
A Formal Framework for Reasoning on UML Class
Diagrams

Andrea Calı̀, Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini

Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza"

Via Salaria 113, I-00198 Roma, Italy
lastname@dis.uniroma1.it

Abstract. In this paper we formalize UML class diagrams in terms of a logic
belonging to Description Logics, which are subsets of First-Order Logic that have
been thoroughly investigated in Knowledge Representation. The logic we have de-
vised is specifically tailored towards the high expressiveness of UML information
structuring mechanisms, and allows one to formally model important properties
which typically can only be specified by means of qualifiers. The logic is equipped
with decidable reasoning procedures which can be profitably exploited in reason-
ing on UML class diagrams. This makes it possible to provide computer aided
support during the application design phase in order to automatically detect rele-
vant properties, such as inconsistencies and redundancies.

1 Introduction

There is a vast consensus on the need for a precise semantics for UML [9,12], in particular
for UML class diagrams. Indeed, several types of formalization of UML class diagrams
have been proposed in the literature [8,9,10,6]. Many of them have been proved very
useful with respect to the task of establishing a common understanding of the formal
meaning of UML constructs. However, to the best of our knowledge, none of them has
the explicit goal of building a solid basis for allowing automated reasoning techniques,
based on algorithms that are sound and complete wrt the semantics, to be applicable to
UML class diagrams.

In this paper, we propose a new formalization of UML class diagrams in terms
of a particular formal logic of the family of Description Logics (DL). DLs1 have been
proposed as successors of semantic network systems like kl-one, with an explicit model-
theoretic semantics. The research on these logics has resulted in a number of automated
reasoning systems [13,14,11], which have been successfully tested in various application
domains (see e.g., [17,18,16]). Our long term goal is to exploit the deductive capabilities
of DL systems, and show that effective reasoning can be carried out on UML class dia-
grams, so as to provide support during the specification phase of software development.

In DLs, the domain of interest is modeled by means of concepts and relationships,
which denote classes of objects and relations, respectively. Generally speaking, a DL is
formed by three basic components:

1 See http://dl.kr.org for the home page of Description Logics.

M.-S. Hacid et al. (Eds.): ISMIS 2002, LNAI 2366, pp. 503–513, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



504 A. Calı̀ et al.

– A description language, which specifies how to construct complex concept and
relationship expressions (also called simply concepts and relationships), by starting
from a set of atomic symbols and by applying suitable constructors,

– a knowledge specification mechanism, which specifies how to construct a DL knowl-
edge base, in which properties of concepts and relationships are asserted, and

– a set of automatic reasoning procedures provided by the DL.

The set of allowed constructors characterizes the expressive power of the description
language. Various languages have been considered by the DL community, and numer-
ous papers investigate the relationship between expressive power and computational
complexity of reasoning (see [7] for a survey).

Several works point out that DLs can be profitably used to provide both formal
semantics and reasoning support to formalisms in areas such as Natural Language, Con-
figuration Management, Database Management, Software Engineering. For example, [5]
illustrates the use of DLs for database modeling. However, to the best of our knowlegde,
DLs have not been applied to the Unified Modeling Language (UML) (with the excep-
tion of [3]). The goal of this work is to present a formalization of UML class diagrams
in terms of DLs. In particular, we show how to map the constructs of a class diagram
onto those of the EXPTIME decidable DL DLR [2,4]. The mapping provides us with a
rigorous logical framework for representing and automatically reasoning on UML class
specifications. The logic we have devised is specifically tailored towards the high expres-
siveness of UML information structuring mechanisms, and allows one to formally model
important properties which typically can only be specified by means of constraints. The
logic is equipped with decidable reasoning procedures which can be profitably exploited
in reasoning on UML class diagrams. This makes it possible to provide computer aided
support during the application design phase, in order to automatically detect relevant
properties, such as inconsistencies and redundancies.

2 Classes

In this paper we concentrate on class diagrams for the conceptual perspective. Hence,
we do not deal with those features that are relevant for the implementation perspective,
such as public, protected, and private qualifiers for methods and attributes.

A class in an UML class diagram denotes a sets of objects with common features.
The specification of a class contains the name of the class, which has to be unique in
the whole diagram, and the attributes of the class, each denoted by a name (possibly
followed by the multiplicity, between square brackets) and with an associated class,
which indicates the domain of the attribute values. The specification contains also the
operations of the class, i.e., the operations associated to the objects of the class. An
operation definition has the form:

operation-name(parameter-list ): (return-list )

Observe that an operation may return a tuple of objects as result.
An UML class is represented by a DLR concept. This follows naturally from the

fact that both UML classes and DLR concepts denote sets of objects.



A Formal Framework for Reasoning on UML Class Diagrams 505

An UML attribute a of type C ′ for a class C associates to each instance of C, zero,
one, or more instances of a class C ′. An optional multiplicity [i..j] for a specifies that
a associates to each instance of C, at least i and most j instances of C ′. When the
multiplicity is missing, [1..1] is assumed, i.e., the attribute is mandatory and single-
valued.

To formalize attributes we have to think of an attribute a of type C ′ for a class C as
a binary relation between instances of C and instances of C ′. We capture such a binary
relation by means of a binary relation a of DLR. To specify the type of the attribute we
use the assertion:

C � ∀[1](a⇒(2 :C ′))

Such an assertion specifies precisely that, for each instance c of the concept C, all objects
related to c by a, are instances of C ′. Note that an attribute name is not necessarily unique
in the whole diagram, and hence two different classes could have the same attribute,
possibly of different types. This situation is correctly captured by the formalization in
DLR.

To specify the multiplicity [i..j] associated to the attribute we add the assertion:

C � (≥ i [1]a) � (≤ j [1]a)

Such an assertion specifies that each instance of C participates at least i times and at
most j times to relation a via component 1. If i = 0, i.e., the attribute is optional, we
omit the first conjunct, and if j = ∗ we omit the second one. Observe that for attributes
with multiplicity [0..∗] we omit the whole assertion, and that, when the multiplicity is
missing the above assertion becomes:

C � ∃[1]a � (≤ 1 [1]a)

An operation of a class is a function from the objects of the class to which the
operation is associated, and possibly additional parameters, to tuples of objects. In class
diagrams, the code associated to the operation is not considered and typically, what is
represented is only the signature of the operation.

In DLR, we model operations by means of DLR relations. Let

f(P1, . . . , Pm) : (R1, . . . , Rn)

be an operation of a class C that has m parameters belonging to the classes P1, . . . , Pm

respectively and n return values belonging to R1, . . . , Rn respectively. We formalize
such an operation as a DLR relation, named opf(P1,...,Pm):(R1,...,Rn), of arity m+n+1
among instances of the DLR concepts C, P1, . . . , Pm, R1, . . . , Rn. On such a relation
we enforce the following assertions:

– An assertion imposing the correct types to parameters and return values:

C � ∀[1](opf(P1,...,Pm):(R1,...,Rn) ⇒
((2 : P1) � · · · � (m + 1 : Pm) � (m + 2 : R1) � · · · � (m + n + 1 : Rn))



506 A. Calı̀ et al.

a. .b

r2r1

c. .d C2C1

A

ml. .mu nl. .nu

A
C1 C2

Fig. 1. Binary association and aggregation in UML

– Assertions imposing that invoking the operation on a given object with given param-
eters determines in a unique way each return value (i.e., the relation corresponding
to the operation is in fact a function from the invocation object and the parameters
to the returned values):

(fd opf(P1,...,Pm):(R1,...,Rn) 1, . . . , m + 1 → m + 2)
· · ·

(fd opf(P1,...,Pm):(R1,...,Rn) 1, . . . , m + 1 → m + n + 1)

These functional dependencies are determined only by the number of parameters
and the number of result values, and not by the specific class for which the operation
is defined, nor by the types of parameters and result values.

The overloading of operations does not pose any difficulty in the formalization since
an operation is represented in DLR by a relation having as name the whole signature of
the operation, which consists not only the name of the operation but also the parameter
and return value types. Observe that the formalization of operations in DLR allows one
to have operations with the same name or even with the same signature in two different
classes.

3 Associations and Aggregations

An association in UML is a relation between the instances of two or more classes. An
association often has a related association class that describes properties of the associ-
ation such as attributes, operations, etc. A binary association A between the instances
of two classes C1 and C2 is graphically rendered as in the left hand side of Figure 1,
where the class A is the association class related to the association, r1 and r2 are the role
names of C1 and C2 respectively, i.e., they specify the role that each class plays within
the relation R, and where the multiplicity a. .b specifies that each instance of class C1
can participate at least a times and at most b times to relation A; c. .d has an analogous
meaning for class C2.

An aggregation in UML is a binary association between the instances of two classes,
denoting a part-whole relationship, i.e., a relationship that specifies that each instance
of a class is made up of a set of instances of another class. An aggregation is graphically
rendered as shown in the right hand side of Figure 1, where the diamond indicates the
containing class, opposed to the contained class. The multiplicity has the same meaning
as in associations. As for associations, also for aggregation it is possible to define role
names which denote the role each class plays in the aggregation.



A Formal Framework for Reasoning on UML Class Diagrams 507

r2

C2

Cn

. . .

A

rnC1 r1

Fig. 2. Association in UML

Observe that names of associations and names of aggregations (as names of classes)
are unique. In other words there cannot be two associations/aggregations with the same
name.

Next we turn to the formalization in DLR. An aggregation A as depicted in Figure 1,
without considering multiplicities, is formalized in DLR by means of a binary relation
A on which the following assertion is enforced:

A � (1 :C1) � (2 :C2).

Note that, to distinguish between the contained class and the containing class, we simply
use the convention that the first argument of the relation is the containing class. To express
the multiplicity nl. .nu on the participation of instances of C2 for each given instance
of C1, we use the assertion

C1 � (≥ nl [1]A) � (≤ nu [1]A)

We can use a similar assertion for a multiplicity on the participation of instances of C1
for each given instance of C2.

Observe that, in the formalization in DLR of aggregation, role names do not play
any role. If we want to keep track of them in the formalization, it suffices to consider
them as convenient abbreviations for the components of the DLR relation modeling the
aggregation.

Next we focus on associations. Since associations have often a related association
class, we formalize associations in DLR by reifying each association A into a DLR
concept A with suitable properties. Let us consider the association shown in Figure 2.
We represent it in DLR by introducing a concept A and n binary relations r1, . . . , rn,
one for each component of the association A 2. Then we enforce the following assertion:

A � ∃[1]r1 � (≤ 1 [1]r1) � ∀[1](r1 ⇒ (2 :C1)) �
∃[1]r2 � (≤ 1 [1]r2) � ∀[1](r2 ⇒ (2 :C2)) �

...
∃[1]rn � (≤ 1 [1]rn) � ∀[1](rn ⇒ (2 :Cn))

2 These relations may have the name of the roles of the association if available in the UML
diagram, or an arbitrary name if role names are not available. In any case, we preserve the
possibility of using the same role name in different associations.



508 A. Calı̀ et al.

C

A2 D2

D1

A1

s2

s1

nl1..nu1

nl2..nu2

r
r

Fig. 3. Multiplicity in aggregation

where ∃[1]ri (with i ∈ {1, . . . , n}) specifies that the concept A must have all components
r1, . . . , rn of the association A, (≤ 1 [1]ri) (with i ∈ {1, . . . , n}) specifies that each such
component is single-valued, and ∀[1](ri ⇒ (2 :Ci)) (with i ∈ {1, . . . , n}) specifies the
class each component has to belong to. Finally, we use the assertion

(id A [1]r1, . . . , [1]rn)

to specify that each instance of A represents a distinct tuple in C1 × · · · × Cn.
We can easily represent in DLR a multiplicity on a binary association, by imposing

a number restriction on the relations modeling the components of the association. Dif-
ferently from aggregation, however, the names of such relations (which correspond to
roles) are unique wrt to the association only, not the entire diagram. Hence we have to
state such constraints in DLR in a slightly more involved way.

Suppose we have a situation like that in Figure 3. Consider the association A1 and
the constraint saying that for each instance of C there can be at least nl1 and at most
nu1 instances of D1 related by A1 to it. We capture this constraint as follows:

C � (≥ nl1 [2](r � (1 :A1))) � (≤ nu1 [2](r � (1 :A1)))

Observe that nothing prevents C to partecipate to a different association A2 with the
same role r but with different multiplicity nl2..nu2. Observe that this is modeled by the
totally unrelated assertion:

C � (≥ nl2 [2](r � (1 :A2))) � (≤ nu2 [2](r � (1 :A2)))

4 Generalization and Inheritance

In UML one can use generalization between a parent class and a child class to specify
that each instance of the child class is also an instance of the parent class. Hence, the
instances of the child class inherit the properties of the parent class, but typically they
satisfy additional properties that in general do not hold for the parent class.

Generalization is naturally supported in DLR. If an UML class C2 generalizes a
class C1, we can express this by the DLR assertion:

C1 � C2



A Formal Framework for Reasoning on UML Class Diagrams 509

CnC2 . . .C1

C

Fig. 4. A class hierarchy in UML

Inheritance between DLR concepts works exactly as inheritance between UML classes.
This is an obvious consequence of the semantics of � which is based on subsetting.
Indeed, given an assertion C1 � C2, every tuple in a DLR relation having C2 as i-th
argument type may have as i-th component an instance of C1, which is in fact also an
instance of C2. As a consequence, in the formalization, each attribute or operation of C2,
and each aggregation and association involving C2 is correctly inherited by C1. Observe
that the formalization in DLR also captures directly inheritance among association
classes, which are treated exactly as all other classes, and multiple inheritance between
classes (including association classes).

Moreover in UML, one can group several generalizations into a class hierarchy, as
shown in Figure 4. Such a hierarchy is captured in DLR by a set of inclusion assertions,
one between each child class and the parent class:

Ci � C for each i ∈ {1, . . . , n}

We discuss in Section 5 how to formalize in DLR additional properties of a class
hierarchy, such as mutual disjointness between the child classes, or covering of the
parent class.

5 Constraints

In UML it is possible to add information to a class diagram by using constraints. In
general, constraints are used to express in an informal way information which cannot be
expressed by other constructs of UML class diagrams. We discuss here common types
of constraints that occur in UML class diagrams and how they can be taken into account
when formalizing class diagrams in DLR.

Often, when defining generalizations between classes, we need to add additional
constraints among the involved classes. For example, for the class hierarchy in Figure 4,
a constraint may express that C1, . . . , Cn are mutually disjoint. In DLR, such a rela-
tionship can be expressed by the assertions Ci � ¬Cj , for each i, j ∈ {1, . . . , n} with
i �= j.

In general, in UML, if not otherwise specified by a constraint, two classes may have
common instances, i.e., they are not disjoint. If a constraint imposes the disjointness of
two classes, say C and C ′, this can be formalized in DLR by means of the assertion
C � ¬C ′.

Disjointness of classes is just one example of negative information. Again, by ex-
ploiting the expressive power of DLR, we can express additional forms of negative



510 A. Calı̀ et al.

information, usually not considered in UML, by introducing suitable assertions. For ex-
ample, we can enforce that no instance of a class C has an attribute a by means of the
assertion C � ¬∃[1]a. Analogously, one can assert that no instance of a class is involved
in a given association or aggregation.

Turning again the attention to generalization hierarchies, by default, in UML a gen-
eralization hierarchy is open, in the sense that there may be instances of the superclass
that are not instances of any of the subclasses. This allows for extending the diagram
more easily, in the sense that the introduction of a new subclass does not change the
semantics of the superclass. However, in specific situations, it may happen that in a
generalization hierarchy, the superclass C is a covering of the subclasses C1, . . . , Cn.
We can represent such a situation in DLR by simply including the additional assertion
C � C1 � · · · � Cn Such an assertion models a form of disjunctive information: each
instance of C is either an instance of C1, or an instance of C2, . . . or an instance of Cn.

Other forms of disjunctive information can be modeled by exploiting the expressive
power of DLR. For example, that an attribute a is present only for a specified set
C1, . . . , Cn of classes can be modeled by suitably using union of classes: ∃[1]a �
C1 � · · · � Cn.

Keys are a modeling notion that is very common in databases, and they are used to
express that certain attributes uniquely identify the instances of a class. We can exploit
the expressive power of DLR in order to associate keys to classes. If an attribute a is a
key for a class C this means that there is no pair of instances of C that have the same
value for a. We can capture this in DLR by means of the assertion (id C [1]a). More
generally, we are able to specify that a set of attributes {a1, . . . , an} is a key for C; in
this case we use the assertion (id C [1]a1, . . . , [1]an).

As already discussed in Section 4, constraints that correspond to the specialization of
the type of an attribute or its multiplicity can be represented in DLR. Similarly, consider
the case of a class C participating in an aggregation A with a class D, and where C
and D have subclasses C ′ and D′ respectively, related via an aggregation A′. A subset
constraint from A′ to A can be modeled correctly in DLR by means of the assertion
A � A′, involving the two binary relations A and A′ that represent the aggregations.

More generally, one can exploit the expressive power of DLR to formalize several
types of constraints that allow one to better represent the application semantics and that
are typically not dealt with in a formal way. Observe that this allows one to take such
constraints fully into account when reasoning on the class diagram.

6 Reasoning on Class Diagrams

Traditional CASE tools support the designer with a user friendly graphical environment
and provide powerful means to access different kinds of repositories that store informa-
tion associated to the elements of the developed project. However, no support for higher
level activities related to managing the complexity of the design is provided. In particu-
lar, the burden of checking relevant properties of class diagrams, such as consistency or
redundancy (see below), is left to the responsibility of the designer.

Thus, the formalization in DLR of UML class diagrams, and the fact that properties
of inheritance and relevant types of constraints are perfectly captured by the formal-



A Formal Framework for Reasoning on UML Class Diagrams 511

ization in DLR and the associated reasoning tasks, provides the ability to reason on
class diagrams. This represents a significant improvement and is a first step towards the
development of modeling tools that offer an automated reasoning support to the designer
in his modeling activity.

We briefly discuss the tasks that can be performed by exploiting the reasoning ca-
pabilities of a DLR reasoner [14,15], and that allow a modeling tool to take over tasks
traditionally left to the responsibility of the designer. Such a tool may construct from a
class diagram a DLR knowledge base, and manage it in a way completely transparent
to the designer. By exploiting the DLR reasoning services various kinds of checks can
be performed on the class diagram. 3

Consistency of the class diagram. A class diagram is consistent, if its classes can be pop-
ulated without violating any of the constraints in the diagram. Observe that the interaction
of various types of constraints may make it very difficult to detect inconsistencies. By
exploiting the formalization in DLR, the consistency of a class diagram can be checked
by checking the satisfiability of the corresponding DLR knowledge base.

Class Consistency. A class is consistent, if it can be populated without violating any
of the constraints in the class diagram. The inconsistency of a class may be due to a
design error or due to over-constraining. In any case, the designer can be forced to
remove the inconsistency, either by correcting the error, or by relaxing some constraints,
or by deleting the class, thus removing redundancy from the diagram. Exploiting the
formalization in DLR, class consistency can be checked by checking satisfiability of
the corresponding concept in the DLR knowledge base representing the class diagram.

Class Equivalence. Two classes are equivalent if they denote the same set of instances
whenever the constraints imposed by the class diagram are satisfied. Determining equiv-
alence of two classes allows for their merging, thus reducing the complexity of the
diagram. Again, checking class equivalence amounts to check the equivalence in DLR
of the corresponding concepts.

Class Subsumption. A class C1 is subsumed by a class C2 if, whenever the constraints
imposed by the class diagram are satisfied, the extension of C1 is a subset of the ex-
tension of C2. Such a subsumption allows one to deduce that properties for C1 hold
also for C2. It is also the basis for a classification of all the classes in a diagram. Such
a classification, as in any object-oriented approach, can be exploited in several ways
within the modeling process [1]. Subsumption, and hence classification, can be checked
by verifying subsumption in DLR.

Logical Consequence. A property is a logical consequence of a class diagram if it holds
whenever all constraints specified in the diagram are satisfied. As an example, consider
the generalization hierarchy depicted in Figure 4 and assume that a constraint specifies
that it is complete. If an attribute a is defined as mandatory for all classes C1, . . . , Cn

3 A prototype design tool with such a kind of automated reasoning support is available at
http://www.cs.man.ac.uk/˜franconi/icom/.

http://www.cs.man.ac.uk/~franconi/icom/


512 A. Calı̀ et al.

then it follows logically that the same attribute is mandatory also for class C, even
if not explicitly present in the diagram. Determining logical consequence is useful on
the one hand to reduce the complexity of the diagram by removing those constraints
that logically follow from other ones, and on the other hand it can be used to explicit
properties that are implicit in the diagram, thus enhancing its readability.

Logical consequence can be captured by logical implication in DLR, and determin-
ing logical implication is at the basis of all types of reasoning that a DLR reasoning
system can provide. In particular, observe that all reasoning tasks we have considered
above can be rephrased in terms of logical consequence.

7 Conclusions

We have proposed a new formalization of UML class diagrams in terms of a particular
formal logic of the family of Description Logics. Our long term goal is to exploit the
deductive capabilities of DL systems, thus showing that effective reasoning can be carried
out on UML class diagrams, so as to provide support during the specification phase of
software development. As a first step, we have shown in this paper how to map the
constructs of a class diagram onto those of Description Logics. The mapping provides
us with a rigorous logical framework for representing and automatically reasoning on
UML class specifications.

We have already started experimenting our approach. In particular, we have used
FACT for representing and reasoning on class diagrams. Although FACT does not yet
incorporate all features required by our formalization (e.g., keys), the first results are
encouraging. In particular, we have been able to draw interesting, non-trivial inferences
on class diagrams containing about 50 classes. More experiments are under way, and we
plan to report on them in the near future.

In the future, we aim at extending our formalization in order to capture further aspects
of the UML. Our first step in this direction will be to add to our formal framework the
possibility of modeling and reasoning on objects and links (i.e., instances of classes and
associations).

References

1. S. Bergamaschi and B. Nebel. Acquisition and validation of complex object database schemata
supporting multiple inheritance. Applied Intelligence, 4(2):185–203, 1994.

2. D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query containment
under constraints. In Proc. of PODS’98, pages 149–158, 1998.

3. D. Calvanese, G. De Giacomo, and M. Lenzerini. Reasoning in expressive description logics
with fixpoints based on automata on infinite trees. In Proc. of IJCAI’99, pages 84–89, 1999.

4. D. Calvanese, G. De Giacomo, and M. Lenzerini. Identification constraints and functional
dependencies in description logics. In Proc. of IJCAI 2001, pages 155–160, 2001.

5. D. Calvanese, M. Lenzerini, and D. Nardi. Description logics for conceptual data modeling.
In J. Chomicki and G. Saake, editors, Logics for Databases and Information Systems, pages
229–264. Kluwer Academic Publisher, 1998.



A Formal Framework for Reasoning on UML Class Diagrams 513

6. T. Clark and A. S. Evans. Foundations of the Unified Modeling Language. In D. Duke and
A. Evans, editors, Proc. of the 2nd Northern Formal Methods Workshop. Springer-Verlag,
1997.

7. F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasoning in description logics. In
G. Brewka, editor, Principles of Knowledge Representation, Studies in Logic, Language and
Information, pages 193–238. CSLI Publications, 1996.

8. A. Evans, R. France, K. Lano, and B. Rumpe. The UML as a formal modeling notation. In
H. Kilov, B. Rumpe, and I. Simmonds, editors, Proc. of the OOPSLA’97 Workshop on Object-
oriented Behavioral Semantics, pages 75–81. Technische Universität München, TUM-I9737,
1997.

9. A. Evans, R. France, K. Lano, and B. Rumpe. Meta-modelling semantics of UML. In H. Kilov,
editor, Behavioural Specifications for Businesses and Systems, chapter 2. Kluwer Academic
Publisher, 1999.

10. A. S. Evans. Reasoning with UML class diagrams. In Second IEEE Workshop on Industrial
Strength Formal Specification Techniques (WIFT’98). IEEE Computer Society Press, 1998.

11. V. Haarslev and R. Möller. Expressive ABox reasoning with number restrictions, role hierar-
chies, and transitively closed roles. In Proc. of KR 2000, pages 273–284, 2000.

12. D. Harel and B. Rumpe. Modeling languages: Syntax, semantics and all that stuff. Technical
Report MCS00-16, The Weizmann Institute of Science, Rehovot, Israel, 2000.

13. I. Horrocks. Using an expressive description logic: FaCT or fiction? In Proc. of KR’98, pages
636–647, 1998.

14. I. Horrocks and P. F. Patel-Schneider. Optimizing description logic subsumption. J. of Log.
and Comp., 9(3):267–293, 1999.

15. I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description logics.
In H. Ganzinger, D. McAllester, and A. Voronkov, editors, Proc. of LPAR’99, number 1705
in LNAI, pages 161–180. Springer-Verlag, 1999.

16. T. Kirk, A. Y. Levy, Y. Sagiv, and D. Srivastava. The Information Manifold. In Proceedings
of the AAAI 1995 Spring Symp. on Information Gathering from Heterogeneous, Distributed
Enviroments, pages 85–91, 1995.

17. D. L. McGuinness and J. R. Wright. An industrial strength description logic-based configu-
ration platform. IEEE Intelligent Systems, pages 69–77, 1998.

18. U. Sattler. Terminological Knowledge Representation Systems in a Process Engineering
Application. PhD thesis, LuFG Theoretical Computer Science, RWTH-Aachen, Germany,
1998.


	Introduction
	Classes
	Associations and Aggregations
	Generalization and Inheritance
	Constraints
	Reasoning on Class Diagrams
	Conclusions

