e-Services is presented,
based on planning under uncertainty and constraint satisfaction techniques, and
a request language, to be used for specifying client goals, is proposed.

As far as orchestration is concerned, in [5] an e-Service that performs coordi-
nation of e-Services is considered as a (meta)e-Service that can be transparently
invoked by clients. In [10] a composite e-Service is modeled as an activity di-
agram, and its enactment is carried out through the coordination of different
state coordinators (one for each component e-Service and one for the composite
service itself), in a decentralized way, through peer-to-peer interactions. In [21]
coordination of e-Services is carried out by an enactment engine interpreting pro-
cess schemas modeled as statecharts [23], and in [16] orchestration of e-Services
is addressed by means of Petri Nets.

2

All the above mentioned works deal with different facets of service oriented
computing, but unfortunately an overall agreed upon comprehension of what
an e-Service is, in an abstract and general fashion, is still lacking. Neverthe-
less, (i) a framework for formally representing e-Services, clearly defining both
specification (i.e., design-time) and execution (i.e., run-time) issues, and (ii) a
definition of e-Service composition and its properties, are crucial aspects for
correctly addressing research on service oriented computing.

In this paper, we concentrate on these issues, and propose an abstract frame-
work for e-Services, so as to provide the basis for e-Service representation and for
formally defining the meaning of composition. Specifically, Section 2 defines the
framework, which is then detailed in Sections 3 and 4 by considering e-Service
specification and run-time issues, respectively. Section 5 proposes some dimen-
sions according to which classify composite e-Services, and Section 6 illustrates
some examples highlighting the main characteristics of the proposed classifica-
tion. Section 7 deals with composition, in particular by formally defining such
a notion in the context of the proposed framework. Finally, Section 8 concludes
the paper, by pointing out future research directions.

2 General Framework

Generally speaking, an e-Service is a software artifact (delivered over the Inter-
net) that interacts with its clients, which can be either human users or other
e-Services, by directly executing certain actions and possibly interacting with
other e-Services to delegate to them the execution of other programs. In this
paper we take an abstract view of such an application and provide a conceptual
description of an e-Service by identifying several facets, each one reflecting a
particular aspect of an e-Service during its life time, as shown in Figure 1:

– The e-Service schema specifies the features of an e-Service, in terms of func-
tional and non-functional requirements. Functional requirements represent
what an e-Service does. All other characteristics of e-Services, such as those
related to quality, privacy, performance, etc. constitute the non-functional
requirements. In what follows, we do not deal with non-functional require-
ments, and hence use the term “e-Service schema” to denote the specification
of functional requirements only.

– The e-Service implementation and deployment indicates how an e-Service
is realized, in terms of software applications corresponding to the e-Service
schema, deployed on specific platforms. Since this aspect regards the tech-
nology underlying the e-Service implementation, it goes beyond the scope
of this paper and we do not consider it any more. We have mentioned it for
completeness and because it forms the basis for the following one.

– An e-Service instance is an occurrence of an e-Service effectively running and
interacting with a client. In general, several running instances corresponding
to the same e-Service schema exist, each one executing in isolation with
respect to the others.

3

e-Service
Schema

The specification of a software artifact
providing services. It defines interface and
behaviour of the e-Service. The specification
is realized as an e-Service Implementation

e-Service
Implementation

1

*

realization

The realization of an e-Service;
it can be installed

Deployed
e-Service

1

*

installation

An installed copy of an
e-Service Implementation; it is deployed by
registering it with the community environment,
thus enabling the environment to identify it to
use when creating an instance

e-Service
Instance

1

*

instantiation

A run-time concept: an “object” with its own
state and a unique identity, the “thing” that
performs the implemented bahavior. A
Deployed e-Service may have multiple
instances

e-Service
Schema

The specification of a software artifact
providing services. It defines interface and
behaviour of the e-Service. The specification
is realized as an e-Service Implementation

e-Service
Implementation

1

*

realization

The realization of an e-Service;
it can be installed

Deployed
e-Service

1

*

installation

An installed copy of an
e-Service Implementation; it is deployed by
registering it with the community environment,
thus enabling the environment to identify it to
use when creating an instance

e-Service
Instance

1

*

instantiation

A run-time concept: an “object” with its own
state and a unique identity, the “thing” that
performs the implemented bahavior. A
Deployed e-Service may have multiple
instances

Fig. 1. Facets of an e-Service

As mentioned, the schema of an e-Service specifies what the e-Service does.
From the external point of view of a client, the e-Service is seen as a black box
that exhibits a certain “behavior”, i.e., executes certain programs, which are
represented as sequences of atomic actions with constraints on their invocation
order. From the internal point of view, e.g., that of an application deploying an
e-Service E and activating and running an instance of it, it is also of interest
how the actions that are part of the behavior of E are effectively executed.
Specifically, it is relevant to specify whether each action is executed by E itself
or whether its execution is delegated to another e-Service with which E interacts,
transparently to the client of E. To capture these two points of view we consider

4

2. choice and execution
of action

1. activation

3. termination

running

Fig. 2. Life cycle of an e-Service instance

the e-Service schema as constituted by two different parts, called external schema
and internal schema, respectively representing an e-Service from the external
point of view, i.e., its behavior, and from the internal point of view.

In order to execute an e-Service, the client needs to activate an instance from
a deployed e-Service: the client can then interact with the e-Service instance by
repeatedly choosing an action and waiting for the fulfillment of the specific task
by the e-Service and (possibly) the return of some information. On the basis of
the information returned the client chooses the next action to invoke. In turn,
the activated e-Service instance executes (the computation associated to) the
invoked action and then is ready to execute new actions. Note that, in general,
not all actions can be invoked at a given point: the possibility of invoking them
depends on the previously executed ones, according to the external schema of
the e-Service. Under certain circumstances, i.e., when the client has reached his
goal, he may explicitly end (i.e., terminate) the e-Service instance. The state
diagram in Figure 2 shows the life cycle of an e-Service instance.

Note that, in principle, a given e-Service may need to interact with a client
for an unbounded, or even infinite, number of steps, thus providing the client
with a continuous service. In this case, no operation for ending the e-Service is
ever executed.

For an instance e of an e-Service E, the sequence of actions that have been
executed at a given point and the point reached in the computation, as seen by
a client, are specified in the so-called external view of e. Besides that, we need to
consider also the so-called internal view of e, which describes also which actions
are executed by e itself and which ones are delegated to which other e-Service
instances, in accordance with the internal schema of E.

To precisely capture the possibility that an e-Service may delegate the execu-
tion of certain actions to other e-Services, we introduce the notion of community
of e-Services, which is formally characterized by:

– a common set of actions, called the alphabet of the community;
– a set of e-Services specified in terms of the common set of actions.

Hence, to join a community, an e-Service needs to export its service in terms of
the alphabet of the community. The added value of a community of e-Services
is the fact that an e-Service of the community may delegate the execution of

5

part of the service it provides to other members of the community. We call
such an e-Service composite, whereas an e-Service that does not delegate the
execution of any action is called simple. Also, the community may be used to
generate (virtual) e-Services whose execution completely delegates actions to
other members of the community.

In the following sections we formally describe how the e-Services of a com-
munity are specified, through the notion of e-Service schema, and how they are
executed, through the notion of e-Service instance.

3 e-Service Schemas

As we already said, given an e-Service E belonging to a community C, the
schema of E, describing the functional requirements of E, consists of two parts:

– the external schema of E, specifying the so called “behavior”, i.e., the actions
provided by E and the constraints on their invocation order;

– the internal schema of E, specifying which e-Services are going to execute
each action of the behavior of E, taking into account that each action can be
either executed by E itself or delegated to other e-Services of the community.

We now go into more details about the two schemas.

3.1 External Schema

The aim of the external schema is to abstractly express the behavior of the e-
Service. To this end an adequate specification formalism must be used. In this
paper we are not concerned with any particular specification formalism, rather
we only assume that, whatever formalism is used, the external schema specifies
the behavior in terms of a tree of actions, called external execution tree. Each
node x of the tree represents the history of the sequence of interactions between
the client and the e-Service executed so far. For every action a that can be
executed at the point represented by x, there is a (single) successor node ya

with the edge (x, ya) labeled by a. The node ya represents the fact that, after
performing the sequence of actions leading to x, the client chooses to execute
the action a, among those possible, thus getting to ya. Therefore, each node
represents a choice point at which the client makes a decision on the next action
the e-Service should perform.

The root of the tree represents the fact that the client has not yet performed
any interaction with the e-Service. Some nodes of the execution tree are final :
when a node is final, and only then, the client can end the interaction. In other
words, the execution of an e-Service can correctly terminate at these points2.

Notably, an execution tree does not represent the information returned to
the client, since the purpose of such information is to let the client choose the
next action, and the rationale behind this choice depends entirely on the client.
2 Typically, in an e-Service, the root is final, to model that the computation of the

e-Service may not be started at all by the client.

6

a = auth

s = search

l = listen

c = add to cart

b = buy

.

.

.

.

.

.

s

a

l c

s

l

c

c

c

b s

l

b s

b

l

c

s

.

.

.

.

.

.

.

.

.
b

Fig. 3. Example of external execution tree of an e-Service

Example 1. Figure 3 shows an execution tree representing an e-Service that
allows for searching and buying mp3 files3. After an authentication step (action
auth), in which the client provides userID and password, the e-Service asks
for search parameters (e.g., author or group name, album or song title) and
returns a list of matching files (action search); then, the client can: (i) select and
listen to a song (interaction listen), and choose whether to perform another
search or whether to add the selected file to the cart (action add to cart);
(ii) add to cart a file without listening to it. Then, the client chooses whether
to perform those actions again. Finally, by providing its payment method details
the client buys and downloads the contents of the cart (action buy).

Note that, after the action auth, the client may quit the e-Service since
he may have submitted wrong authentication parameters. On the contrary, the
client is forced to buy, within the single interaction buy, a certain number of
selected songs, contained in the cart, possibly after choosing and listening to
some songs zero or more times. �

3.2 Internal Schema

The internal schema maintains, besides the behavior of the e-Services, the infor-
mation on which e-Services in the community execute each given action of the
external schema. As before, here we abstract from the specific formalism chosen
for giving such a specification, instead we concentrate on the notion of internal
3 Final nodes are represented by two concentric circles.

7

execution tree. Formally, each edge of an internal execution tree of an e-Service
E is labeled by (a, I), where a is the executed action and I is a nonempty set de-
noting the e-Services instances executing a. Every element of I is a pair (E′, e′),
where E′ is an e-Service and e′ is the identifier of an instance of E′. The iden-
tifier e′ uniquely identifies the instance of E′ within the internal execution tree.
In general, in the internal execution tree of an e-Service E, some actions may be
executed also by the running instance of E itself. In this case we use the special
instance identifier this. Note that the execution of each action can be delegated
to more than one other e-Service instance.

An internal execution tree induces an external execution tree: given an in-
ternal execution tree ti we call offered external execution tree the external exe-
cution tree te obtained from ti by dropping the part of the labeling denoting the
e-Service instances, and therefore keeping only the information on the actions.
An internal execution tree ti conforms to an external execution tree te if te is
equal to the offered external execution tree of ti. An e-Service is well formed if
its internal execution tree conforms to its external execution tree.

We now formally define when an e-Service of a community correctly delegates
actions to other e-Services of the community. We need a preliminary definition:
given an internal execution tree ti of an e-Service E, and a path p in ti starting
from the root, we call the projection of p on an instance e′ of an e-Service E′

the path obtained from p by removing each edge whose label (a, I) is such that
I does not contain e′, and collapsing start and end node of each removed edge.

We say that the internal execution tree ti of an e-Service E is coherent with
a community C if:

– for each edge labeled with (a, I), the action a is in the alphabet of C, and
for each pair (E′, e′) in I, E′ is a member of the community C;

– for each path p in ti from the root of ti to a node x, and for each pair (E′, e′)
appearing in p, with e′ different from this, the projection of p on e′ is a
path in the external execution tree t′e of E′ from the root of t′e to a node y,
and moreover, if x is final in ti, then y is final in t′e.

Observe that, if an e-Service of a community C is simple, i.e., it does not
delegate actions to other e-Service instances, then it is trivially coherent with
C. Otherwise, i.e., it is composite and hence delegates actions to other e-Service
instances, the behavior of each one of such e-Service instances must be correct
according to its external schema.

A community of e-Services is well-formed if each e-Service in the community
is well-formed, and the internal execution tree of each e-Service in the community
is coherent with the community.

Example 2. Figure 4 shows an internal execution tree conforming to the exter-
nal execution tree in Figure 3, where no action is delegated to other e-Service
instances. Figure 5 shows a different internal execution tree, conforming again
to the external execution tree in Figure 3, where the listen action is delegated
to a different e-Service, using each time a new instance. In the examples each
action is either executed by the running instance of E itself, or is delegated to

8

a = auth

s = search

l = listen

c = add to cart

b = buy

.

.

.

.

.

.

(s, E, this)

(a, E, this)

(l, E, this)

(s, E, this)

(s, E, this) (l, E, this)

(s, E, this)
.
.
.

.

.

.
(c, E, this)

(c, E, this)

(b, E, this)

(c, E, this)

(b, E, this)

.

.

.
(b, E, this)

(l, E, this)

(c, E, this)
(s, E, this)

(c, E, this)

(b, E, this)

(l, E, this)

Fig. 4. Example of internal execution tree of a simple e-Service

a = auth

s = search

l = listen

c = add to cart

b = buy

.

.

.

.

.

.

(a, E, this)

(c, E, this)

(s, E, this)

(l, E′, e′1)

.

.

.

.

.

.

(l, E′, e′1)

(l, E′, e′2)

.

.

.

(c, E, this)

(b, E, this)

(c, E, this)

(b, E, this)

(s, E, this)

(c, E, this)(b, E, this)

(s, E, this)

(s, E, this)

(c, E, this)

(b, E, this)

(l, E′, e′2)

(s, E, this)

Fig. 5. Example of internal execution tree of a composite e-Service

exactly one other instance. Hence, for simplicity, in the figure we have denoted
a label (a, {(E, e)}) simply by (a, E, e). �

9

a = auth

s = search

l = listen

c = add to cart

b = buy

.

.

.

.

.

.

s

a

l c

s

l

c

c

c

b s

l

b s

b

l

c

s

.

.

.

.

.

.

.

.

.
b

Fig. 6. External view of an e-Service instance

4 e-Service Instances

In order to be executed, a deployed e-Service has to be activated, i.e., necessary
resources need to be allocated. An e-Service instance represents such an e-Service
running and interacting with its client.

From an abstract point of view, a running instance corresponds to an execu-
tion tree with a highlighted node, representing the “current position”. The path
from the root of the tree to the current position is the run of the e-Service so far,
while the execution (sub-)tree having as root the current position describes the
behavior of what remains of the e-Service once the current position is reached.

Formally, an e-Service instance is characterized by:

– an instance identifier,
– an external view of the instance, which is an external execution tree with a

current position,
– an internal view of the instance, which is an internal execution tree with a

current position.

The external view characterizes the e-Service instance as seen by a client: the
an execution has reached a certain point, the current position, and hence has a
history of executed actions that led to that point and a choice of possible actions
to do next, according to the external execution tree.

Example 3. Figure 6 shows an external view of an instance of the e-Service of
Figure 3. The sequence of actions executed so far and the current position on the

10

execution tree are shown in thick lines. It represents a snapshot of an execution
by a client that has provided its credentials and search parameters, has searched
for and listened to one mp3 file, and has reached a point where it is necessary
to choose whether (i) performing another search, (ii) adding the file to the cart,
or (iii) terminating the e-Service (since the current position corresponds to a
final node). The set of possible actions to do next are captured by the execution
subtree having as root the current node. �

The internal view of an e-Service instance additionally maintains information
on which e-Service instance executes which action. At each point of the execution
there may be several other active instances of e-Services that cooperate with the
current one, each identified by its instance identifier. In order for the e-Service
instance to behave correctly, the various active instances are to be coordinated
by an orchestration engine [4, 15]. The orchestration engine uses the internal
view of the current instance and the external view of the other ones cooperating
with it, so as to coordinate their execution, monitoring control and data flows,
and guarantees that the composite e-Service behaves according to its (internal)
execution tree. The orchestration engine is also in charge of instantiating and
terminating the execution of component e-Service instances, offering the correct
set of actions to the client, as defined by the external execution tree, and invoking
the action chosen by the client on the e-Service that offers it.

Note that the component e-Services can be, in their turn, composite. How-
ever, this aspect is transparent to the current orchestration engine since it acts as
a client of the component e-Service instances, and hence uses only their external
view.

5 Classification of e-Services

e-Services have many features, and they can be classified according to several
dimensions. First of all, as we already observed, e-Services can be characterized
as simple or composite: an e-Service is composite if it delegates some or all of its
actions to other instances of e-Services in the community. If this is not the case,
an e-Service is called simple. Simple e-Services realize offered actions directly in
the software artifacts implementing them, whereas composite e-Services, when
receiving requests from clients, can invoke other e-Services in order to completely
fulfill the client’s needs.

Composite e-Services can be classified according to their delegation level :

– a partially delegating composite e-Service executes some of the actions itself
and possibly delegates other actions to component e-Services;

– a fully delegating composite e-Service delegates all offered actions to compo-
nent e-Services.

Fully delegating composite e-Services are virtual, and often corresponds to or-
ganizations without a complex physical infrastructure; moreover, in some sit-
uations, organizations can also decide to only specify such e-Services and let

11

them running on third party application service providers. Conversely, partially
delegating composite e-Services should corresponds to organizations with some
form of software infrastructure, as they realizes some operations themselves. By
looking at the internal execution tree, the delegation level of an e-Service can
be checked: if this is the only instance identifier occurring in the tree, then the
e-Service is simple, if this occurs together with other instance identifiers, then
the e-Service is a partially delegating composite e-Service, if this never occurs,
then it is a fully delegating composite e-Service.

Composite e-Services can be further classified according to whether each ac-
tion is executed by one or by more than one e-Service instance. The opportunity
of allowing more than one component e-Service to execute the same action is
important in specific situations, as the one reported in [3]. This property can
be easily checked on the internal execution tree, by looking at whether for each
label (a, I), the set I is a singleton or not.

Composite e-Services can be also classified according to whether the orches-
tration is interleaved or not:

– a composite e-Service E is non-interleaving if, whenever E activates an in-
stance e′ of a component e-Service E′, it executes the component e-Service
instance e′ until such an instance terminates, without interleaving the actions
of e′ with the execution of other instances (either of E′ of other component
e-Services different from E′), including this;

– a composite e-Service is interleaving if it allows for interleaving the execution
of actions by different component e-Service instances (including this). More
in detail, an interleaving e-Service may delegate the execution of the same
action to more than one component e-Service.

The opportunity of interleaving composite e-Services allow to develop more com-
plex e-Services, in which information returned/sent to clients and/or different
component e-Services can be aggregated and used to properly execute different
commands. Whether an e-Service is interleaving or not can also be checked by
looking at its internal execution tree: the e-Service is interleaving if and only if
there is a path on which we find an instance e′ followed by an instance e′′, and
on the path we find e′ later on again. Note that, when a composite e-Service is
non-interleaving, it executes the component e-Services as if they were atomic,
i.e., it either executes them all or not at all.

Finally, composite e-Services can be characterized according to the num-
ber of instances of the component e-Services that can be created and that are
simultaneously active. We distinguish the following cases:

1. for each component e-Service, at most one instance is used in the whole
execution;

2. for each component e-Service E, more instances of E can be used, but before
activating a new instance of E the previous one needs to be terminated;

3. for each component e-Service E, more instances of E can be used and can
be simultaneously active.

12

Distinguishing composite e-Services on the basis of the used number of instances
has some practical implications; in general, not all e-Services allow a client to
activate more than one instance at the same time; moreover, especially in situa-
tions in which activating a new instance has a cost, composite e-Services should
aim at using the minimum number of instances. Again, these properties can be
verified on the internal execution tree: (1) holds if for each path there is at most
one instance of each component e-Service; (2) holds if for each path the instances
of a given e-Service are not interleaved; (3) does not pose any constraint on the
instances of the component e-Services.

6 Running an e-Service Instance

In this section we first describe the basic, conceptual interaction protocol be-
tween an e-Service instance and its client, in terms of the correct sequence of
interactions necessary to execute an e-Service instance. Then, we discuss some
examples of interactions depending on the e-Service properties, covered in Sec-
tion 5.

6.1 The Basic Protocol

In Section 2 we have briefly shown the steps that a client should perform in
order to execute an e-Service:

1. activation of the e-Service instance
2. choice of the invokable actions
3. termination of the e-Service instance

where step (2) can be performed zero or more times, and steps (1) and (3) only
once. Each of these steps is constituted by sub-steps, consisting in executing
commands and in sending acknowledgements, each of them being executed by a
different actor (either the client or the e-Service).

ended

execute ai

choose a1|| . . . ||ai|| . . . ||an

started:
choose a1|| . . . ||ai|| . . . ||an

do ai, Ej, ek

do end, Ej , ek

activate Ej

Fig. 7. Conceptual Interaction Protocol

For the sake of simplicity in what follows we describe the interactions between
a client and an e-Service, assuming that no action is executed simultaneously by

13

different e-Services (see Section 5). It is easy to extend what presented in order
to cover also this case. Figure 7 shows the conceptual interaction protocol.

Activation. This step is needed to create the e-Service instance. The client4

invokes the activation command, specifying the e-Service to interact with. If Ej

is such an e-Service, the syntax of this command is:

activate Ej

When this command is invoked, all the necessary resources for the execution
of a new instance ek of e-Service Ej are allocated. Additionally, each e-Service
instance creates a copy of both the internal and the external execution tree
characterizing the e-Service schema it belongs to.

As soon as ek is ready to execute, it responds to the client with the message

started: choose a1||a2 . . . ||an

The purpose of this message is threefold. First, the client has an acknowledge-
ment that the invoked e-Service has been activated and that the interactions
may correctly start. Second, the client is informed about the instance identifier
he will interact with (e.g., ek). Third, the client is asked to choose the action to
execute, among a1, . . . , an. The choice command is described next.

Choice. This step represents the interactions carried on between the client and
the e-Service instance. Each e-Service instance is characterized, wrt the client,
by its external execution tree, and all the actions are offered according to the
information encoded in such a tree. Therefore, according to its external execution
tree, the e-Service instance ek proposes to its client a set of possible actions,
e.g., a1, . . . , an, and asks the client to choose the action to execute next among
a1, . . . , an. The syntax of this command is:

choose a1||a2|| . . . ||ai|| . . . ||an

where || is the choice symbol.
According to his/its goal, the client makes his/its choice by sending the

message

do ai, Ej , ek

In this way, the client informs the instance ek of e-Service Ej that he wants to
execute next the action ai. Once ek has received this message, it executes action
ai. The execution of ai is transparent to the client: the latter does not know
anything about it, it only knows when it is ended, i.e., when the e-Service asks
him/it to make another choice. This is shown in Figure 7 by the composite state
that contains a state diagram modeling the execution of ai.

The role of Ej and ek becomes especially clear if we consider that the client
could be a composite e-Service. When a composite e-Service E delegates an
4 The client may be either a human user or another e-Service.

14

action to a component e-Service (e.g., Ej), it needs to activate a new e-Service
instance (ek), thus becoming in its turn a client. Therefore, on one side, E
interacts with the external instances of the component e-Services, since E is
a client of the latter; on the the other side, E chooses which action is to be
invoked on which e-Service (either itself or a component e-Service) according to
its internal execution tree, when E acts as “server” towards its client.

Termination. Among the set of invokable actions there is a particular action,
end, which, if chosen, allows for terminating the interactions. Therefore, if the
current node on the external execution tree is a final node, the e-Service proposes
a choice as:

choose end||a1||a2|| . . . ||ai|| . . . ||an

and if the client has reached his/its goal, he sends the message:

do end, Ej , ek

The purpose of this action it to de-allocate all the resources associated with
instance ek of e-Service Ej . As soon as this is done, the e-Service informs its
client of it with the message:

ended

6.2 Example of Interactions with Composite e-Services

In this section we discuss some examples of interactions between a composite
e-Service and its client, being the composite e-Service a client for its compo-
nent e-Services. Other examples are described in Appendix A. Each interaction
is characterized in terms of the properties of the composite e-Service and of
its component e-Services discussed in Section 5, i.e., the delegation level sup-
ported when interacting with a client, the way in which component e-Services
can be composite (composition of component e-Services), and the number of
active instances of each component e-Service. Not all of these properties have
been addressed in the various research efforts. For example, to the best of our
knowledge, the number of active instances has never been taken into account
within composition. The purpose of this section is to describe such properties
by means of examples, where they are combined together, in order to let the
reader understand their importance within e-Service composition. For the sake
of simplicity, in the examples, we make the following assumptions:

– The client shown in the leftmost column interacts with only one instance of
the composite e-Service.

– The composite e-Service (shown in the central column) interacts with at
most two instances of the component e-Service (s) (shown in the rightmost
column). In other words, at most two instances of the same (or different)
component e-Service are currently active.

15

Client C
1. activate E
3. do a1, E, e
9. do a5, E, e
13. do a7, E, e
21. do end, E, e

e-Service E: instance e
2. started:

choose end||a1||a2

4. activate E1

6. do a1, E1, e1

8. choose a4||a5

10. do a5, E1, e1

12. choose end||a6||a7

14. do end, E1, e1

16. activate E2

18. do a7, E2, e2

20. choose end||a8

22. do end, E2, e2

24. ended

e-Service E1: instance e1

5. started:
choose end||a1||a3

7. choose a4||a5

11. choose end||a6

15. ended

e-Service E2: instance e2

17. started:
choose end||a7

19. choose end||a8

23. ended

Fig. 8. delegation level: fully delegation; composition of component e-Services: non-
interleaved; number of active instances for each component e-Service: at most one in
the whole execution.

Example 4. Figure 8 shows an example of interactions between an instance e
of an e-Service E and its client C, where E is a composite e-Service obtained
by executing two e-Services instances, e1 and e2, in a non-interleaving way, i.e.,
when e1 (or e2) is active, no action offered by another active e-Service instance is
executed. E fully delegates the execution of actions to its component e-Services,
therefore it does not offer any action. In other words, E can be seen as a “pure”
orchestrator of e-Services. This notion of composite e-Service is not new: it can
be found in [4], where the authors describe an engine for enacting an e-Service
obtained by coordination of different e-Services.

Note that a composite e-Service E is a kind of “wrapper” of the component
e-Service, indeed since its client interacts with the external execution tree of a
composite e-Service, he is not aware whether he is interacting with a composite
or a simple e-Service. Therefore, the interactions with the client C, involving the
choice of which action to invoke next, have always the form “do ai, E, e” where
ai represents any action chosen on instance e of e-Service E. Also, e forwards to
C the actions offered by e1 and e2, and to e1 and e2 the requests of C.

Consider interaction 12, where component e-Service instance e1 is active:
since a component e-Service has to be executed in a non-interleaving way from
its activation to its end, e can offer to its client the action a7, offered by e-
Service instance e2, only if e1 is (and can be) ended. Note that since the root
of the execution tree is final, the end action belongs to the first set of offered
actions. �

Example 5. Figure 9 shows an example of interaction when interleaving of com-
ponent e-Services is allowed. Also, E partially delegates its actions to E1. Given
that, after activating E1, at any time E can offer both its own actions and those
offered by E1.

16

Client C
1. activate E
3. do a1, E, e
5. do a5, E, e
11. do a8, E, e
15. do a7, E, e
19. do a13, E, e
21. do end, E, e

e-Service E: instance e
2. started:

choose end||a1||a2

4. choose a4||a5

6. activate E1

8. do a5, E1, e1

10. choose a6||a7||a8

12. choose a6||a7||a11

16. do a7, E1, e1

18. choose a12||a13

20. choose end||a12

22. do end, E1, e1

24. ended

e-Service E1: instance e1

7. started:
choose end||a1||a5

9. choose a6||a7

17. choose end||a12

23. ended

Fig. 9. delegation level: partial delegation; composition of component e-Services: in-
terleaving; number of active instances for each component e-Service: at most one in
the whole execution.

Consider interactions 9-12: in interaction 10 instance e offers actions a6 and a7

from e1 and action a8 from itself; since the client invokes a7, the current position
on the execution tree of e1 does not change, therefore in the next interaction (12)
e offers the same actions from e1, i.e., a6 and a7. Note that this is not the case
for the execution tree of the composite e-Service instance e, since it keeps track
of all the operations that can be invoked through it, i.e., both those offered by
e, and those offered by e1, and therefore the current position on the execution
tree of the composite e-Service always changes, also if the actions offered by e1

are invoked.
Consider interaction 18: e1 offers actions end and a12, but e offers only a12

from e1 (and a13 from itself). This is because the current position on the exe-
cution tree of e does not coincide with a final node. e offers the end action in
interaction 20, when the current position on its execution tree corresponds to a
final node. Finally, note that e correctly makes e1 end, before ending itself. �

7 Composition Synthesis

When a user requests a certain service from an e-Service community, there may
be no e-Service in the community that can deliver it directly. However, it may
still be possible to synthesize a new composite e-Service, which suitably dele-
gates action execution to the e-Services of the community, and when suitably
orchestrated, provides the user with the service he requested. Hence, a basic
problem that needs to be addressed is that of e-Service composition synthesis,
which can be formally described as follows: given an e-Service community C
and the external execution tree te of a target e-Service E expressed in terms
of the alphabet of C, synthesize an internal execution tree ti such that (i) ti

17

...

tEn
e tEn

i

C

tE1
e tE1

itE0
e

Composer

engine
Orchestration

tE0
i

Data flow

Interaction

Fig. 10. e-Service Integration System

conforms to te, (ii) ti delegates all actions to the e-Services of C (i.e., this does
not appear in ti, and (iii) ti is coherent with C.

Obviously, depending on the characteristics of the composite and component
e-Services (cfr. Section 5) many different forms of composition synthesis may
be identified, and for each case appropriate techniques need to be devised. For
example, [3] presents a technique for e-Service composition synthesis for the case
of fully-delegating, interleaving composite e-Services in which for each compo-
nent e-Service at most one instance is used, but each action may be delegated
to more than one e-Service.

We point out that, to address what is typically referred to as e-Service compo-
sition, in fact one first needs to perform a composition synthesis, thus obtaining
a composite e-Service fulfilling the client’s needs, and then an instance of such
a composite e-Service needs to be executed by an orchestration engine, as dis-
cussed in Section 4.

Figure 10 shows the architecture of an e-Service Integration System which
delivers possibly composite e-Services on the basis of user requests, exploiting the
available e-Services of a community C. When a client requests a new e-Service
E0, he presents his request in form of an external e-Service schema tE0

e for E0,
and expects the e-Service Integration System to execute an instance of E0. To
do so, first the composer module makes the composite e-Service E0 available
for execution, by synthesizing an internal schema tE0

i of E0 that conforms to
the external schema tE0

e and is coherent with the community C. Then, using
the internal schema tE0

i as a specification, the orchestration engine activates an
(internal) instance of E0, and orchestrates the different available e-Services, by
activating and interacting with them, so as to fulfill the client’s needs. All this
happens in a transparent manner for the client, who interacts only with the e-
Service Integration System and is not aware that a composite e-Service is being
executed instead of a simple one.

18

8 Conclusions

In this paper we have proposed a conceptual, and formal, vision of e-Services,
in which we distinguish between the external behavior of an e-Service as seen
by clients, and the internal behavior as seen by a deployed application running
the e-Service, which includes information on delegation of actions to other e-
Services. Such a vision clarifies the notion of composition from a formal point
of view. We have also provided a classification of e-Services based on relevant
properties of the internal behavior.

Note that in the proposed framework, we have made the fundamental as-
sumption that one has complete knowledge on the e-Services belonging to a
community, in the form of their external and internal schema. We also assumed
that a client gives a very precise specification (i.e., the external schema) of
an e-Service he wants to have realized by a community. In particular, such a
specification does not contain forms of “don’t care” nondeterminism. Both such
assumptions can be relaxed, and this leads to a development of the proposed
framework that is left for further research.

Among other open issues, an important question concerns which e-Service
maintains the responsibility with the end-client of executing an action. Through-
out the paper we have implicitly assumed that the composite e-Service has
control over the execution and maintains the responsibility, i.e., it wraps the
component e-Services and the client interacts only with the invoked e-Service.
Other scenarios are possible.

For example, the composite e-Service delegates both the control over the
execution and the responsibility to a component e-Service. In other words, it
simply act as broker among the end-client and the component e-Service.

Acknowledgments

This work has been partially supported by MIUR through the “Fondo
Strategico 2000” Project VISPO (Virtual-district Internet-based Service Plat-
fOrm) (http://cube-si.elet.polimi.it/vispo/index.htm) and the “FIRB 2001”
Project MAIS (Multi-channel Adaptive Information Systems).

The work of Massimo Mecella has been also partially supported by the Euro-
pean Commission under Contract No. IST-2001-35217, Project EU-PUBLI.com
(Facilitating Co-operation amongst European Public Administration Employees)
(http://www.eu-publi.com/).

References

1. M. Aiello, M.P. Papazoglou, J. Yang, M. Carman, M. Pistore, L. Serafini, and
P. Traverso, A Request Language for Web-Services Based on Planning and Con-
straint Satisfaction, Proceedings of the 3rd VLDB International Workshop on Tech-
nologies for e-Services (VLDB-TES 2002), Hong Kong, Hong Kong SAR, China,
2002.

19

2. A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Martin, D. McDermott,
S. McIlraith, S. Narayanan, M. Paolucci, T. Payne, and K. Sycara, DAML-S: Web
Service Description for the Semantic Web, Proceedings of the 1st International
Semantic Web Conference (ISWC 2002), Chia, Sardegna, Italy, 2002.

3. D. Berardi, D. Calvanese, G De Giacomo, and M. Mecella, Composing e-Services
by Reasoning about Actions, Proc. of the ICAPS 2003 Workshop on Planning for
Web Services, 2003, To appear.

4. F. Casati, M. Sayal, and M.C. Shan, Developing e-Services for Composing e-
Services, Proceedings of the 13th International Conference on Advanced Infor-
mation Systems Engineering (CAiSE’01), Interlaken, Switzerland, 2001.

5. F. Casati and M.C. Shan, Dynamic and Adaptive Composition of e-Services, In-
formation Systems 6 (2001), no. 3.

6. J. Castro, M. Kolp, and J. Mylopoulos, Towards Requirements-driven Information
Systems Engineering: the Tropos Project, Information Systems 27 (2002), no. 6.

7. U. Dayal, M. Hsu, and R. Ladin, Business Process Coordination: State of the Art,
Trends and Open Issues, Proceedings of the 27th Very Large Databases Conference
(VLDB 2001), Roma, Italy, 2001.

8. G. De Michelis, E. Dubois, M. Jarke, F. Matthes, J. Mylopoulos, M.P. Papazoglou,
K. Pohl, J. Schmidt, C. Woo, and E. Yu, Cooperative Information Systems: A Man-
ifesto, Cooperative Information Systems: Trends & Directions (M.P. Papazoglou
and G. Schlageter, eds.), Accademic-Press, 1997.

9. A.K. Elmagarmid and W.J. McIver Jr, The Ongoing March Towards Digital Gov-
ernment (Special Issue), IEEE Computer 34 (2001), no. 2.

10. M.C. Fauvet, M. Dumas, B. Benatallah, and H.Y. Paik, Peer-to-Peer Traced Execu-
tion of Composite Services, Proceedings of the 2nd VLDB International Workshop
on Technologies for e-Services (VLDB-TES 2001), Rome, Italy, 2001.

11. D. Georgakopoulos (ed.), Proceedings of the 9th International Workshop on Re-
search Issues on Data Engineering: Information Technology for Virtual Enterprises
(RIDE-VE’99), Sydney, Australia, 1999.

12. E. Kafeza, D.K.W. Chiu, and I. Kafeza, View-based Contracts in an e-Service
Cross-Organizational Workflow Environment, Proceedings of the 2nd VLDB In-
ternational Workshop on Technologies for e-Services (VLDB-TES 2001), Rome,
Italy, 2001.

13. M. Lenzerini, Data Integration: A Theoretical Perspective, Proceedings of the 21st
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS 2002), Madison, WI, USA, 2002.

14. S. McIlraith and T. Son, Adapting Golog for Composition of Semantic Web Ser-
vices, Proceedings of the 8th International Conference on Knowledge Representa-
tion and Reasoning (KR 2002), Toulouse, France, 2002.

15. M. Mecella, F. Parisi Presicce, and B. Pernici, Modeling e-Service Orchestration
Through Petri Nets, Proceedings of the 3rd VLDB International Workshop on
Technologies for e-Services (VLDB-TES 2002), Hong Kong, Hong Kong SAR,
China, 2002.

16. M. Mecella and B. Pernici, Building Flexible and Cooperative Applications Based on
e-Services, Technical Report 21-2002, Dipartimento di Informatica e Sistemistica,
Università di Roma “La Sapienza”, Roma, Italy, 2002, (available on line at:
http://www.dis.uniroma1.it/∼mecella/publications/mp techreport 212002.pdf).

17. M. Mecella, B. Pernici, and P. Craca, Compatibility of e-Services in a Cooperative
Multi-Platform Environment, Proceedings of the 2nd VLDB International Work-
shop on Technologies for e-Services (VLDB-TES 2001), Rome, Italy, 2001.

20

18. B. Medjahed, B. Benatallah, A. Bouguettaya, A.H.H. Ngu, and A.K. Elmagarmid,
Business-to-Business Interactions: Issues and Enabling Technologies, VLDB Jour-
nal 12 (2003), no. 1.

19. E. Rahm and P.A. Bernstein, A Survey of Approaches to Automatic Schema Match-
ing, VLDB Journal 10 (2001), no. 4.

20. H. Schuster, D. Georgakopoulos, A. Cichocki, and D. Baker, Modeling and Com-
posing Service-based and Reference Process-based Multi-enterprise Processes, Pro-
ceedings of the 12th International Conference on Advanced Information Systems
Engineering (CAiSE 2000), Stockholm, Sweden, 2000.

21. G. Shegalov, M. Gillmann, and G. Weikum, XML-enabled Workflow Management
for e-Services across Heterogeneous Platforms, VLDB Journal 10 (2001), no. 1.

22. W.J. van den Heuvel, J. Yang, and M.P. Papazoglou, Service Representation, Dis-
covery and Composition for e-Marketplaces, Proceedings of the 9th International
Conference on Cooperative Information Systems (CoopIS 2001), Trento, Italy,
2001.

23. D. Wodtke and G. Weikum, A Formal Foundation for Distributed Workflow Exe-
cution Based on State Charts, Proceedings of the 6th International Conference on
Database Theory (ICDT ’97), Delphi, Greece, 1997.

24. J. Yang and M.P. Papazoglou, Web Components: A Substrate for Web Service
Reuse and Composition, Proceedings of the 14th International Conference on Ad-
vanced Information Systems Engineering (CAiSE’02), Toronto, Canada, 2002.

25. J. Yang, W.J. van den Heuvel, and M.P. Papazoglou, Tackling the Challenges
of Service Composition in e-Marketplaces, Proceedings of the 12th International
Workshop on Research Issues on Data Engineering: Engineering E-Commerce/E-
Business Systems (RIDE-2EC 2002), San Jose, CA, USA, 2002.

21

A Appendix

Next, we show some other examples of interactions.

Example 6. Figure 11 shows an example of interactions involving a composite
e-Service instance e that partially delegates its actions, i.e., it offers both its own
actions and actions actually offered by another e-Service instance (e.g., e1). The
other features are as in example 4.

Consider interactions 13-16: e1 offers a choice between end and a8, whereas
e offers a choice between actions a8, a9, end, and the client chooses to execute
action a9.

– e offers end because the current position on both its execution tree and on
its component e-Services’ execution tree coincides with a final node.

– Given the client’s choice and given the non-interleaving of composition, e has
to first terminate the interactions with e1 and then it can execute the action
a9. Indeed, e cannot offer its own actions (e.g., a9) while e1 is executing, but
can do it only after e1 has offered an end action.

Note that the same interaction protocol might take place if the delegation level
was of type “fully delegation” and there were two or more active instances of
component e-Service E1. �

Example 7. Figure 12 shows an instance e of a composite e-Service E interacting
with 2 simultaneously active instances of component e-Service E1, namely e1 and
e2.

Consider interaction 13: when the client chooses to execute a3, both e1 and
e2 can execute it. However, the instance that will execute a3 is already decided
and this information is encoded in the execution tree of E. In this case, a3 is
executed by e1 through the command “do a3, E1, e1”, indeed it is necessary to
specify which instance has to execute a3. �

Client C
1. activate E
3. do a1, E, e
5. do a5, E, e
11. do a7, E, e
15. do a9, E, e
19. do end, E, e

e-Service E: instance e
2. started:

choose end||a1||a2

4. choose a4||a5

6. activate E1

8. do a5, E1, e1

10. choose a6||a7

12. do a7, E1, e1

14. choose end||a8||a9

16. do end, E1, e1

18. choose end||a10

20. ended

e-Service E1: instance e1

7. started:
choose end||a1||a5

9. choose a6||a7

13. choose end||a8

17. ended

Fig. 11. delegation level: partial delegation; composition of component e-Services: non-
interleaving; number of active instances for each component e-Service: at most one in
the whole execution.

22

Client C
1. activate E
3. do a1, E, e
9. do a1, E, e
15. do a3, E, e
19. do a4, E, e
23. do end, E, e

e-Service E: instance e
2. started:

choose end||a1||a2

4. activate E1

6. do a1, E1, e1

8. choose a3||a4||a1

10. activate E1

12. do a1, E1, e2

14. choose a3||a4

16. do a3, E1, e1

18. choose a5||a3||a4

20. do a4, E1, e2

22. choose a5||end
24. do end, E1, e1

26. do end, E1, e2

28. ended

e-Service E1: instance e1

5. started:
choose end||a1||a3

7. choose a3||a4

17. choose a5||end
25. ended

e-Service E1: instance e2

11. started:
choose end||a1||a3

13. choose a3||a4

21. choose end
27. ended

Fig. 12. delegation level: partial delegation; composition of component e-Services: in-
terleaving; number of active instances for each component e-Service: more than one
used and simultaneously active.

Client C
1. activate E
3. do a1, E, e
9. do a6, E, e
11. do a3, E, e
17. do a1, E, e
23. do a9, E, e
25. do a4, E, e
29. do a5, E, e
33. do end, E, e

e-Service E: instance e
2. 2. started:
choose end||a1||a2

4. 4. activate E1

6. 6. do a1, E1, e1

8. 8. choose a3||a4||a6

10. 10. choose a3||a4||a7

12. 12. do a3, E1, e1

14. 14. do end, E1, e1

16. 16. choose a1||a2||end
18. 18. activate E1

20. 20. do a1, E1, e2

22. 22. choose a9

24. 24. choose a3||a4||a10

26. 26. do a4, E1, e2

28. 28. choose a5

30. 30. do a5, E1, e2

32. 32. choose a11||end
34. 34. do end, E1, e2

36. 36. ended

e-Service E1: instance e1

5. started:
choose end||a1||a3

7. choose a3||a4

13. choose end
15. ended

e-Service E1: instance e2

19. started:
choose end||a1||a3

21. choose a3||a4

27. choose a5

31. choose a6||end
35. ended

Fig. 13. delegation level: partial delegation; comopsition of component e-Services: in-
terleaved; number of active instances for each component e-Service: more than one
used, at most one active.

23

Example 8. Figure 13 shows an instance e of a composite e-Service E interacting
with two instances e1 and e2 of the same component e-Service E1, that are active
one at a time. Such instances are interleaved with e, that offers its own actions.
Note that despite the fact that the two instances belong to the same e-Service
schema, from a certain point onwards, they do not offer the same set of actions:
indeed, since the client has made different choices on the actions to execute on
them, they evolve differently, i.e., the path from the root to the current position
on their execution tree is different.

This example highlights several aspects of interactions. Consider interactions
26-28, where e2 offers action a5 and the composite e-Service limits to “reflect”
a5 to its client. The client is forced to choose a5, but, at the same time, it is the
client that performs the choice: the composite e-Service cannot choose instead
of its client.

It may happen that, during a certain number of interactions, the composite
e-Service may decide to offer only part (or none) of the actions by the component
e-Services. This occurs in interactions 21-24.

Finally, consider the situation when there is only one component e-Service,
whose instances are active one at a time, and the composite e-Service fully del-
egates its operations to the component e-Service instances: it is straightforward
to see that the latter cannot be interleaved, but can only be executed in a non-
interleaved way.

�

24

