On the Semantics of Deliberation in IndiGolog — From Theory to
Implementation

Giuseppe De Giacomo
Dip. Informatica e Sistemistica
Universita di Roma “La Sapienza”
Via Salaria 113,00198 Roma, Italy
degiacomo@dis.uniromal .it

Abstract

In this paper, we develop an account of the kind
of deliberation that an agent that is doing plan-
ning or executing high-level programs under in-
complete information must be able to perform.
The deliberator’s job is to produce a kind of plan
that does not itself require deliberation to inter-
pret. We characterize these as epistemically fea-
sible programs: programs for which the execut-
ing agent, at every stage of execution, by virtue
of what it knew initially and the subsequent read-
ings of its sensors, always knows what step to
take next towards the goal of completing the en-
tire program. We formalize this notion and char-
acterize deliberation in the IndiGolog agent lan-
guage in terms of it. We also show that for certain
classes of problems, which correspond to con-
formant planning and conditional planning, the
search for epistemically feasible programs can be
limited to programs of a simple syntactic form.
We also discuss implementation issues and exe-
cution monitoring and replanning.

1 INTRODUCTION

While a large amount of work on planning deals with issues
of efficiency, a number of representational questions re-
main. This is especially true in applications where because
of limitations on the information available at plan time, and
quite apart from computational concerns, no straight-line
plan (that is, no linear sequence of actions) can be demon-
strated to achieve a goal. In very many cases, it is necessary
to supplement what is known at plan time by information
that can only be obtained at run time via sensing.

In cases like these, what should we expect a planner to do
given a goal? We cannot expect it to return a straight-line
plan. We could get it to return a more general program

Yves Lespérance
Dept. of Computer Science
York University
Toronto, ON, M3J 1P3, Canada
lesperan@cs.yorku.ca

Hector J. Levesque and
Sebastian Sardifa
Dept. of Computer Science
University of Toronto
Toronto, ON, M5S 3G4, Canada
{hector,ssardina}@ai.toronto.edu

of some sort, but we need to be careful: if the program is
general enough, it may be as challenging to figure out how
to execute it as it was to achieve the goal in the first place.

This is certainly true for programs in the Golog family of
high-level programming languages [Levesque et al., 1997,
De Giacomo et al., 2000, Reiter, 2001a]. Those logic lan-
guages offer an interesting alternative to planning in which
the user specifies not just a goal, but also constraints on how
it is to be achieved, perhaps leaving small sub-tasks to be
handled by an automatic planner. In that way, a high-level
program serves as a “guide” heavily restricting the search
space. By a high-level program, we mean one whose primi-
tive instructions are domain-dependent actions of the robot,
whose tests involve domain-dependent fluents affected by
these actions, and whose code may contain nondeterminis-
tic choice points. Instead of looking for a legal sequence
of actions achieving some goal, the (planning) task now is
to find a sequence that constitutes a legal execution of a
high-level program.

At its most basic, planning should be a form of deliber-
ation, whose purpose is to produce a specification of the
desired behavior, a specification which should not itself re-
quire deliberation to interpret. In [Levesque, 1996] it was
suggested that a planner’s job was to return a robot pro-
gram, a syntactically-defined structure that a robot could
follow while consulting its sensors to determine a condi-
tional course of action. Other forms of conditional plans
have been proposed, for example, in [Peot and Smith, 1992,
Smith et al., 1998, Lakemeyer, 1999]. What these all have
in common, is that they define plans as syntactically re-
stricted programs.

In this paper, we consider a different and more abstract
version of plans. We propose to treat plans as epistemi-
cally feasible programs: programs for which the executing
agent, at every stage of execution, by virtue of what it knew
initially and the subsequent readings of its sensors, always
knows what step to take next towards the goal of complet-
ing the entire program.

This paper will not present algorithms for generating epis-
temically feasible programs. What we will do, however,
is characterize the notion formally, prove that certain cases
of syntactically restricted programs are epistemically feasi-
ble, and that in some cases where there is an epistemically
feasible program, a syntactically restricted one that has the
same outcome can also be derived.

To make these concepts precise, it is useful to consider a
framework where we can talk about the planning and ex-
ecution of very general agent programs involving sensing
and acting. IndiGolog [De Giacomo and Levesque, 1999a]
is a variant of Golog intended to be executed online in an
incremental way. Because of this incremental style execu-
tion, an agent program is capable of gathering new infor-
mation from the world during its execution. Most relevant
for our purposes is that IndiGolog includes a search op-
erator which allows it to only take a step if it can convince
itself that the step will allow it to eventually complete some
user-specified subprogram. In that way, IndiGolog pro-
vides an attractive integrated account of sensing, planning,
and action. However, IndiGolog search does not guarantee
that it will not get stuck in a situation where it knows that
some step can be performed, but does not know which. It
is this search operator that we will generalize here.

The rest of the paper is organized as follows. First, in Sec-
tion 2 we set the stage by presenting the situation calculus
and high-level programs based on it. In Section 3, since
we are going to make a specific use of the knowledge op-
erator for characterizing the program returned by the delib-
erator, we introduce epistemically accurate theories and a
basic property they have w.r.t. reasoning. In Section 4, we
characterize epistemically feasible deterministic programs,
i.e., the kind of program that we consider suitable results
of the deliberation process, and in Section 5, we study two
notable subclasses of epistemically feasible deterministic
programs, that can be characterized in terms of syntax only.
In Section 6 we discuss how some of the abstract notions
we have introduced can be readily implemented in prac-
tice. In Section 7, we discuss how the deliberated program
could be monitored and revised if circumstances require it.
Finally, in Section 8, we draw conclusions and discuss fu-
ture and related work.

2 THE SITUATION CALCULUS AND
INDIGOLOG

The technical machinery we use to define program execu-
tion in the presence of sensing is based on that of [De Gia-
como and Levesque, 1999a, De Giacomo et al., 2000]. The
starting point in the definition is the situation calculus [Mc-
Carthy and Hayes, 1979]. We will not go over the lan-
guage here except to note the following components: there

is a special constant Sy used to denote the initial situa-
tion, namely that situation in which no actions have yet oc-
curred; there is a distinguished binary function symbol do
where do(a, s) denotes the successor situation to s result-
ing from performing the action a; relations whose truth val-
ues vary from situation to situation, are called (relational)
fluents, and are denoted by predicate symbols taking a situ-
ation term as their last argument; and there is a special pred-
icate Poss(a, s) used to state that action a is executable in
situation s. To deal with knowledge and sensing, we fol-
low [Moore, 1985, Scherl and Levesque, 1993, Levesque,
1996] and use a fluent K (s’, s) used to represent what situ-
ations s’ are considered epistemically possible by the agent
in situation s. Know(¢(now), s) is then taken to be an
abbreviation for the formula Vs'.K(s',s) D ¢(now/s").
In this paper, we only deal explicitly with sensing actions
with binary outcomes as in [Levesque, 1996]. However,
the results presented here can be easily generalized to sen-
sors with multiple outcomes. To represent the information
provided by a sensing action, we use a predicate SF'(a, s),
which holds if action a returns the binary sensing result 1
in situation s. For a sensing action senseg that senses the
truth value of ¢, we would have [SF (senseq, s) = ¢(s)],
and for any ordinary action o that does not involve sensing,
we would use [SF'(a, s) = True].

Within this language, we can formulate domain theories
which describe how the world changes as the result of the
available actions. One possibility is an action theory of the
following form [Reiter, 1991, 2001a]:

e Axioms describing the initial situation, Sy.

e Action precondition axioms, one for each primitive
action a, characterizing Poss(a, s).

e Successor state axioms, one for each fluent F', stating
under what conditions F'(%, do(a, s)) holds as a func-
tion of what holds in situation s; these take the place of
effect axioms, but also provide a solution to the frame
problem.

e Sensed fluent axioms, one for each primitive action
a of the form SF(a,s) = ¢q4(s), characterizing
SF [Levesque, 1996].

e The following successor state axiom for the knowl-
edge fluent K [Scherl and Levesque, 1993]:

K(s",do(a,s)) =

ds’.s' = do(a,s') N K(s',s) A Poss(a,s’) A
[SF(a,s') = SF(a,s)]

e Unique names axioms for the primitive actions.

e Some foundational, domain independent ax-
ioms [Lakemeyer and Levesque, 1998, Reiter,
2001a].

To describe a run which includes both actions and their
sensing results, we use the notion of a history, i.e., a se-
quence of pairs (a,z) where a is a primitive action and
xz is 1 or 0, a sensing result. Intuitively, the history
(a1,21)-...-(an, z,) is one where actions a1, . .. , a,, hap-
pen starting in some initial situation, and each action a; re-
turns sensing value ;. We assume that if a; is an ordinary
action with no sensing, then z; = 1. Notice that the empty
sequence ¢ is a history.

We use end[o] as an abbreviation for the situation term
called the end situation of history ¢ on the initial situa-
tion Sy, and defined by: end[e] = Sp; and inductively,
end|o - (a,z)] = do(a, end[o]).

We also use Sensed[o] as an abbreviation for a formula
of the situation calculus, the sensing results of a history,
and defined by: Sensed[¢] = True; and inductively,
Sensed[o - (a,1)] = Sensed[o] A SF(a,end[o]), and
Sensed[o - (a,0)] = Sensed[o] A =SF(a,end[o]). This
formula uses S F' to tell us what must be true for the sensing
to come out as specified by o starting in Sy.

Next we turn to programs. The programs we consider here
are based on the ConGolog language defined in [De Gia-
como et al., 2000], which provides a rich set of program-
ming constructs summarized below:

a, primitive action
o7, wait for a condition
01; 62, sequence
01 | 02, nondeterministic branch
Tz.6, nondeterministic choice of argument
o, nondeterministic iteration
if ¢ then §; else 5> endIf, conditional
while ¢ do 6 endWhile, while loop

01 || 62, concurrency with equal priority
01)) 82, concurrency with §; at a higher priority

ol concurrent iteration
(Z:0—06), interrupt
(), procedure call'

Among these constructs, we notice the presence of of non-
deterministic constructs. These include (6; | 62), which
nondeterministically chooses between programs §; and ds,
m . &, which nondeterministically picks a binding for the
variable z and performs the program ¢ for this binding of z,
and 0*, which performs ¢ zero or more times. Also notice
that ConGolog includes constructs for dealing with concur-
rency. In particular (6, || d2) expresses the concurrent exe-
cution (interpreted as interleaving) of the programs §; and
d2. Beside (61 || d2) ConGolog includes other constructs
for dealing with concurrency, such as prioritized concur-

'For the sake of simplicity, we will not consider procedures in
this paper.

rency (01) d2), and interrupts { & : ¢ — &). We refer the
reader to [De Giacomo et al., 2000] for a detailed account
of ConGolog.

In [De Giacomo et al., 2000], a single step transition se-
mantics in the style of [Plotkin, 1981] is defined for Con-
Golog programs. Two special predicates T'rans and Final
are introduced. Trans(p, s, p’, s') means that by executing
program p starting in situation s, one can get to situation s’
in one elementary step with the program p’ remaining to be
executed, that is, there is a possible transition from the con-
figuration (p, s) to the configuration (p', s"). Final(p, s)
means that program p may successfully terminate in situa-
tion s, i.e., the configuration (p, s) is final.?

Offline executions of programs, which are the kind of
executions originally proposed for Golog and ConGolog
[Levesque et al., 1997, De Giacomo et al., 2000], are char-
acterized using the Do(p, s, s') predicate, which means that
there is an execution of program p that starts in situation s
and terminates in situation s':

Do(p, s,s') & 3p' Trans*(p, s,p',s') A Final(p', s'),

where T'rans™* is the reflexive transitive closure of T'rans.
An offline execution of program p from situation s is a se-
quence of actions ay, . . ., a, such that:

Azioms |= Do(p, s,do(an, . ..,do(as, s))).

Observe that an offline executor is in fact similar to a plan-
ner that given a program, a starting situation, and a theory
describing the domain, produces a sequence of action to
execute in the environment. In doing this, it has no access
to sensing results, which will only be available at runtime.
See [De Giacomo et al., 2000] for more details.

In [De Giacomo and Levesque, 1999a], IndiGolog, an
extension of ConGolog that deals with online execu-
tions with sensing is developed. The semantics defines
an online execution of an IndiGolog program p start-
ing from a history o, as a sequence of online configu-
rations (po = p,00 = 0),...,(Pn,0n) such that for i =
0,...,n—1:
Azioms U {Sensed[o;]} =
Trans(p;, end[o;], piy1,end[oiy1]),

o; if end[oit1] = end[o;],
o; - (a,z) if end[oit1] = do(a,end[o;])
and a returns z.

Oi+1 =

ZFor example, the transition requirements for sequence are

Trans([pl;pQ]v&plvs’) =
Final(p1, s) A Trans(p2,s,p',s') V

3¢'. Trans(p1,s,¢',s') Ap' = (¢';p2)
i.e., to single-step the program (p1;p2), either p; terminates and

we single-step p2, or we single-step p1 leaving some ¢', and
(q'; p2) is what is left of the sequence.

An online execution successfully terminates if

Azioms U {Sensed[o,]} |E Final(pp, end[oy,]).

There is no automatic lookahead in IndiGolog. Instead,
a search operator X(p) is introduced to allow the pro-
grammer to specify when lookahead should be performed.
Final and T'rans are defined for the new operator as fol-
lows. For Final, we simply have that (X(p), s) is a final
configuration of the program if (p, s) itself is, i.e.,

Final(X(p),s) = Final(p,s).

For Trans, we have that the configuration (%(p), s) can
evolve to (X(¢'),s’) provided that (p,s) can evolve to
(¢',s') and from (¢', ') it is possible to reach a final con-
figuration in a finite number of transitions, i.e.,

Trans(X(p), s,p',s') =
3¢, sp. 0 =%(q") A
Trans(p,s,q',s') A Do(q', s, s¢).

This semantics means that Azioms U {Sensed[o]} E
Trans(X(p), end[o], 2(p),) iff Azioms U
{Sensed[o]} = Trans(p,end[o],p',s') and
Axioms U {Sensed[o]} |= Fsy.Do(p',s',s¢). Thus,
with this definition, the axioms entail that a step of the
program can be performed provided that they entail that
this step can be extended into a complete execution (i.e.,
in all models). This prunes executions that are bound to
fail later on. But it does not guarantee that the executor
will not get stuck in a situation where it knows that some
transition can be performed, but does not know which. For
example, consider the program (a; if ¢ then b else ¢) | d,
where actions a, b, ¢, and d are always possible, but where
the agent does not know whether ¢ holds after a. There are
two possible first steps, d which terminates successfully,
and a after which the executor is stuck. Unfortunately, &
does not distinguish between the two cases, since even in
the latter, there does exist an (unknown) transition to a
final state.

3 EPISTEMICALLY ACCURATE
THEORIES

In this paper we are going to look at theories that are epis-
temically accurate, meaning that what is known accurately
reflects what the theory says about the dynamic system.?
Formally, epistemically accurate theories are theories as in-
troduced earlier, but with two additional constraints:

e The initial situation is characterized by an axiom of
the form Know(¢, Sy) where ¢ is an objective for-
mula, i.e., a formula where the knowledge fluent K

3In [Reiter, 2001b] a similar notion is used to deal with
knowledge-based programs and reduce knowledge to provability.

does not appear, which describes the initial situation,
So. Note that there can be fluents about which nothing
is known in the initial situation.

e There is an axiom stating that the accessibility rela-
tion K is reflexive in the initial situation, which is then
propagated to all situations by the successor state ax-
iom for K [Scherl and Levesque, 1993].

For epistemically accurate theories we have established the
following result:

Theorem 1 For any objective sentence about situation s,
@(s) (Trans and Final may appear in ¢(s)),

Azioms U {Sensed[o]} = ¢(end|o]) if and only if
Azioms U {Sensed[o]} |E Know (o, end[o]).

Proof Sketch: < Follows trivially from the reflexivity of
K in the initial situation, and the fact that it is preserved by
the successor state axiom for K.

= Suppose the thesis does not hold, i.e., there exists a
model M of Azioms U {Sensed[o]} such that for some
s',M = K(s',end[o]) and M = —¢(s').

Then take the structure M’ obtained from M by intersect-
ing the objects of sort situation with those that are in the
situation tree rooted in the initial ancestor situation of s’,
say si. M’ satisfies all the axioms in Azioms except the
reflexivity and the successor state axiom for K, and the ini-
tial state axiom, which is of the form Know (¥ (now), Sp)
(the other axioms involve neither K nor Sy). Observe that
Trans and F'inal for the situations in the tree are defined
by considering relations involving only situations in the
same tree.

Now consider the M" obtained from M’ by adding the
constant Sp and making it denote s;,. Although M’ and M"
do not satisfy Know(¥(now), Sp), we have that M" =
U (Sp). Moreover, the successor state axiom for K implies

Azioms U {Sensed[o'] - (a, 1)} =
Know(SF(a,now), endc’ - (a,1)])

Azioms U {Sensed[o'] - (a,0)} =
Know(—SF(a,now), end[o’ - (a,0)])

and the fact that the successor state axiom for K holds in
M ensures that all predecessors of s’ are K accessible from
predecessors of end[o] in M. These imply that M" =
Sensed[o].

Finally let us define M"" by adding to M" the predicate
K and making it denote the identity relation on situations.
Then M"" = Azioms U {Sensed[c]}. On the other hand
since M' |= ~¢(s'), so does M, a contradiction. B

This means that if some objective property of the system is
entailed, then it is also known and vice-versa.

4 DELIBERATION PROGRAM STEPS

We are going to introduce and semantically characterize
the deliberation steps in the program. The basic idea of
the semantics we are going to develop is that the task of
the deliberator (that performs search) is to try to find a de-
terministic program that is guaranteed to be “executable”
and constitutes a way to execute the program provided, in
the sense that it always leads to terminating situations of
the given program. Another way to look at this is that the
deliberator tries to identify a “strategy” for reaching a fi-
nal situation of the supplied program. In such a strategy,
all choices must be resolved, i.e., the corresponding pro-
gram needs to be deterministic, and only information that
is available to the executor is required. In doing this task,
the deliberator performs essentially the same task as the
offline executor: it compiles the original program into a
simpler program that can be executed without any looka-
head. The program it produces however, is not just a linear
sequence of actions; it can perform sensing, branching, it-
eration, etc. Moreover, the program is checked to ensure
that the executor will always have enough information to
continue the execution. Among other things, this addresses
the problem raised above concerning the original seman-
tics of search. Note that our approach is similar to that of
[Levesque, 1996]; however, there the strategy was stated in
a completely different language (robot programs), here we
use ConGolog, i.e., the language used to program the agent
itself.

4.1 EPISTEMICALLY FEASIBLE
DETERMINISTIC PROGRAMS

The first step in developing this approach is formalizing
the notion mentioned above of a deterministic program for
which an executor will always have enough information to
continue the execution, i.e., will always know what the next
step to be performed is. We capture this notion formally
by defining the class of epistemically feasible deterministic
programs (EFDPs) as follows:

def

EFDP(dp, s) =
Vdyp', s'.Trans*(dp, s,dp',s') D LEFDP(dp',s').

def

LEFDP(dp,s) =
Know(Final(dp, now), s) V
Adp’ Know (UTrans(dp, now, dp’, now), s) V
3Adp', a.Know(UTrans(dp, now, dp’, do(a, now)), s)

UTrans(dp, s,dp',s") £

Trans(dp, s,dp',s") A
Vdp", s".Trans(dp, s,dp”,s") D dp" =dp' ANs'" = ¢

Thus to be an EFDP, a program must be such that all con-
figurations reachable from the initial program and situation

involve a locally epistemically feasible deterministic pro-
gram (LEFDP). A program, is an LEFDP in a situation
if the agent knows that it is currently F'inal or knows what
unique transition (with or without an action) it can perform
next.

Observe that an epistemically feasible deterministic pro-
gram is not required to terminate. However, since the agent
is guaranteed to know what to do next at every step in its
execution, it follows that if it is entailed that the program
can reach a final situation, then it can be successfully exe-
cuted online whatever the sensing outcomes may be:

Theorem 2 Let dp be such that AziomsU{Sensed[o]} =
EFDP(dp,end[c]). Then, Azioms U {Sensed|o]}
ds¢.Do(dp, end[o], sf) if and only if all online executions
of (dp, o) are terminating.

Proof Sketch: First of all we observe that dp is a determin-
istic program and its possible online executions from o are
completely determined by the sensing outcomes. We also
observe that in each model there will be a single execution
of dp, since the sensing outcomes are fully determined in
the model.

= If Azioms U {Sensed[o]} = Jsy.Do(dp, end[c], s¢)
then in every model of Azioms U {Sensed[c]} the only
execution of dp from end[o] terminates. Now since offline
executions of dp terminate in all models and these models
cover all possible sensing outcomes, an online execution
must either successfully terminate or get stuck in an online
configuration where neither F'inal nor T'rans to some sub-
sequent configuration is entailed. Suppose that there is such
an online configuration (dp;, o;) where the agent is stuck.
Since in all models of Azioms U {Sensed[o]} with sens-
ing outcomes as determined by o;, LEFDP (dp;, end[o;])
holds, then either the agent knows that the remaining pro-
gram is final or knows what the unique next transition is.
By reflexivity of K, the agent is correct about this, so
Azioms U {Sensed[o;]} either entails that dp; is final or
entails that some next transition can be made. If the latter
the next transition from (dp;, o;) must be the same in all
models of Azioms U {Sensed[o;]}. Indeed if there were
models of Azioms U {Sensed|o;]} that had different next
transition for (dp;,end[o;]) then there would be a model
where there are distinct epistemic alternatives correspond-
ing to these different models and so the agent would not
know what the next transition is in this model. Hence, ei-
ther way, the agent is not stuck in (dp;, o;), thus getting a
contradiction.

< If an online execution of dp from ¢ terminates it means
that the program dp, from end[o], terminates in all models
of Azioms U {Sensed[c]|} with the sensing outcomes as
in the online execution. Since by hypothesis all online ex-
ecutions terminate, thus covering all possible sensing out-

comes, then dp, from end[o], terminates in all models. B

4.2 SEMANTICS OF DELIBERATION STEPS

We now give the formal semantics of the deliberation steps.
To denote these steps in the program we introduce a delib-
eration operator A, a new form of the IndiGolog search
operator discussed in Section 2.

We define the T'rans and Final predicates for the new de-
liberation operator as follows:

Trans(A(p),s,dp',s') =
Adp.EFDP(dp, s) A
s¢.Trans(dp,s,dp’,s') A
Do(dp',s',s¢) A Do(p, s, s¢).

Final(Ac(p), s) = Final(p, s).

Thus, the axioms entail that there is a transition for A.(p)
from a situation s if and only if they entail that there is
some epistemically feasible deterministic program dp that
reaches a F'inal situation of the original program p no mat-
ter how sensing turns out (i.e., in every model of the ax-
ioms). Note also that the remaining program after the tran-
sition, dp’, is what is left of dp; thus, the agent commits
to the strategy/ EFDP found in the initial deliberation and
executes it.* Note that we do not need to put dp' inside a
A, block, since it is deterministic.

The following theorem shows that our semantics for the
deliberation operator satisfies some basic requirements: if
there is a transition for a deliberation block in a history o,
then (1) the program in the deliberation block can reach a
Final situation in every model, and (2) so can A.(p), and
moreover (3) A.(p) can be successfully executed online
whatever the sensing results are (thus, the agent will never
get to a configuration where it can no longer reach a Final
situation or does not know what to do next):

Theorem 3 If Azioms U {Sensed[o]} =
Trans(Ac(p),end[o],p’,s"), then

1. Azioms U {Sensed[o]} = dsy.Do(p, end[o], s¢)
2. Azioms U {Sensed[o]} =

ds¢.Do(Ac(p), end[o], sf)
3. All online executions from (A (p), o) terminate.

Proof Sketch: 1. and 2. follow immediately from the
definition of Trans for A.. For 3. consider that by
the definition of Trans for A, there exists a dp such
that Azioms U {Sensed[o]} = EFDP(dp,end[o]) A
3s¢,p', s'.Trans(dp, end[o],p',s") A Do(p’,s’,sy¢). The

“We discuss how this commitment to a given “strategy” can
be relaxed when we address execution monitoring in Section 7.

conditions of Theorem 2 are satisfied, thus we have that all
online executions from (dp, o) are terminating. Since these
include all online executions from (p’, o’) with end[o'] =
s', all online executions from (p’,o’) must also be termi-
nating. Hence the thesis follows. B

S SYNTAX-BASED ACCOUNTS OF
EFDPs

In general, deliberating to find a way to execute a high-level
program can be very hard because it amounts to doing plan-
ning where the class of potential plans is very general. It
is thus natural to consider restricted classes of programs.
Two particularly interesting such classes are: (i) programs
that do not perform sensing, which correspond to confor-
mant plans® (see e.g., [Smith and Weld, 1998]), and (ii)
programs that are guaranteed to terminate in a bounded
number of steps (i.e., do not involve any form of cycles),
which correspond to conditional plans (see e.g., [Smith
et al., 1998]). We will show that for these two classes, one
can restrict one’s attention to simple syntactically-defined
classes of programs without loss of generality. So if for
instance, one is designing a deliberator/planner, one might
want to only consider programs from these classes.

5.1 TREE PROGRAMS

Let us now define the class of (sense-branch) tree programs
TREE with the following BNF rule:

dpt ::=nil | False? | a;dpty | True?; dpt; |
senseg;if ¢ then dpt; else dpt,

where a is any non-sensing action, and dpt; and dpt, are
tree programs.

This class includes conditional programs where one can
only test a condition that has just been sensed (or trivial
tests — these are introduced only for technical reasons).
Whenever such a program is executable, it is also epistem-
ically feasible — the agent always knows what to do next:

Theorem 4 Let dpt be a tree program, i.e., dpt € TREE.
Then, for all histories o, if Axioms U {Sensed[o]} |
3s¢.Do(dpt, end[o], s¢) then Azioms U {Sensed[o]} =
EFDP (dpt, end[o]).

Proof Sketch: By induction on the structure of dpt.

Base cases. For nil, it is known that nil is Final, so
AziomsU{Sensed[o]} = EFDP (nil,end[o]) holds; for
False?, the antecedent is false, so the thesis holds.

SWe remind the reader that conformant plans are sequences
of actions that, even under incomplete information about the do-
main, are guaranteed to reach the desired goal.

Inductive cases. Assume that the thesis holds for dpt;
and dpty. Assume that Azioms U {Sensed[o]}
ds¢.Do(dpt, end[o], s¢).

For dpt = a;dpt;: Azioms U {Sensed[o]} k
ds¢.Do(a; dpt1, end[o],sy) implies that Azioms U
{Sensed[c]} = Isy.Do(dpt1,do(a,end]o]),ss). Since
a is a non-sensing action, Sensed[o - (a, 1)] = Sensed[o],
so we also have that Azioms U Sensed[o - (a, 1)] entails
3s¢.Do(dpt1,end[o - (a,1)],s¢). Thus, by the induction
hypothesis, we have Azioms U {Sensed[o - (a,1)]} &
EFDP (dpty, end[o (a,1)]). It follows that
Azioms U {Sensed|o]} | EFDP(dpty,do(a,end[o]).
The initial assumption that Azioms U {Sensed[o]}
entails Js¢.Do(a;dpty,end[o],s¢) also implies that
AziomsU{Sensed[o]} = Poss(a,end[c]) and this must
be known by Theorem 1, i.e., Azioms U {Sensed[o]|} E
Know(Poss(a,now), end|o]). Thus, we have that

Azioms U {Sensed[o]} =
Know(T'rans(a; dpty, now, dpty, do(a, now)), end[c])

It is also known that this is the only transition pos-
sible for a;dpt;, So Azioms U {Sensed[o]} [
LEFDP(a;dpt; , end|[c]). Therefore,

Azioms U {Sensed[o]} = EFDP(a;dpt1,end[o]).

For dpt = True?; dpt,: the argument is similar, but sim-
pler since the test does not change the situation.

For dpt = senseg;if ¢ then dpt; else dpt,: Sup-
pose that the sensing action returns 1 and let
o1 =0 - (sensegy, 1). The initial assumption that
Azioms U {Sensed[o]} entails 3s;.Do(dpt, end[o], sf)
implies that Azioms U {Sensed[o1]} | 3ss.
Do(dpt,,end[o1],s¢). Thus, by the induction hy-
pothesis, we have Azioms U {Semsed[o1)]} F
EFDP (dpty, end[o1]). It follows that

Azioms U {Sensed[o]} E
P(do(sensey, end[o])) D
EFDP (dpti, do(senseg, end[o])).

By a similar argument, it also follows that we must have
that

Azioms U {Sensed[o]} =
—¢(do(sensegy, end[o])) D
EFDP (dpts, do(senseg, end[o])).

The initial assumption Azioms U {Sensed[o]} E
ds¢.Do(dpt, end[o],s¢) also implies that Axioms U
{Sensed[o]} = Poss(sensey,end[c]) and this must be

known by Theorem 1, ie., Azioms U {Sensed[o]} E
Know(Poss(sensegs, now), end[o]). Thus, we have that

Azioms U {Sensed[o]} =
Know(T'rans(dpt, now, if ¢ then dpt,
else dpts, do(sensey, now)), end[o]).

It is also known that this is the only transition
possible for dpt, so Azioms U {Sensed[o]} k
LEFDP (dpt, end[o]). Thus, Azioms U {Sensed[c]} =
EFDP (dpt,end[c]).®

By Theorem 2, we also have that under the conditions of the
above theorem, all online executions of (dpt, o) are termi-
nating. The problem of finding a tree program that yields
an execution of a program in a deliberation block is the
analogue in our framework of conditional planning (under
incomplete information) in the standard setting [Peot and
Smith, 1992, Smith et al., 1998].

Next, we show that tree programs are sufficient to express
any strategy where there is a known bound on the number
of steps it needs to terminate. That is, for any epistemi-
cally feasible deterministic program for which this condi-
tion holds, there is a tree program that produces the same
executions:

Theorem 5 For any program dp that is

1. an epistemically feasible deterministic program, i.e.,
Azioms U {Sensed[o]} | EFDP(dp, end[o]) and

2. such that there is a known bound on the number of
steps it needs to terminate, i.e., where there is an n
such that

Azioms U {Sensed[o]} =
', s',k.k < nATrans®(dp,endlo],p’,s') A
Final(p', s")

there exists a tree program dpt € TREE such that
Azioms U {Sensed|o]} = Vss.Do(dp,end[o],sf) =
Do(dpt,end[o], s¢).

Proof Sketch: We construct the tree program dpt =
m(dp, o) from dp using the following rules:

e m(dp,0) = False? iff Azioms U {Sensed[o]} is
inconsistent, otherwise

e m(dp,o) = nil iff
Azioms U {Sensed[o]} = Final(dp,end[o]), oth-
erwise

e m(dp,o) = a;m(dp',o - (a,1)) iff

Azioms U {Sensed[o]} =
Trans(dp, end|a],dp’, do(a, end|o])

for some non-sensing action a,

e m(dp,c) = sensey;if ¢ then m(dp’, o - (senseg, 1))
else m(dp', o - (sensey, 0)) iff

Azioms U {Sensed[o]} =
Trans(dp, end[o], dp’, do(sensegy, end[o])
for some sensing action senseg,
e m(dp,o) = True?;m(dp, o) iff

Azioms U {Sensed[o]} |E
Trans(dp,end[o], dp’, end[o]).
Let us show that

Azioms U {Sensed[o]} =
Do(dp,end[o],s¢) = Do(m(dp, o), end[o], s¢).

It turns out that, under the hypothesis of the theorem, for
all dp and all o, (dp, o) is bisimilar to (m(dp, o), o) with
respect to online executions. Indeed, it is easy to check that
the relation [(dp, o), (m(dp, c),0)] is a bisimulation, i.e.,
for all dp and o, [(dp, o), (m(dp, o), o)] implies that
e Axioms U {Sensed|o]} = Final(dp, end|o]) iff
Azioms U {Sensed[o]} |E Final(m(dp,o),end[o]),
o for all dp’, o' if Azioms U {Sensed[c]} [
Trans(dp,end[o],dp’,end[c']) with the set
Azioms U {Sensed[o']} being consistent, then

Azioms U {Sensed[o]} E
Trans(m(dp, o), end[c],m(dp', '), end[c'])
and [(dp', '), (m(dp', "), 0")],
o for all dp', o' if Azioms U {Sensed[o]} |
Trans(m(dp, o), end[c],m(dp’,c'),end[c’]) with
Azioms U {Sensed[o']} consistent, then

Azioms U {Sensed[o]} |E
Trans(dp,end[o], dp’, end[o'])

and [(dp', 0'), (m(dp', ¢"),c")].

Now, assume that Azioms U {Sensed[c]} entails
3s¢.Do(dp, end[o],sf). Then since dp is an EFDP,
by Theorem 2 all online execution from (dp, o) termi-
nate. Hence since (dp, o) and (m(dp, o), o) are bisimilar,
(m(dp, o), o) has the same online executions (apart from
the program appearing in the configurations).

Next, observe that given an online execution of (dp, o)
terminating in (dpyf,o), in all models of Azioms U
{Sensed[c]} with sensing outcomes as in o both the pro-
gram dp and m(dp, o) reach the same situation end[o].
Since there are terminating online executions for all possi-
ble sensing outcomes, the thesis follows. B

This theorem shows that if we restrict our attention to
EFDPs that terminate in a bounded number of steps, then
we can further restrict our attention to programs of a very
specific syntactic form, without any loss in generality. This
may simplify the task of coming up with a successful strat-
egy for a given deliberation block.

5.2 LINEAR PROGRAMS

Let the class of linear programs LINE be defined by the
following BNF rule:

dpl ::= nil | a;dply | True?; dply

where a is any non-sensing action, and dpl; is a linear pro-
gram.

This class only includes sequences of actions or trivial tests.
So whenever such a plan is executable, then it is also epis-
temically feasible — the agent always knows what to do
next:

Theorem 6 Let dpl be a linear program,i.e., dpl € LINE.
Then, for all histories o, if Axioms U {Sensed[o]} |
ds¢.Do(dpl, end[o], sf) then Azioms U {Sensed[c]} =
EFDP (dpl,end[o]).

Proof Sketch: This is a corollary of Theorem 4 for tree pro-
grams. Since linear programs are tree programs, the thesis
follows immediately from this theorem. ®

By Theorem 2, we also have that under the conditions of
the above theorem, all online executions of (dpl, o) are ter-
minating. Since the agent may have incomplete knowledge,
the problem of finding a linear program that yields an exe-
cution of a program in a deliberation block is the analogue
in our framework of conformant planning in the standard
setting [Smith and Weld, 1998].

Next, we show that linear programs are sufficient to express
any strategy that does not perform sensing.

Theorem 7 For any dp that does not include sens-
ing actions, such that Azioms U {Sensed[o]} [
EFDP (dp, end[c]), there exists a linear program dpl such
that AziomsU{Sensed|c]} |= Vsy.Do(dp, end[o], s¢) =
Do(dpl, end[o], s¢).

Proof Sketch: We show this using the same approach as
for Theorem 5 for tree programs. Since dp cannot con-
tain sensing actions, the construction method used in the
proof of Theorem 5 produces a tree program that contains
no branching and is in fact a linear program. Then, by the
same argument as used there, the thesis follows. B

Observe that this implies that if no sensing is possible —
for instance, because there are no sensing actions — then
linear programs are sufficient to express every strategy.

Let A; be a deliberation operator that is axiomatized just
as A, except that we replace the requirement that dp be
an epistemically feasible deterministic program by the re-
quirement that it be a linear program, i.e., where we use the

axiom (the LINE predicate is defined in the obvious way):

Trans(A;(p), s, dpl’, s") =
Jdpl. LINE (dpl) A
sy Trans(dpl, s, dpl’,s') A
Doldpl’,s',5¢) A Do(p, s, 57).

Then, one can show that a program using this deliberation
operator A; (p) can make a transition in a history if and only
if one can identify a sequence of actions that is an execution
of p in all models for the history:

Theorem 8 There exists a situation sy such that
Azioms U {Sensed[o]} |= Do(p, end[o], sf)
if and only if there is a dpl € LINE and an s' such that

Azioms U {Sensed[o]} |E Trans(A;(p), end[o], dpl, s")

Proof Sketch: < By hypothesis there exists a dpl that is
a LINE. If s' = end|o] and then dpl = true?;dpl' and
if s’ = do(a, end[o]), for some action a, and then dpl =
a; dpl’. In both cases dpl’ mustbe a LINE . In every model
dpl' reaches from s’ a final situation of the original program
p. Observe that such a situation will be the same in every
model since the sequence of actions starting from s’ is fixed
by dpl’. It follows that the sequence of action done by dpl
starting from s reaches a situation sz such that Azioms U
{Sensed[o]} = Do(p,end[c], s¢).

= If for some sy we have Azioms U {Sensed[o]} =
Do(p,end[o],ss) then the sequence of actions from
end[o] to sy is a LINE program, which trivially satis-
fies the left-hand-side of the axiom for A;. Observe that
if sy = end[o] then the linear program can be simply nil.
|

This provides the basis for a simple implementation.

6 IMPLEMENTATION

Let us now examine how the deliberation construct can be
implemented according to the specification given above,
i.e., by having the interpreter look for an epistemically fea-
sible deterministic program of a certain type, linear, tree,
etc. We also relate these implementations to earlier imple-
mentation proposals for IndiGolog.

The simplest type of implementation is one that only con-
siders linear programs as potential strategies for executing
the program in the deliberation block, as in the specifica-
tion of A; above. This will work if there is a solution that
does not do sensing. Here is the code in Prolog:

/* implementation using linear programs */
trans(delib 1(P),H,DPL1,H1):-

buildLine(P,DPL,H), trans(DPL,H,DPL1,Hl).
buildLine(P,[],H):- final(P,H).
buildLine(P, [(true)?|DPL],H):-
trans(P,H,P1,H), buildLine(P1l,DPL,H).
buildLine(P, [A|DPL],H):-~ /* A is not */
trans(P,H,Pl,[(A,1)|H]), /* a sensing */
buildLine(P1,DPL,[(A,1)|H]). /* action */

Instead of situations, this code uses histories, which are es-
sentially lists of pairs of actions and sensing outcomes since
the initial situation. The buildLine (P, DPL, H) predicate
basically looks for a sequence of transitions that the pro-
gram can perform and that that is guaranteed to lead to
a final configuration without performing sensing (sensing
outcomes for non-sensing actions are assumed to be 1).
This approach to implementing deliberation is essentially
that used in [De Giacomo et al., 1998, Lespérance and Ng,
2000, De Giacomo et al., 2001], as these assume that delib-
eration blocks do not contain sensing actions.

A more general type of implementation is one that con-
siders tree programs as potential strategies for executing
the program in the deliberation block, assuming that binary
sensing actions are available. This can be implemented by
generalizing the above as follows:

/* implementation using tree programs */
trans(delib t(P),H,DPT1,H1):-
buildTree(P,DPT,H), trans(DPT,H,DPT1,Hl).
buildTree(P,[],H):- final(P,H).
buildTree(P, [(true)? |DPT],H):-
trans(P,H,P1,H), buildTree(P1,DPT,H).
buildTree(P, [A,if(F,DPT1,DPT2)]):-
trans(P,H,Pl,[(A,_)|H]), senses(A,F),
buildTree(P1,DPT1,[(A,1) |H]),
buildTree(P1,DPT2,[(A,0)|H]).
buildTree(P,[A|DPT],H):~
trans(P,H,P1,[(A,)|H]), not senses(A,),
buildTree(P1,DPT,[(A,1) |H]).
buildTree(P, (false)?,H):- inconsistent(H).

inconsistent([(A,1)|H]):- inconsistent(H) ;
senses(A,F), holds(neg(F),H).

inconsistent([(A,0)|H]):- inconsistent(H) ;
senses(A,F), holds(F,H).

A transition is performed on a program search_t (p) only
if it is always possible to extend it into a complete execu-
tion of p. To ensure this, whenever a binary sensing ac-
tion is encountered, the code verifies the existence of com-
plete executions for both potential sensing outcomes 0 and
1 (3rd clause of buildTree). For non-sensing actions, the
sensing outcome is assumed to be 1, and the existence of
an execution is verified in this single case (4th clause of
buildTree). This implementation is similar to that of
[De Giacomo and Levesque, 1999a]. Both of the above
implementations are sound but not complete b

®The incompleteness comes from the fact that they stick to

7 DELIBERATION WITH EXECUTION
MONITORING

So far, we have provided a formal account of plans that are
suitable for an agent capable of sensing the environment
during the execution of a high-level program. We have not
addressed, though, another important feature of complex
environments with which a realistic agent needs to cope as
well: exogenous actions. Intuitively, an exogenous action
is an action outside the control of the agent, perhaps a nat-
ural event or an action performed by another agent. Tech-
nically, these are primitive actions that may occur without
being part of the user-specified program. It is not hard to
imagine how one would slightly alter the definition of on-
line execution of Section 2 so as to allow for the occurrence
of exogenous actions after each legal transition. Nonethe-
less, an exogenous action can potentially compromise the
online execution of a deliberation block. This is due to
the fact that A, commits to a particular EFDP which can
turn out to be impossible to execute after the occurrence of
some interfering outside action. If there is another EFDP
that could be used instead to complete the execution of the
deliberation block, we would like the agent to switch to it.

To address this problem, the search operator defined in
[Lespérance and Ng, 2000] implements an execution moni-
toring mechanism. The idea is to recompute a search block
whenever the current plan has become invalid due to the oc-
currence of exogenous actions during the incremental exe-
cution. The new search starts from the original program
and situation (this is important because often commitments
are made early on in the program’s execution, and these
may have to be revised when an exogenous change occurs)
and ensures that the plan produced is compatible with the
already performed actions.

Based on [De Giacomo et al., 1998], one can come up with
a clean and abstract formalization of execution monitoring
and replanning for our epistemic version of deliberation de-
scribed in Section 4.2. The idea is to avoid permanently
committing to a particular EFDP. Instead, we define a de-
liberation operator A.,, that monitors the execution of the
selected EFDP and replans when necessary, possibly se-
lecting an alternative EFDP to follow. The semantics of
this monitored deliberation construct goes as follows:

the form of the program while the semantics does not. One ex-
ample that brings this out is: ¢?;9?;a | —¢7; ~97?; a, where it
is known that ¢ = . For our semantics, the LINE program
True?; True?;a is a strategy for executing it, but the implemen-
tations fail to find it.

Trans(Aem(p), s, p',s') =
Adp, dp'. EFDP(dp, s) A p' = mnt(dp', s',p,s) A
sy Trans(dp, s,dp', s") A
Do(dp',s',s¢) A Do(p, s, s¢).

Final(Aem(p), s) = Final(p, s).

The main difference is in the remaining program which
contains not only the epistemically feasible strategy cho-
sen, but also the original program p, original situation s,
and next expected situation s’. These components are pack-
aged using a new language construct mnt, which basically
means that the agent should moniftor the execution of the
selected strategy dp using the original program and situa-
tion to replan when necessary.

The next step, then, is to define the semantics for the
new “monitoring” construct mnt. With that objec-
tive, we first introduce two auxiliary relations. Relation
perturbed(mnt(dp, se, pi, i), s) states whether the strat-
egy dp has just been perturbed in situation s by some ex-
ogenous action. There are obviously several ways to define
when a strategy has been perturbed. A sensible one is the
following: a strategy has been perturbed if the exogenous
actions that just occurred rule out a successful execution
for both the strategy and the original program of the delib-
eration block.

perturbed(mnt(dp, se, pi, $i),8) =
Se # s A—3sg.[Do(dp, s,s¢) A Do(p; || ez Siy S5)]

Notice that we make use of the special program
pemd:d(ﬂa.Emo(a)?; a)*, see [De Giacomo et al., 2000], to
allow for a legal sequence of exogenous actions. Also, ob-
serve that a strategy can be perturbed only if an action out-
side the strategy occurred, in which case the actual situa-
tion s would differ from the expected situation s.. Thus in
practice, there is no need to check for perturbation unless
an exogenous action or an action other than that performed
by the chosen strategy occurs.

The next auxiliary relation is used to calculate a recovered
strategy dp, when the current one dp was perturbed in sit-
uation s. A sensible definition for it is:

recover (mnt(dp, se, pi, 8i), 8, dpy) =

I, Trans*(p; || pex, $is P} || Peas 8) A
EFDP(dp,,s) A 3sg.Do(dpr,s,ss) A Do(p},s,sy).

Observe that the above definition may end up choosing an
alternative epistemically feasible strategy than the one cho-
sen before. In a nutshell, a new recovered strategy is an
epistemically feasible one that is able to “solve” the origi-
nal program p; while accounting for every action executed

so far, either by the deliberation block or not, since the be-
ginning of the deliberation block.

We now have all the machinery needed to define the seman-
tics for the monitoring construct mnt:

Trans(mnt(dpa Ses Piy si)a 5,0, sl) =
[-perturbed(mnt(dp, se, i, 8i),8) A
Adp' .Trans(dp, s,dp’,s') A
p, = mnt(dpla slvpia 52)] \
[perturbed(mnt(dp, se, pi, si),s) A
Adp,.recover (mnt(dp, se, pi, $i), 8, dpr) A
Adp'.Trans(dp,, s,dp’,s’) A
p' = mnt(dpla slvpiv 52)]

Final(mnt(dp, se, pi, $i),8) =
[~perturbed(mnt(dp, s¢, i, $i),s) N Final(dp, s)]
V [perturbed(mnt(dp, se, i, $i),) A
DO(pi || Pexs Siy S)]

For Trans, we have two possibilities: (i) if the strategy
has not been perturbed, then we continue its execution by
performing one step and updating the next expected situa-
tion; (ii) if the strategy has just been perturbed, a recovered
new strategy dp, is computed and the execution continues
with respect to this alternative strategy. It is important to
note that the original program and situation are always kept
throughout the whole execution of a deliberation block. In
that way, the recovery process can be as general as pos-
sible. The case for Final is simpler: (i) if the strategy
has not been perturbed, then we check whether the strategy
is final in the actual situation; (ii) if the strategy has been
perturbed, then there is a chance that the original program
might be terminating in the current situation and we check
for this.

Summarizing, deliberation can be naturally integrated with
execution monitoring in order to cope with exogenous ac-
tions that make the chosen strategy unsuitable.

8 CONCLUSION

In this paper, we developed an account of the kind of de-
liberation that an agent that is doing planning or executing
high-level programs must be able to perform. The deliber-
ator’s job is to produce a kind of plan that does not itself
require deliberation to interpret. We characterized these
as epistemically feasible programs: programs for which
the executing agent, at every stage of execution, by virtue
of what it knew initially and the subsequent readings of
its sensors, always knows what step to take next towards
the goal of completing the entire program. We formalized
this notion and characterized deliberation in the IndiGolog
agent language in terms of it. We have also shown that
for certain classes of problems, which correspond to con-
formant planning and conditional planning, the search for

epistemically feasible programs can be limited to programs
of a simple syntactic form.

There has been a lot of work in the past on formalizing the
notion of epistemically feasible plan, e.g. Moore [1985],
Davis [1994], Lespérance et al. [2000], Levesque [1996],
and our accounts builds on this. One of its distinguishing
features is that it is integrated with the transition system
semantics of our programming language. In Lespérance
[2001], a similar approach is used to formalize a notion of
epistemic feasibility for multiagent system specifications.
In Mcllraith and Son [2001], a notion of “self-sufficient
program” very similar to EFDPs is formalized; but this
account is more sensitive to the syntax of the program than
ours.

In this paper, we have only dealt with binary sensing ac-
tions. However, the account of deliberation developed in
Section 4 and its extension to provide execution monitor-
ing in Section 7 do not rely on this restriction and apply
unchanged to theories with sensing actions that have even
an infinite number of possible sensing outcomes.” This
comes from the fact that our characterization of “good exe-
cution strategies” through the notion of EFDP is not syn-
tactic, only requiring the agent to know what action to
do next at every step. The results of Section 5.1 show-
ing that tree programs are sufficient to solve any plan-
ning/deliberation problem where there is some strategy that
solves the problem in a bounded number of steps also
generalize to domains involving sensing actions with non-
binary but finitely many outcomes; this is easy to see given
that any such sensing action can be encoded as a sequence
binary sensing actions that read the outcome one bit at a
time (one could of course extend the class of tree programs
with a non-binary branching structure to avoid the need for
such an encoding). Whether a similar characterization can
be obtained for sensing actions with an infinite number of
possible outcomes is an open problem. While the above
holds in principle, as soon as the number of sensing out-
comes is more than a few, conditional planning becomes
impractical without advice from the programmer as to what
conditions the plan should branch on [Lakemeyer, 1999,
Thielscher, 2001]. In [Sardina, 2001], a search construct
for IndiGolog that generates conditional plans involving
non-binary sensing actions by relying on such programmer
advice is developed. This approach seems very compatible
with ours and it would be interesting to formalize it as a
special case of our account of deliberation. There are also
more general theories of sensing, such as that of [De Gia-
como and Levesque, 1999b] which deals with online sen-
sors that always provide values and situations where the
law of inertia is not always applicable. In [De Giacomo
et al., 2001], a search operator for such theories is devel-

"One can introduce non-binary sensing actions in our frame-
work as in [Scherl and Levesque, 1993].

oped. It would be worthwhile examining whether this set-
ting could also be handled within our account of delibera-
tion. As well, one could look for syntactic characterizations
for certain classes of epistemically feasible deterministic
programs in this setting.

References

Ernest Davis. Knowledge preconditions for plans. Journal
of Logic and Computation,4(5):721-766,1994.

Giuseppe De Giacomo, Yves Lespérance, and Hector J.
Levesque. ConGolog, a concurrent programming lan-
guage based on the situation calculus. Artificial Intelli-
gence, 121:109-169,2000.

Giuseppe De Giacomo and Hector J. Levesque. An in-
cremental interpreter for high-level programs with sens-
ing. In Hector J. Levesque and Fiora Pirri, editors, Log-
ical Foundations for Cognitive Agents, pages 86—102.
Springer-Verlag, 1999a.

Giuseppe De Giacomo and Hector J. Levesque. Progres-
sion and regression using sensors. In Proc. of IJCAI-99,
pages 160-165, 1999b.

Giuseppe De Giacomo, Hector J. Levesque, and Sebas-
tian Sardifa. Incremental execution of guarded theories.
ACM Transactions on Computational Logic, 2(4):495—
525,2001.

Giuseppe De Giacomo, Raymond Reiter, and Mikhail
Soutchanski. Execution monitoring of high-level robot
programs. In Proc. of KR-98, pages 453—-465, 1998.

Gerhard Lakemeyer. On sensing and off-line interpreting
in Golog. In H. J. Levesque and F. Pirri, editors, Log-
ical Foundations for Cognitive Agents, pages 173—187.
Springer-Verlag, 1999.

Gerhard Lakemeyer and Hector J. Levesque. AOL: A logic
of acting, sensing, knowing, and only-knowing. In Proc.
of KR-98, pages 316-327,1998.

Yves Lespérance. On the epistemic feasibility of plans
in multiagent systems specifications. In J.-J. Meyer,
M. Tambe, and D. Pynadath, editors, Intelligent Agents
VIII, Agent Theories, Architectures, and Languages, Sth
Intl. Workshop, ATAL-2001, Seattle, WA, USA, Aug. 1-3,
2001, Proc., LNALI. Springer, 2001.

Yves Lespérance, Hector J. Levesque, Fangzhen Lin, and
Richard B. Scherl. Ability and knowing how in the situ-
ation calculus. Studia Logica, 66(1):165-186,2000.

Yves Lespérance and Ho-Kong Ng. Integrating planning
into reactive high-level robot programs. In Proc. of
the Second International Cognitive Robotics Workshop,
pages 49-54,2000.

Hector J. Levesque. What is planning in the presence of
sensing? In Proc. of AAAI-96, pages 1139-1146,1996.

Hector J. Levesque, Raymond Reiter, Yves Lespérance,
Fangzhen Lin, and Richard B. Scherl. GOLOG: A logic
programming language for dynamic domains. Journal of
Logic Programming,31(59-84),1997.

John McCarthy and Patrick Hayes. Some philosophical
problems from the standpoint of artificial intellig ence.
In B. Meltzer and D. Michie, editors, Machine Intelli-
gence, volume 4, pages 463-502. Edinburgh University
Press, 1979.

Sheila Mcllraith and Tran Cao Son. Adapting Golog for
programming the semantic web. In Working Notes of the
Sth Int. Symposium on Logical Formalizations of Com-
monsense Reasoning, pages 195-202,2001.

Robert C. Moore. A formal theory of knowledge and ac-
tion. In J. R. Hobbs and Robert C. Moore, editors, For-
mal Theories of the Common Sense World, pages 319—
358. Ablex Publishing, Norwood, NJ, 1985.

Mark A. Peot and David E. Smith. Conditional nonlinear
planning. In Proc. of the First International Conference
on Al Planning Systems, pages 189—-197,1992.

Gordon Plotkin. A structural approach to operational se-
mantics. Technical Report DAIMI-FN-19, Computer
Science Dept., Aarhus University, Denmark, 1981.

Raymond Reiter. The frame problem in the situation calcu-
lus: A simple solution (sometimes) and a completeness
result for goal regression. In V. Lifschitz, editor, Arti-
ficial Intelligence and Mathematical Theory of Compu-
tation: Papers in Honor of John McCarthy, pages 359—
380. Academic Press, 1991.

Raymond Reiter. Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Sys-
tems. MIT Press, 2001a.

Raymond Reiter. On knowledge-based programming with
sensing in the situation calculus. ACM Transactions on
Computational Logic,2(4):433-457,2001b.

Sebastian Sardifia. Local conditional high-level robot pro-
grams. In Proc. of LPAR-01, volume 2250 of LNAI,
pages 110-124,2001.

Richard B. Scherl and Hector J. Levesque. The frame prob-
lem and knowledge-producing actions. In Proc. of AAAI-
93, pages 689-695. AAAI Press/The MIT Press, 1993.

David E. Smith, Corin R. Anderson, and Daniel S. Weld.
Extending graphplan to handle uncertainty and sensing
actions. In Proc. of AAAI-98, pages 897-904, 1998.

David E. Smith and Daniel S. Weld. Conformant graph-
plan. In Proc. of AAAI-98, pages 889—896, 1998.

Michael Thielscher. Inferring implicit state knowledge and
plans with sensing actions. In Proc. of KI-0I, volume
2174 of LNAI, pages 366—-380. Springer, 2001.

