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Abstract. Data integration systems provide access to a set of hetero-
geneous, autonomous data sources through a so-called global schema.
There are basically two approaches for designing a data integration sys-
tem. In the global-centric approach, one defines the elements of the global
schema as views over the sources, whereas in the local-centric approach,
one characterizes the sources as views over the global schema. It is well
known that processing queries in the latter approach is similar to query
answering with incomplete information, and, therefore, is a complex task.
On the other hand, it is a common opinion that query processing is much
easier in the former approach. In this paper we show the surprising re-
sult that, when the global schema is expressed in the relational model
with integrity constraints, even of simple types, the problem of incom-
plete information implicitly arises, making query processing difficult in
the global-centric approach as well. We then focus on global schemas
with key and foreign key constraints, which represents a situation which
is very common in practice, and we illustrate techniques for effectively
answering queries posed to the data integration system in this case.

1 Introduction

Integrating heterogeneous data sources is a fundamental problem in databases,
which has been studied extensively in the last two decades both from a formal
and from a practical point of view [1,2,3,4,5,6]. Recently, mostly driven by the
need to integrate data sources on the Web, much of the research on integration
has focussed on so called data integration [7,8,6]. Data integration is the problem
of combining the data residing at different sources, and providing the user with
a unified view of these data. Such a unified view is structured according to a
so-called global schema, which represents the intensional level of the integrated
and reconciled data, and provides the elements for expressing the queries over
the data integration system. It follows that, in formulating the queries, the user
is freed from the knowledge on where data are, how data are structured at the
sources, and how data are to be merged and reconciled to fit into the global
schema.

The interest in this kind of systems has been continuously growing in the
last years. Many organizations face the problem of integrating data residing
in several sources. Companies that build a Data Warehouse, a Data Mining,
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or an Enterprise Resource Planning system must address this problem. Also,
integrating data in the World Wide Web is the subject of several investigations
and projects nowadays. Finally, applications requiring accessing or re-engineering
legacy systems must deal somehow with data integration.

The design of a data integration system is a very complex task, which requires
addressing several different issues. Here, we concentrate on two basic issues:

1. specifying the mapping between the global schema and the sources,
2. processing queries expressed on the global schema.

With regard to issue (1), two basic approaches have been used to specify the
mapping between the sources and the global schema [7,7,9]. The first approach,
called global-centric [10,11,12], requires that the global schema is expressed in
terms of the data sources. More precisely, to every element of the global schema,
a view over the data sources is associated, so that its meaning is specified in
terms of the data residing at the sources. In general, the views associated to the
elements of the global schema are considered sound, i.e., all the data provided
by a view satisfies the corresponding element of the global schema, but there
may be additional data satisfying the element not provided by the view. The
second approach, called source-centric [13,14,15], requires the global schema to
be specified independently from the sources. In turn, the sources are defined as
views over the global schema. Comparisons of the two approaches are reported
in [8,16]. In this paper, we study global-centric data integration systems, and,
according to the usual approach, we assume that the views associated to the
elements of the global schema are sound.

Issue (2) is concerned with one of the most important problems in the design
of a data integration system, namely, the choice of the method for computing
the answer to queries posed in terms of the global schema. For this purpose,
the system should be able to reformulate the query in terms of a suitable set of
queries posed to the sources. These queries are then shipped to the sources, and
the results are assembled into the final answer. It is well known that processing
queries in the source-centric approach is a difficult task [8,17,14,18,19]. Indeed,
in this approach the only knowledge we have about the data in the global schema
is through the views representing the sources, and such views provide only par-
tial information about the data. Therefore, extracting information from the data
integration system is similar to query answering with incomplete information,
which is a complex task [20]. On the other hand, query processing is considered
much easier in the global-centric approach, where in general it is assumed that
answering a query basically means unfolding its atoms according to their defini-
tions in terms of the sources [7]. The reason why unfolding does the job is that
the global-centric mapping essentially specifies a single database satisfying the
global schema, and evaluating the query over this unique database is equivalent
to evaluating its unfolding over the sources.

While this is a common opinion in the literature, we show in this paper that
the presence of integrity constraints in the global schema poses new challenges,
specially related to the need of taking the semantics of constraints into account
during query processing. The importance of allowing integrity constraints in the
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global schema has been stressed in several work on data integration [15,21,22].
Since the global schema acts as the interface to the user for query formulation,
it should mediate among different representations of overlapping worlds, and
therefore the schema definition language should incorporate flexible and pow-
erful representation mechanisms, such as the ones based on semantic integrity
constraints.

The first contribution in this paper is to show that, when the global schema
contains integrity constraints, even of simple forms, the semantics of the data
integration system is best described in terms of a set of databases, rather than a
single one, and this implies that, even in the global-centric approach, query pro-
cessing is intimately connected to the notion of querying incomplete databases.
The fact that the problem of incomplete information is overlooked in current
approaches can be explained by observing that traditional data integration sys-
tems follow one of the following strategies: they either express the global schema
as a set of plain relations without integrity constraints, or consider the sources
as exact (see, e.g., [23,24]), as opposed to sound. On the contrary, the goal of
our work is to study the more general setting where the global schema contains
integrity constraints, and sources are considered sound (but not necessarily com-
plete). The above result demonstrates that, in this case, we have to account for
multiple global databases.

The second contribution of the paper is to study the case of global schemas
expressed in the relational model with key and foreign key constraints, which
represents a situation very common in practice. Although the problem of multiple
global databases arises in this case, we have devised techniques for effectively
answering queries posed to the data integration system. The resulting algorithm
runs in polynomial time with respect to data complexity, i.e., with respect to
the size of data at the sources.

The paper is organized as follows. In Section 2 we describe a formal frame-
work for data integration. In Section 3 we show that the presence of integrity
constraints in the global schema complicates the task of query processing. In Sec-
tions 4 and 5 we present our query processing algorithm for the case of global
relational schema with key and foreign key constraints. Section 6 concludes the
paper.

2 Framework for Data Integration

In this section we illustrate our formalization of a data integration system, which
is based on the relational model with integrity constraints.

In the relational model, predicate symbols are used to denote the relations in
the database, whereas constant symbols denote the objects and the values stored
in relations. We assume to have a fixed (infinite) alphabet Γ of constants, and,
if not specified otherwise, we will consider only databases over such alphabet.
We adopt the so-called unique name assumption, i.e., we assume that different
constants denote different objects. A relational schema C is constituted by:
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– An alphabet A of predicate (or relation) symbols, each one with the asso-
ciated arity, i.e., the number of arguments of the predicate (or, attributes
of the relation). We do not use names for referring to attributes, rather, we
simply use the numbers corresponding to their positions.

– A set of integrity constraints, i.e., assertions on the symbols of the alphabet
A that express conditions that are intended to be satisfied in every database
coherent with the schema.

A relational database (or simply, database) DB for a schema C is a set of
relations with constants as atomic values, and with one relation rDB of arity n
for each predicate symbol r of arity n in the alphabet A. It is well known that
a database can be seen as a first-order interpretation for the relation symbols in
the schema: the relation rDB is the interpretation of the predicate symbol r in
DB, in the sense that it contains the set of tuples that satisfy the predicate r in
DB. A database DB for a schema C is said to be legal if every constraints of C is
satisfied by DB. The notion of satisfaction depends on the type of constraints.

In our framework we consider the relational model with two kinds of con-
straints:

– Key constraints: given a relation r in the schema, a key constraint over r
is expressed in the form key(r) = A, where A is a set of attributes of r.
Such a constraint is satisfied in a database DB if for each t1, t2 ∈ rDB we
have t1[A] �= t2[A], where t[A] is the projection of the tuple t over A.

– Foreign key constraints: a foreign key constraint is a statement of the form
r1[A] ⊆ r2[B], where r1, r2 are relations, A is a sequence of distinct at-
tributes of r1, and B is a sequence formed by the distinct attributes forming
the key of r2. Such a constraint is satisfied in a database DB if for each
tuple t1 in rDB

1 there exists a tuple t2 in rDB
2 such that t1[A] = t2[B].

A relational query is a formula that specifies a set of tuples to be retrieved
from a database. In this work, we restrict our analysis to the class of conjunctive
queries. Formally, a conjunctive query (CQ) q of arity n is written in the form

q(x1, . . . , xn) ← conj (x1, . . . , xn, y1, . . . , ym)

where: q belongs to a new alphabet Q (the alphabet of queries, that is disjoint
from both Γ and A); conj (x1, . . . , xn, y1, . . . , ym) is a conjunction of atoms in-
volving the variables x1, . . . , xn, y1, . . . , ym, and a set of constants from Γ ; and
the predicate symbols of the atoms are in C.

The answer to a query q of arity n over a database DB for G, denoted qDB, is
the set of n-tuples of constants (c1, . . . , cn), such that, when substituting each ci
for xi, the formula ∃(y1, . . . , yn).conj (x1, . . . , xn, y1, . . . , ym) evaluates to true in
DB. Note that the answer to q over DB is a relation whose arity is equal to the
arity of the query q.

We now turn our attention to the notion of data integration system.

Definition 1. A data integration system I is a triple I = 〈G,S,MG,S〉, where
G is the global schema, S is the source schema, and MG,S is the mapping
between G and S.
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Now we describe the characteristics of the components of a data integration
system in our approach. In particular, we specialize the general framework as
follows:

– The global schema is expressed in the relational model with both key and
foreign key constraints. We assume that in the global schema there is exactly
one key constraint for each relation.

– The source schema is expressed in the relational model without integrity
constraints. In other words, we conceive each source as a relation, and we
consider the set of all relations as a unique schema, called source schema.

– The mapping MG,S is defined in the global-centric approach: to each rela-
tion r of G we associate a query ρ(r) over the source schema. No limitation
is posed on the language used to express queries in the mappingMG,S .

– Queries over the global schema are conjunctive queries.

Example 1. An example of data integration system is I1 = 〈G1,S1,M1
G,S〉

where G1 is constituted by the relation symbols student(Scode ,Sname,Scity),
university(Ucode ,Uname), and enrolled(Scode ,Ucode) and the constraints

key(student) = {Scode}
key(university) = {Ucode}

key(enrolled) = {Scode, Ucode}
enrolled[Scode ] ⊆ student[Scode ]
enrolled[Ucode ] ⊆ university[Ucode ]

S1 consists of three sources. Source s1, of arity 4, contains information about students
with their code, name, city, and date of birth. Source s2, of arity 2, contains codes
and names of universities. Finally, Source s3, of arity 2, contains information about
enrollment of students in universities. The mappingM1

G,S is defined by

ρ(student) = st(X, Y, Z)← s1(X, Y, Z, W )
ρ(university) = un(X, Y )← s2(X, Y )

ρ(enrolled) = en(X, W )← s3(X, W )

In order to define the semantics of a data integration system I =
〈G,S,MG,S〉, we start from the data at the sources, and specify which are the
data that satisfy the global schema. A source database D for I is constituted by
one relation rD for each source r in S. We call global database for I, or simply
database for I, any database for G. A database B for I is said to be legal with
respect to D if:

– B satisfies the integrity constraints of G.
– B satisfiesMG,S with respect to D, i.e., for each relation r in G, the set of

tuples rB that B assigns to r is a subset of the set of tuples ρ(r)D computed
by the associated query ρ(r) over D, i.e., ρ(r)D ⊆ rB.
Note that the above definition amounts to consider any view ρ(r) as sound,

which means that the data provided by the sources are not necessarily complete.
Other assumptions on views are possible (see [14,18]). In particular, views may
be complete, i.e., for each r in G, we have ρ(r)D ⊇ rB, or exact, i.e., for each r
in G, we have ρ(r)D = rB. In this paper, we restrict our attention to sound
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views only, which are typically considered the most natural in a data integration
setting.

At this point, we are able to give the semantics of a data integration system,
which is formally defined as follows.

Definition 2. If I = 〈G,S,MG,S〉, and D is a source database for I, the se-
mantics of I w.r.t. D, denoted semD(I), is the set of databases for I that are
legal w.r.t. D, i.e., that satisfy both the constraints of G, and the mappingMG,S
with respect to D. If semD(I) �= ∅, then I said to be consistent w.r.t. D.

By the above definition, it is clear that the semantics of a data integration
systems is formulated in terms of a set of databases, rather than a single one.
Indeed, as we will show in the sequel, the cardinality of semD(I) is in general
greater than one. The impact of this property on query answering will be studied
in the next section.

3 Query Answering in the Presence of Constraints

The ultimate goal of a data integration system is to answer queries posed by
the user in terms of the global schema. Answering a query posed to a system
representing a set of databases, is a complex task, as shown by the following
example.

Example 2. Referring to Example 1, suppose to have the following source database
D1:

sD
1

1 :
12 anne florence 21

15 bill oslo 24
sD

1

2 :
AF bocconi

BN ucla
sD

1

3 :
12 AF

16 BN

Now, due to the integrity constraints in G1, 16 is the code of some student. Observe,
however, that nothing is said by D1 about the name and the city of such student.
Therefore, we must accept as legal all databases that differ in such attributes of the
student with code 16. Note that this is a consequence of the assumption of having
sound views. If we had exact or complete views, this situation would have lead to an
inconsistency of the data integration system. Instead, when dealing with sound views,
we can think of extending the data contained in the sources in order to satisfy the
integrity constraint over the global schema. The fact that, in general, there are several
possible ways to carry out such extension implies that there are several legal databases
for the data integration systems.

Let us now turn our attention to the notion of answer to a query posed
to the data integration system. In our setting, a query q to a data integration
system I = 〈G,S,MG,S〉 is a conjunctive query, whose atoms have symbols
in G as predicates. Our goal is to specify which are the tuples that form the
answer to a certain query posed to I. The task is complicated by the existence
of several global databases which are legal for I with respect to a source database
D. In order to address this problem, we adopt the following approach: a tuple
(c1, . . . , cn) is considered an answer to the query only if it is a certain answer,
i.e., it satisfies the query in every database that belongs to the semantics of the
data integration system.
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Definition 3. Let I = 〈G,S,MG,S〉 be a data integration system, let D be a
source database for I, and let q be a query of arity n to I. The set of certain
answers qI,D to q with respect to I and D is the set of tuples (c1, . . . , cn) such
that (c1, . . . , cn) ∈ qB, for each B ∈ semD(I).

As mentioned, it is generally assumed that query answering is an easy task
in the global-centric approach. Indeed, the most common technique for query
answering in this approach is based on unfolding, i.e. substituting to each relation
symbol r in the query its definition ρ(r) in terms of the sources. We now show
a simple unfolding strategy is not sufficient for providing all correct answers in
the presence of integrity constraints.

Example 3. Referring again to Example 1, consider the query

q(X) ← student(X, Y, Z) ∧ enrolled(X, W )

The correct answer to the query is {12, 16}, because, due to the integrity constraints
in G1, we know that 16 appears in the first attribute of student in all the databases
for I that are legal w.r.t. D1. However, we do not get this information from sD1

1 , and,
therefore, a simple unfolding strategy retrieves only the answer {12} from D1, thus
proving insufficient for query answering in this framework. Notice that, if the query
asked for the student name instead of the student code (i.e., the head is q(Y ) instead
of q(X)), then one could not make use of the dependencies to infer additional answers.

The above example shows that, in the presence of integrity constraints, even
in the global-centric approach we have to deal with incomplete information dur-
ing query processing.

4 General Description of the Approach

We present the general ideas that are at the basis of our method for query
answering in data integration systems.

Let I = 〈G,S,MG,S〉 be a data integration system. In this paper we assume
that, for each relation r of the global schema, the query ρ(r) over the source
schema that the mappingMG,S associates to r preserves the key constraint of r.
This may require that ρ(r) implements a suitable duplicate record elimination
strategy that ensures that, for every source database D no pairs of tuples are
extracted from D by ρ(r) with the same value for the key of r. The problem
of duplicate record elimination, and, more generally, of data cleaning, is a crit-
ical issues in data integration systems, however it is orthogonal to the problem
addressed here. We refer to [25,26] for more details.

Let q be a query posed to I, and D a source database for I. We illustrate
a naive method for computing the answer qI,D to q w.r.t. I and D. The naive
computation of qI,D proceeds as follows.

1. For each relation r of the global schema, we compute the relation rD by
evaluating the query ρ(r) over the source database D. The various relations
so obtained form what we call the retrieved global database ret(I,D). Note
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that, since we assume that ρ(r) does not violate the key constraints, it follows
that the retrieved global database satisfies all key constraints in G.

2. If, additionally, the retrieved global database satisfies all foreign key con-
straints in G, then we are basically done: we simply evaluate q over ret(I,D),
and we obtain the answer to the query.
Otherwise, based on the retrieved global database, we can build a database
for I still satisfying the key constraints by suitably adding tuples to the rela-
tions of the global schema in such a way that also the foreign key constraints
are satisfied.1 Obviously, there are several possible ways to add tuples to the
global relations.
We may try to infer all the legal databases for I that are coherent with the
retrieved global database, and we compute the tuples that satisfy the query q
in all such legal databases. However, such a solution is not easy to pursue.
Indeed, the direct way to implement it, i.e., building all the legal databases
for I that are coherent with the retrieved global database, is not feasible:
in general, there is an infinite number of legal databases that are coherent
with the retrieved global database. Fortunately, starting from the retrieved
global database, we can build another database, that we call canonical, that
has the interesting property of faithfully representing all legal databases that
are coherent with the retrieved global database.

Let us start by showing how to build the canonical database. First of all, we
define the domain of such database, which we denote HD(D), as follows. Based
on the global schema G of I, we introduce the following set of function symbols:

HT (G) = {fr,i | r ∈ G and i ≤ arity(r) and i �∈ key(r)}

Thus, each fr,i is a function symbol, and such a function symbol has the same
arity as the number of attributes of key(r), i.e., arity(fr,i) = arity(key(r)). From
D, we now define the domain HD(D) as the smallest set satisfying the following
conditions:

– Γ ⊆ HD(D),
– if α1, . . . , αk ∈ HD(D), and fR,i ∈ HT (G), with arity(fR,i) = k, then
fR,i(α1, . . . , αk) ∈ HD(D).
Now, given the retrieved global database ret(I,D), we obtain the canonical

database can(I,D) over the domain HD(D) by repeatedly applying the following
rule:

if (x1, . . . , xh) ∈ r[A], and the foreign key constraint r1[A] ⊆ r2[B] is
in G,
then insert the tuple t in r2 such that

1 Note that, since views are sound, i.e., they return a subset of the tuples in a global
relation, we cannot conclude that the data integration system violates the foreign
key constraints of G. Indeed, it may be the case that the tuples needed to satisfy
such constraints are not part of the retrieved subsets.
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– t[B] = (x1, . . . , xh), and
– for each i ≤ arity(r2) not in B, t[i] = fr2,i(x1, . . . , xh).

Observe that can(I,D) is indeed a database over the domain HD(D), and
that, in general, can(I,D) is infinite. However, it enjoys important properties, as
shown below. The first property is related to the satisfaction of the constraints
of G.
Theorem 1. If I = 〈G,S,MG,S〉, and D is a source database for I, then
can(I,D) does not violate any foreign key constraint in G.
Proof. Suppose by contradiction that the foreign key constraint r1[A] ⊆ r2[B]
is violated in can(I,D). This implies that there is a tuple t in r1 such that for
no tuple t′ in r2 t′[B] = t[A]. But this would imply that we can apply the rule
and insert a new tuple t′′ in r2 such that t′′[B] = t[A], and for each i ≤ arity(r2)
not in B, t′[i] = fr2,i(t[A]). But this contradicts the assumption.

We now show that there exists a legal database for I w.r.t. D (called
can−(I,D)), which implies that I is consistent w.r.t. D, if and only if ret(I,D)
does not violate any key constraint in G.
Theorem 2. If I = 〈G,S,MG,S〉, and D is a source database for I, then there
exists a legal database for I w.r.t. D if and only if ret(I,D) does not violate any
key constraint in G.
Proof. It is immediate to see that if ret(I,D) violates some key constraint in G,
then no legal database exists for I w.r.t. D.

It remains to show that, if ret(I,D) does not violate any key constraint in G,
then there exists a legal database can−(I,D) for I w.r.t. D, which implies that
I is consistent w.r.t. D. We construct can−(I,D) from G and D similarly to
can(I,D), with the only difference that we use the rule:

If (x1, . . . , xh) ∈ r1[A], (x1, . . . , xh) �∈ r2[B], and the foreign key con-
straint r1[A] ⊆ r2[B] is in G,
then insert the tuple t in r2 such that
– t[B] = (x1, . . . , xh), and
– for each i ≤ arity(r2) different from B, t[i] = fr2,i(x).

It is easy to see that can−(I,D) ⊆ can(I,D). To show that can−(I,D) is indeed
a legal database for I w.r.t. D, we consider key and foreign key constraints
separately. As for key constraints, it is easy to see that the tuples inserted during
the process of computing can−(I,D) cannot violate any key constraints of G.
Indeed, in computing can−(I,D), we insert a tuple into a relation r only when
the key component of that tuple is not already present in r. Since ret(I,D) does
not violate any key constraint in G, it follows that no key constraint of G is
violated in can−(I,D). As for foreign key constraints, suppose by contradiction
that the foreign key constraint r1[A] ⊆ r2[B] is violated in can−(I,D). This
implies that there is a tuple t in r1 such that for no tuple t′ in r2 t′[B] = t[A]. But
this would imply that we can apply the above rule and insert a new tuple t′′ in r2
such that t′′[B] = t[A], and for each i ≤ arity(r2) not in B, t′[i] = fr2,i(t[A]).
But this contradicts the assumption.
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The canonical database can(I,D) has the interesting property of faithfully
representing all legal databases that are coherent with the retrieved global data-
base ret(I,D).
Theorem 3. Let I = 〈G,S,MG,S〉, let D be a source database for I, and let B be
a legal database for I w.r.t. D. There is a total function ψ from HD(D) to Γ such
that, for each relation r of arity n in G, and each tuple (c1, . . . , cn) constituted
by elements in HD(D), if (c1, . . . , cn) ∈ rcan(I,D), then (ψ(c1), . . . , ψ(cn)) ∈ rB.
Proof. We define the function ψ from HD(D) to Γ inductively, and we si-
multaneously show that for each relation r of arity n in G, and each tuple
(c1, . . . , cn) constituted by elements in HD(D), if (c1, . . . , cn) ∈ rcan(I,D), then
(ψ(c1), . . . , ψ(cn)) ∈ rB.

We proceed by induction on the application of the rule used during the
construction of can(I,D). As a base step, the function ψ maps each constant in
ret(I,D) into itself. It follows that, for each r, if c1, . . . , cn are constants, and
(c1, . . . , cn) ∈ rret(I,D), then it is obvious that both (c1, . . . , cn) ∈ rcan(I,D), and
(ψ(c1), . . . , ψ(cn)) ∈ rB.

Inductive step. Suppose, without loss of generality, that in the application
of the rule, we are inserting the tuple (α, fr,i1(α), fr,i2(α)) in rcan(I,D) where r
has arity 3, key(r) = {1}, and the tuple is inserted in rcan(I,D) because of the
foreign key constraint w[j] ⊆ r[1]. Since we are applying the rule because of the
constraint w[j] ⊆ r[1], we have that there is a tuple t in wcan(I,D) such that
t[j] = α. For the induction hypothesis, there is a β in Γ such that ψ(α) = β,
and there is a tuple t′ ∈ wB such that for each i, t′[i] = ψ(t[i]), and t′[j] =
ψ(α) = β. Because of the constraint w[j] ⊆ r[1], and because B is legal, there
is one and only one tuple (β, γ, δ) in rB (since 1 is a key of r, β appears once
in rB[1]). Then, we set ψ(fr,i1(α)) = γ, ψ(fr,i2(α)) = δ, and we can conclude
that (ψ(α), ψ(fr,i1 (α)), ψ(fr,i2 (α))) ∈ rB.

Finally, we show that, if I is consistent w.r.t. D, then a tuple t of constants
is in qI,D if and only if t is in the answer to q over the database can(I,D).
Theorem 4. Let I = 〈G,S,MG,S〉, let q be a query posed to I, D a source
database for I, and t a tuple of constants of the same arity as q. If I is consistent
w.r.t. D, then t ∈ qI,D if and only if t is in the answer to q over can(I,D).
Proof. For the “if” direction, we show that if t is in the answer to q over
can(I,D), then t ∈ qI,D. Indeed, consider any B that is a legal database for
I w.r.t. D. By theorem 3, there is a total function ψ from HD(D) to Γ such
that, for each relation r of arity n in G, and each tuple (c1, . . . , cn) constituted
by elements in HD(D), if (c1, . . . , cn) ∈ rcan(I,D), then (ψ(c1), . . . , ψ(cn)) ∈ rB.
The fact that t is in the answer to q over can(I,D) means that there is an as-
signment α from the variables of q to objects in HD(D) such that all atoms of q
are true with respect to the assignment. It is easy to see that the assignment
α · ψ can be used to show that t is in the answer to q over B.
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As for the “only-if” direction, first note that, by hypothesis I is consistent
w.r.t. D, and, therefore, by theorem 2, ret(I,D) does not violate any key con-
straint in G, which implies that can−(I,D) is a legal database for I w.r.t. D.
Now, since can−(I,D) ⊆ can(I,D), and since q is a conjunctive query, the fact
that t is not in the answer to q over can(I,D) implies that t is not in the answer
of q over can−(I,D). Therefore, we can conclude that t �∈ qI,D.

Based on the above results, we can conclude that can(I,D) is the right
abstraction for answering queries posed to the data integration system. In the
next section we show that, in processing a query q posed to the data integration
system, we can find the answers to q over can(I,D) without actually building
can(I,D).

5 Query Reformulation

The naive computation described in the previous section is impractical, because
it requires to build the canonical database, which is in general infinite. In order
to overcome the problem, we have devised an algorithm, whose main ideas are
as follows.

1. First, as we said in the previous section, we assume that, for each relation r of
the global schema, the query ρ(r) over the source schema that the mapping
MG,S associates to r preserve the key constraint of r.

2. Instead of referring explicitly to the canonical database for query answer-
ing, we transform the original query q into a new query expG(q) over the
global schema, called the expansion of q w.r.t. G, such that the answer to
expG(q) over the retrieved global database is equal to the answer to q over
the canonical database.

3. In order to avoid building the retrieved global database, we do not evaluate
expG(q) on the retrieved global database. Instead, we unfold expG(q) to a
new query, called unfMG,S (expG(q)), over the source relations on the basis
of MG,S , and we use the unfolded query unfMG,S (expG(q)) to access the
sources.

We refer to steps 1 and 2 as the “query reformulation” step. Step 3 is called the
“source access”. In the rest of the section we discuss the first two steps.

Let I = 〈G,S,MG,S〉 be a data integration system, let D be a source data-
base, and let q be a query over the global schema G. We show how to reformulate
the original query q into a new query expG(q) over the global schema, called the
expansion of q w.r.t. G, such that the answer to expG(q) over the (virtual) re-
trieved global database is equal to the answer to q over the canonical database.

The basic idea to do so is that the constraints in G can be captured by a
suitable logic program PG . To build PG , we introduce a new relation p′ (called
primed relation) for each relation p in G. Then, from the semantics of G we devise
the following rules for PG (expressed in Logic Programming notation [27]):
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– for each relation r, we have:

r′(X1, . . . , Xn) ← r(X1, . . . , Xn)

– for each foreign key constraint r1[A] ⊆ r2[B] in G, where A and B are sets of
attributes and B is a key for r2 (assuming for simplicity that the attributes
involved in the foreign key are the first h):

r′2(X1, . . . , Xh, fh+1(X1, . . . , Xh), . . . , fn(X1, . . . , Xh))
← r′1(X1, . . . , Xh, . . . , Xm)

where fi are fresh function symbols, called Skolem functions.

We can use the logic program PG to generate the query expG(q) associated
to the original query q. This is done as follows.

1. First, we rewrite q by substituting each relation symbol r in the body body(q)
of q with a new symbol r′. We denote by q′ the resulting query. In the
following we call “primed atom” every atom whose relation symbol is primed,
i.e., it has the form r′ for some r.

2. Then we build a partial evaluation tree for q′, i.e., a tree having each node
labeled by a conjunctive query g, with one of the atoms in body(g) marked
as “selected”, obtained as follows.
(a) The root is labeled by q′, and has one (primed) atom (for example the

first in left-to-right order) marked as selected.
(b) Except if condition (2c) below is satisfied, a node, labeled by a query g

having a “selected” atom α, has one child for each rule φ in PG such
that there exists a most general unifier2mgu(α, head(φ)) between the
atom α and the head head(φ) of the rule φ, such that the distinguished
variables are not assigned to terms involving Skolem functions. Each of
such children has the following properties:
– it is labeled by the query obtained from g by replacing the atom α

with body(φ) and by substituting the variables withmgu(α, head (φ));
– it has as marked “selected” one of the primed atoms (for example

the first in left-to-right order).
(c) If a node d is labeled by a query g, and there exist a predecessor d′ of d

labeled by a query g′ and a substitution θ of the variables of g′ that
makes g′ equal to g, then d has a single child, which is labeled by the
empty query (a query whose body is false).

3. Finally we return as result the query expG(q) formed as the union of all
non-empty queries in the leaves of the partial evaluation tree.

Theorem 5 (Termination). The algorithm above always terminates.

2 We recall that given two atoms α and β the most general unifier mgu(α, β) is a most
general substitution for the variables in α and β that makes α and β equal [27].
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Proof. The termination of the algorithm follows directly from the following ob-
servations:

– The queries in all nodes on the tree have exactly the same number of atoms
as the original query q. This is an immediate consequence of the fact that
for rule φ in PG , body(φ) is formed by exactly one atom.

– Condition (2c) guarantees a finite bound on the nesting of Skolem functions
in the queries in the nodes.

As a consequence, the number of queries along each branch of the partial eval-
uation tree must be finite, hence the thesis holds.

Our goal now is to show that if I is consistent w.r.t. D, then t ∈ qI,D if and
only if t is in the answer to unfMG,S (expG(q)) over D. We will prove such result
by applying results from the logic programming theory [27] and, in particular,
results on the partial evaluation of logic programs [28]. We first observe that
ret(I,D) can be seen as a (finite) set of ground facts in logic programming
terms. We proceed by proving a series of lemmas, each dealing with a particular
aspect of the proof. The relationship between the logic program PG and the
canonical database of the data integration system I is characterized by the
following lemma.

Lemma 1. Up to the renaming of each relation symbol r by the corresponding
primed symbol r′, can(I,D) coincides with the minimal model of PG ∪ ret(I,D).
Proof. The thesis is an immediate consequence of the semantics of can(I,D)
and PG ∪ ret(I,D) [27].

Next we focus on SLD-refutation. We observe that, since the query q is a
conjunctive query, the query q′ is a union of conjunctive queries:

q′(X1, . . . , Xn) ← disj1 ∨ · · · ∨ disjk
An SLD-refutation for PG ∪ ret(I,D) ∪ ¬q′(t) is defined as an SLD-refutation
for PG ∪ P ′

q ∪ ret(I,D) ∪ ¬q′(t), where P ′
q is constituted by the rules:

q(X1, . . . , Xn) ← disj1
· · ·

q(X1, . . . , Xn) ← disjk

one for each disjunct disji of the query q′ (see [27]).

Lemma 2. q′(t) is true in the minimal model of PG ∪ ret(I,D) iff there is an
SLD-refutation for PG ∪ ret(I,D) ∪ {¬q′(t)}.
Proof. The thesis follows directly from the soundness and completeness of SLD-
resolution for definite logic programs, see e.g., [27].

Next, let us consider a slight modification of the algorithm above where
Condition (2c) is replaced by the following one:
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If a node d that is labeled by a query g and there exists a predecessor d′

of d labeled by a query g′ and a substitution θ of the variables of g′ that
makes g′ equal to g, then d has a single child, which is labeled by g itself
but without any atom marked as selected.

Let us call exp−
G (q) the query obtained from such a modified algorithm. For

exp−
G (q), we have the following result.

Lemma 3. PG ∪ ret(I,D) ∪ {¬q′(t)} has an SLD-refutation iff ret(I,D)∪
{¬exp−

G (q)(t)} has an SLD-refutation.

Proof. It is easy to see that the modified algorithm generates a so-called partial
evaluation [28] of the program PG w.r.t. the query q′. From the results in [28] on
soundness and completeness of partial evaluation of logic programs, the thesis
follows.

Lemma 4. PG ∪ ret(I,D) ∪ {¬q′(t)} has an SLD-refutation iff ret(I,D)∪
{¬expG(q)(t)} has an SLD-refutation.

Proof. The difference between exp−
G (q) and expG(q) is that in expG(q) we drop

the disjuncts coming from those nodes labeled by a query g such that there exists
a query g′ and a substitution θ of the variables of g′ that makes g′ equal to g.
Next we show that, in doing this we do not loose any potential SLD-refutation
of PG ∪ ret(I,D) ∪ {¬q′(t)}.

Suppose that the shortest (possibly the only one) SLD-refutation for PG ∪
ret(I,D) ∪ {¬q′(t)} goes through a node labeled by one such g. Let us say
the length of the SLD-refutation is n, and that node labeled by g is the k-
th node along the SLD-refutation. From such SLD-refutation we get an SLD-
refutation for PG ∪ ret(I,D) ∪ {¬g(t)} of length n− k. Observe that, by the so
called Lifting Lemma [27], such an SLD-refutation is also an SLD-refutation for
PG ∪ ret(I,D)∪{¬g′(t)}. Hence there exists an SLD-refutation for which occurs
in a node of the SLD-refutation for PG ∪ ret(I,D) ∪ {¬q(t)} that is shorter
than n, which leads to contradiction. It follows that for each SLD-refutation for
PG ∪ ret(I,D)∪{¬q′(t)} going through a node satisfying Condition (2c) there is
also another (a shorter one in fact) that does not go through that node. Hence
we may drop from the partial evaluation exp−

G (q) all the conjuncts involving such
nodes, thus getting expG(q) without loosing any SLD-refutation for the original
query.

Finally, we observe that, since expG(q) does not involve any prime atom,
the rules in PG cannot be applied along an SLD-refutation for PG ∪ ret(I,D) ∪
{¬expG(q)(t)}. Hence every SLD-refutation for PG ∪ ret(I,D) ∪ {¬expG(q)(t)}
is also an SLD-refutation for PG ∪ ret(I,D) ∪ {¬expG(q)(t)}.

With this lemma in place we can finally present our main theorem.

Theorem 6 (Soundness and Completeness). Let I = 〈G,S,MG,S〉, let q
be a query posed to I, D a source database for I, and t a tuple of constants of
the same arity as q. If I is consistent w.r.t. D, then t ∈ qI,D if and only if t is
in the answer to unfMG,S (expG(q)) over D.
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Proof. By Lemma 1, Lemma 2, Lemma 4, we have that q(t) is true in can(I,D)
iff ret(I,D) ∪ {¬expG(q)(t)} has an SLD-refutation. That is by, again applying
Lemma 2, q(t) is true in can(I,D) iff t is in the answer to expG(q) over ret(I,D),
i.e., by the semantics of ret(I,D), iff t is in the answer to unfMG,S (expG(q))
over D.

With regard to the characterization of the computational complexity of the
algorithm, we observe that the number of disjuncts in expG(q) can be exponential
in the number of rules in the logic program PG (and therefore in the size of the
global schema G), and in the number of variables in the original query q. Note,
however, that this bound is independent of the size of D, i.e., the size of data at
the sources. We remind the reader that the evaluation of a union of conjunctive
queries can be done in time polynomial with respect to the size of the data.
Since expG(q) is a union of conjunctive queries, as the queries associated by
MG,S to the elements of G are, then evaluating unfMG,S (expG(q)) over D is
also polynomial in the size of the data at the sources. It follows that our query
answering algorithm is polynomial with respect to data complexity.

The following example illustrates the application of the expansion algorithm
in a simple case.

Example 4. Suppose we have the following relations in the global schema G of a data
integration system:

person(Pcode, Age,CityOfBirth)
student(Scode ,University)
city(Name, Major)

with the following integrity constraints:

key(person) = {Pcode}
key(student) = {Scode}

key(city) = {Name}

person[CityOfBirth ] ⊆ city[Name]
city[Major ] ⊆ person[PCode ]

student[SCode ] ⊆ person[PCode ]

The logic program PG makes use of the predicates person′/3, student′/1, city′/2 and
constitutes of the following rules:

person′(X, Y, Z) ← person(X, Y, Z)
student′(X, Y ) ← student(X, Y )

city′(X, Y ) ← city(X, Y )

city′(X, f1(X)) ← person′(Y,Z, X)
person′(Y, f2(Y ), f3(Y )) ← city′(X, Y )

person′(X, f4(X), f5(X)) ← student′(X, Y )

Suppose the user query is q(X)← person(X, Y, Z).

���
���
���
���

person′(X, Y, Z)

student′(X, W1)

city(Z, W2) person′(W3, W4, Z)

✷

student(X, W1)

city′(Z, W2)person(X, Y, Z)

Fig. 1. Partial evaluation tree for the query of Example 4
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The partial evaluation tree of q is shown in Figure 1. Note that in the rightmost
branch, Condition (2c) is verified and hence the evaluation stops, producing the empty
clause ✷. This prevents the evaluation process to get into an infinite branch. The new
variables W1, W2, and W3 are introduced in order to avoid variable clashes when per-
forming unification. The non-empty leaves, shaded in the figure, provide the following
expansion q′ = expG(q) of the query q:

q′(X) ← person(X, Y, Z)
q′(X) ← student(X, W1)

q′(W2) ← city(Z, W2)

Intuitively, we see that the expanded query searches for codes of persons not only in
the relation person, but also in student and city, where, due to the integrity constraints,
it is known that codes of persons are stored.

6 Conclusions

While it is a common opinion that query processing is an easy task in the global-
centric approach to data integration, we have shown the surprising result that,
when the global schema contains integrity constraints, even of simple forms,
query processing becomes more difficult. The difficulties basically arise because
of the need of dealing with incomplete information, similarly to the case of the
source-centric approach to data integration. We have studied the case of global
schemas expressed in the relational model with key and foreign key constraints,
and we have presented techniques for effectively answering queries posed to the
data integration system in this case.

As future work, we aim at considering more forms of integrity constraints in
the global schema, with the goal of modifying the algorithm described in this
paper in order to take into account the new classes of constraints during query
processing.
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