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Abstract

As an alternative to planning, an approach to high-level agent control based
on concurrent program execution is considered. The language includes facilities
for prioritizing the concurrent execution, interrupting the execution when certain
conditions become true, and dealing with exogenous actions. The language differs
from other procedural formalisms for concurrency in that the initial state can be
incompletely specified and the primitive actions can be user-defined by axioms in
the situation calculus. In a companion paper, a formal definition in the situation
calculus of such a programming language is presented and illustrated with detailed
examples. In this paper, the mathematical properties of the programming language
are explored.

1 Introduction

When it comes to providing high-level control for robots or other agents in dynamic
and incompletely known worlds, approaches based on plan synthesis may end up being
too demanding computationally in all but simple settings. An alternative approach that
is showing promise is that of high-level program execution [15]. The idea, roughly, is
that instead of searching for a sequence of actions that would take the agent from an



initial state to some prespecified goal state, the task is to find a sequence of actions
that constitutes a legal execution of some prespecified non-deterministic program. As in
planning, to find a sequence that constitutes a legal execution of such a program, it is
necessary to reason about the preconditions and effects of the actions within the body
of the program. The hope is that in many domains, what an agent needs to do can
be conveniently expressed using a suitably rich high-level programming language, and
that at the same time, finding a legal execution of that program will be more feasible
computationally than the corresponding planning task.

We argue that a new programming language called ConGolog [6] provides just such
an expressive formalism for high-level control. ConGolog is an extension to the Golog
programming language [15] that incorporates a rich account of concurrency, including
prioritized execution, interrupts, and exogenous actions. In the companion paper [5], we
explain and motivate ConGolog informally, review how the situation calculus and the
solution to the frame problem proposed by Reiter [21] can be used to characterize the
behavior of the application-dependent primitive actions, specify formally the execution
semantics of ConGolog programs as axioms of the situation calculus, provide some exam-
ples of high-level agent controllers written in ConGolog, present a simple interpreter for
ConGolog written in Prolog, and finally prove the correctness of this interpreter relative
to the formal specification.

One of the nicest features of ConGolog is that it allows us to easily formulate agent
controllers that pursue goal-oriented tasks while concurrently monitoring and reacting
to conditions in their environment, all defined precisely in the language of the situation
calculus. But this kind of expressiveness required considerable mathematical machinery:
we needed to encode ConGolog programs as terms in the situation calculus (which, among
other things, required encoding certain formulas as terms), and we also needed to use
second-order quantification to deal with iteration and recursive procedures. It is not at
all obvious that such complex definitions are well-behaved or even consistent.

This paper considers the mathematical foundations of ConGolog, and shows that our
language specification is indeed mathematically well-behaved. The paper is self-contained
in terms of definitions and theorems; motivation and examples, however, are to be found
in the companion paper.

Of course ours is not the first formal model of concurrency. In fact, well developed ap-
proaches are available [13, 17, 3, 24]! and our work inherits many of the intuitions behind
them. However, it is distinguished from these in at least two fundamental ways. First,
it allows incomplete information about the environment surrounding the program. In
contrast to typical computer programs, the initial state of a C'onGolog program need only
be partially specified by a collection of axioms. Second, it allows the primitive actions
(elementary instructions) to affect the environment in a complex way, and such changes
to the environment can affect the execution of the remainder of the program. In con-

Tn [19, 4] a direct use of such approaches to model concurrent (complex) actions in Al is investigated.



trast to typical computer programs whose elementary instructions are simple predefined
statements (e.g. variable assignments), the primitive actions of a ConGolog program are
determined by a separate domain-dependent action theory, which specifies the action pre-
conditions and effects, and deals with the frame problem. Finally, it might also be noted
that the interaction between prioritized concurrency and recursive procedures presents a
level of procedural complexity which, as far as we know, has not been dealt with in any
previous formal model.

The rest of the paper is organized as follows: in Section 2 we review the situation
calculus and the Golog programming language. In Section 3, we briefly explain the sort of
concurrency we are concerned with, as well as related notions of priorities and interrupts.
In Section 4 we present ConGolog’s formal semantics. In Section 5 we extend ConGolog’s
formal semantics to deal with procedures. Handling the interaction between the very
general form of prioritized concurrency allowed in ConGolog and recursive procedures
will require a quite sophisticated approach. In Section 6 we will show general sufficient
conditions that allow us to use a much simplified semantics without loss of generality. A
summary and topics for future research end the paper.

2 The Situation Calculus and Golog

As mentioned earlier, our high-level programs contain primitive actions and tests that are
domain dependent. An interpreter for such programs must reason about the preconditions
and effects of actions in the program to find legal executions. So we need a language to
specify such domain theories. For this, we use the situation calculus [16], a first-order
language (with some second-order features) for representing dynamic domains.

2.1 The Situation Calculus

We will not go over the language in details here (see [22]) except to note the following
components: there is a special constant Sy used to denote the initial situation, namely
that situation in which no actions have yet occurred; there is a distinguished binary
function symbol do where do(a,s) denotes the successor situation to s resulting from
performing the action a; relations whose truth values vary from situation to situation are
called (relational) fluents, and are denoted by predicate symbols taking a situation term
as their last argument; finally, there is a special predicate Poss(a, s) used to state that
action a is executable in situation s.

Within this language, we can formulate domain theories which describe how the world
changes as a result of the available actions. One possibility is a theory of the following
form [21]:

e Axioms describing the initial situation, Sy.



Action precondition axioms, one for each primitive action a, characterizing Poss(a, s).

Successor state axioms, one for each fluent F', stating under what conditions F(Z, do(a, s))
holds as function of what holds in situation s. These take the place of the so-called
effect axioms, but also provide a solution to the frame problem [21].

e Unique names axioms for the primitive actions.
e Some foundational, domain independent axioms.

For any domain theory of this sort, we have a very clean specification of the planning
task, which dates back to the work of Green [10]:

Classical Planning: Given a domain theory Azioms as above, and a goal for-
mula ¢(s) with a single free-variable s, the planning task is to find a sequence
of actions @ such that:

Azioms = Legal(d, So) N ¢(do(d, Sp))
where do([as, . ..,a,], s) is an abbreviation for
do(an, do(an_1,...,do(as,s)...)),
and where Legal([ay, ..., ay], s) stands for

Poss(ay,s) N ... N Poss(an, do([ay, ..., a, 1], $)).

In other words, the task is to find a sequence of actions that is executable (each action
is executed in a context where its precondition is satisfied) and that achieves the goal
(the goal formula ¢ holds in the final state that results from performing the actions in
sequence).

2.2 Golog

As presented in [15], Golog is a logic-programming language whose primitive actions are
those of a background domain theory. It includes the following constructs (§, possibly
subscripted, ranges over Golog programs):



a primitive action?

$?, wait for a condition®
(01;02), sequence
(01 | 02), nondeterministic choice between actions
.0, nondeterministic choice of arguments
0%, nondeterministic iteration
{proc P;(?;) 0, end;...proc P,(¥,) d,end; 4}, procedures

Let’s examine a simple example to see some of the features of the language. Here’s a
Golog program to clear the table in a blocks world:

{proc removeAblock
b [OnTable(b, now)?; pickUp(b); put Away(b)]
end;
removeAblock™;

—3b OnTable(b, now)? }

Here we first define a procedure to remove a block from the table using the nondeter-
ministic choice of argument operator 7. wx[6(x)] is executed by nondeterministically
picking an individual z, and for that z, performing the program §(z). The wait action
OnTable(b, now)? succeeds only if the individual chosen, b, is a block that is on the table.
The main part of the program uses the nondeterministic iteration operator; it simply says
to execute removeAblock zero or more times until the table is clear. Note that Golog’s
other nondeterministic construct, (d; | d;), allows a choice between two actions; a program
of this form can be executed by performing either §; or ds.

In its most basic form, the high-level program execution task is a special case of the
above planning task:

Program Execution: Given a domain theory D as above, and a program 9,
the execution task is to find a sequence of actions @ such that:

D & Do(8, Sy, dold, So))

where Do(6, s, s') means that program § when executed starting in situation s
has s’ as a legal terminating situation.

2Here, a stands for a situation calculus action with all situation arguments in its parameters replaced
by the special constant now. Similarly in the line below ¢ stands for a situation calculus formula with
all situation arguments replaced by now, for example OnTable(block, now). a[s] (¢[s]) will denote the
action (formula) obtained by substituting the situation variable s for all occurrences of now in functional
fluents appearing in a (functional and predicate fluents appearing in ¢). Moreover when no confusion can
arise, we often leave out the now argument from fluents altogether; e.g. write OnT able(block) instead of
OnTable(block,now). In such cases, the situation suppressed version of the action or formula should be
understood as an abbreviation for the version with now.

3Because there are no exogenous actions or concurrent processes in Golog, waiting for ¢ amounts to
testing that ¢ holds in the current state.



Note that since Golog programs can be nondeterministic, there may be several terminating
situations for the same program and starting situation.

In [15], Do(d, s, s") was simply viewed as an abbreviation for a formula of the situation
calculus. The following inductive definition of Do was provided:

1. Primitive actions:
Do(a, s, s") e Poss(a[s], s) A s' = do(als], s)
2. Wait/test actions:
Do(¢?,5,8") © ¢[s|ns=+

3. Sequence:
Do(6y; 09, s, 8") def g4 Do(61,,8") A Do(8,5",s")

4. Nondeterministic branch:
Do(8, | 63, 5,8") & Do(61,5,5') V Do(s, s, 5
5. Nondeterministic choice of argument:
Do(rz.6(z), s, s") “ 3 Do(é(z), s, s")

6. Nondeterministic iteration:

Do(6*,s,s") def VP.{Vs; P(s1,s1) A Vs, $2,83]P(s1, 82) A Do(6, s2,83) D P(s1,83)] }
D P(s,s).

In other words, doing action § zero or more times takes you from s to s’ if and only
if (s,s') is in every set (and therefore, the smallest set) such that:

(a) (s1,s1) is in the set for all situations s;.

(b) Whenever (s1, s2) is in the set, and doing § in situation s, takes you to situation
s3, then (s, s3) is in the set.

The above definition of nondeterministic iteration is the standard second-order way
of expressing this set. Some appeal to second-order logic appears necessary here
because transitive closure is not first-order definable, and nondeterministic iteration
appeals to this closure.

We have left out the expansion for procedures, which is somewhat more complex; see [15]
for the details.



3 ConGolog

We are now ready to define ConGolog, an extended version of Golog that incorporates a
rich account of concurrency. We say ‘rich’ because it handles:

e concurrent processes with possibly different priorities,
e high-level interrupts,
e arbitrary exogenous actions.

As is commonly done in other areas of computer science, we model concurrent processes as
interleavings of the primitive actions in the component processes. A concurrent execution
of two processes is one where the primitive actions in both processes occur, interleaved in
some fashion. So in fact, we never have more than one primitive action happening at any
given time. This assumption might appear problematic when the domain involves actions
with extended duration (e.g. filling a bathtub). In the companion paper [5], we discuss
this issue and argue that in fact, there is a straightforward way to handle such cases.

An important concept in understanding concurrent execution is that of a process
becoming blocked. If a deterministic process § is executing, and reaches a point where
it is about to do a primitive action a in a situation s but where Poss(a, s) is false (or a
wait action ¢?, where ¢[s] is false), then the overall execution need not fail as in Golog.
In ConGolog, the current interleaving can continue successfully provided that a process
other than 0 executes next. The net effect is that 0 is suspended or blocked, and execution
must continue elsewhere.*

The ConGolog language is exactly like Golog except with the following additional
constructs:

if ¢ then 4, else 9s, synchronized conditional
while ¢ do 9, synchronized loop
(01 ]| 62), concurrent execution
(01 ) 82), concurrency with different priorities
sl concurrent iteration
<P — 0>, interrupt.

The constructs if ¢ then §; else J, and while ¢ do § are the synchronized versions of
the usual if-then-else and while-loop. They are synchronized in the sense that the test of
the condition ¢ does not involve a transition per se: the evaluation of the condition and
the first action of the branch chosen will be executed as a unity. In other words, these

4Just as actions in Golog are external (e.g. there is no internal variable assignment), in ConGolog,
blocking and unblocking also happen externally, via Poss and wait actions. Internal synchronization
primitives are easily added.



constructs behave in a similar way to the test-and-set atomic instructions used to build
semaphores in concurrent programming [1].5

The construct (d; || d2) denotes the concurrent execution of the actions d; and ds.
(01 )) 62) denotes the concurrent execution of the actions §; and ds with d; having higher
priority than d,. This restricts the possible interleavings of the two processes: 0, executes
only when §; is either done or blocked. The next construct, 6!, is like nondeterministic
iteration, but where the instances of § are executed concurrently rather than in sequence.
Just as 0* executes with respect to Dolike nil | ¢ | (§;0) | (6;9;0) | ... (where nil represents
the empty program), the program 6! executes with respect to Do like nil | 6 | (0 || 0) |
(0] 6] d)].... Seethe companion paper [5] for an example of its use.

Finally, <¢ — > is an interrupt. It has two parts: a trigger condition ¢ and a body,
0. The idea is that the body § will execute some number of times. If ¢ never becomes
true, 0 will not execute at all. If the interrupt gets control from higher priority processes
when ¢ is true, then § will execute. Once it has completed its execution, the interrupt is
ready to be triggered again. This means that a high priority interrupt can take complete
control of the execution. With interrupts, we can easily write controllers that can stop
whatever task they are doing to handle various concerns as they arise. They are, dare we
say, more reactive.

4 A Transition Semantics

By using Do, programs are assigned a semantics in terms of a relation, denoted by the
formulas Do(d, s, s'), that given a program ¢ and a situation s, returns a situation s
resulting from executing the program starting in the situation s. Semantics of this form are
sometimes called evaluation semantics (see [11]), since they are based on the (complete)
evaluation the program.

When concurrency is taken into account it is more convenient to adopt semantics of
a different form: the so-called transition semantics or computation semantics (see again
[11]). Transition semantics are based on defining single steps of computation in contrast
to directly defining complete computations.

In the present case, we are going to define a relation, denoted by the predicate
Trans(6,s,d', s"), that associates to a given program ¢ and situation s, a new situation s’
that results from executing a primitive action or test action and a new program ¢’ that
represents what remains of the program after having performed such an action. In other
words, Trans denotes a transition relation between configurations. A configuration is a
pair formed by a program (the part of the initial program that is left to perform) and the

°In [15] a non-synchronized version of if-then else and while-loop is introduced by defining:

if ¢ then &, else 6, Y [($7;61) | (—¢7;62)] and while ¢ do § < [(47;6)*;=¢?]. The synchronized

versions of these constructs introduced here behave essentially as the non-synchronized ones in absence
of concurrency. However the difference is striking when concurrency is allowed.



a situation (representing the current situation).

We are also going to introduce a predicate Final(d, s), meaning that the configuration
(0,s) is a final one, that is, where the computation can be considered completed (no
program remains to be executed). The final situations reached after a finite number
of transitions from a starting situation coincide with those satisfying the Do relation.
Complete computations are thus defined by repeatedly composing single transitions until
a final configuration is reached.

It worth noting that if a program does not terminate, then no final situation will
satisfy the Do relation (indeed evaluation semantics are typically used for terminating
programs), while we can still keep track of the various transitions performed by means
of Trans. Indeed, nonterminating programs do not need any special treatment within
transition semantics, while they typically remain undefined in evaluation semantics.

In general, both evaluation semantics and transition semantics belong to the family
of structural operational semantics introduced by Plotkin in [18]. Both of these forms of
semantics are operational since they do not assign a meaning directly to the programs
(as denotational semantics), but instead see programs simply as specifications of compu-
tations (or better as syntactic objects that specify the control flow of the computation).
They are abstract semantics since, in contrast to concrete operational semantics, they
do not define a specific machine on which the operations are performed, but instead only
define an abstract relation (such as Do or Trans) which denotes the possible computations
(either complete computations for evaluation semantics, or single steps of computations
for transition semantics). In addition, both such form of semantics are structural since
are are defined on the structure of the programs.

4.1 Encoding programs as first-order terms

In the simple semantics using Do, it was possible to avoid introducing programs explicitly
into the logical language, since Do(d, s, s') was only an abbreviation for a formula ®(s, s)
that did not mention the program ¢ (or any other programs). This was possible essentially
because it was not necessary to quantify over programs.

Basing the semantics on Trans however does require quantification over programs.
To allow for this, we develop an encoding of programs as first-order terms in the logical
language (observe that programs as such, cannot in general be first-order terms, since on
one hand, they mention formulas in tests, and on the other, the operator 7 in 7x.d is a
quantifier).

Encoding programs as first-order terms, although it requires some care (e.g. introduc-
ing constants denoting variables and defining substitution explicitly in the language), does
not pose any major problem® (see Appendix A). In the following we abstract from the

6Observe that, we assume that formulas that occur in tests never mention programs, so it is impossible
to build self-referential sentences.



details of the encoding as much as possible, and essentially use programs within formulas
as if they were already first-order terms. The full encoding is given in Appendix A.

4.2 Trans and Final

Let us formally define Trans and Final, which intuitively specify what are the possible
transitions between configurations (Trans), and when a configuration can be considered
final (Final).

It is convenient to introduce a special program nil, called the empty program, to denote
the fact that nothing remains to be performed (legal termination). For example, consider
a program consisting solely of a primitive action a. If it can be executed (i.e. if the action is
possible in the current situation), then after the execution of the action a nothing remains
of the program. In this case, we say that the program remaining after the execution of
action a is nil.

Trans(d, s,¢', s') holds if and only if there is a transition from the configuration (4, s)
to the the configuration (§’,s'), that is, if by running program § starting in situation s,
one can get to situation s’ in one elementary step with the program ¢’ remaining to be
executed. As mentioned, every such elementary step will either be the execution of an
atomic action (which changes the current situation) or the execution of a test (which does
not). As well, if the program is nondeterministic, there may be several transitions that
are possible in a configuration. To simplify the discussion, we postpone the introduction
of procedures to Section 5.

The predicate Trans for programs without procedures is characterized by the follow-
ing set of axioms 7 (here as in the rest of the paper, free variables are assumed to be
universally quantified):

1. Empty program:
Trans(nil, s,8',s') = False

2. Primitive actions:
Trans(a,s,d',s") =
Poss(a[s], s) AN §' = nil A s' = do(a[s], s)
3. Wait/test actions:
Trans(¢?,s,0',8") = ¢[s]ANd =nilAs' =s

4. Sequence:
Trans(d1;02,8,0',s") =
3y.6" = (v; d2) A Trans(dy, s,7,s) V
Final(61, s) A Trans(dz, s, 0", s")

10



. Nondeterministic branch:

Trans(dy | 02,8,8",s") =
Trans(6y1,s,0',s') VvV Trans(ds,s,d',s")

. Nondeterministic choice of argument:

Trans(mv.0,s,8',s") = Fz.Trans(62,s,d',s")

. Iteration:

Trans(0*,s,8',s") =
Fy.(6" = v;6%) A Trans(d, s,7, s')

. Synchronized if-then-else:

Trans(if ¢ then §; else d5,5,0',s') =
@[s] A Trans(dy,s,0',s") Vv
—d[s] A Trans(ds,s,0',s")

. Synchronized while:
Trans(while ¢ do 6, 5,8, s') =
3v.(6" = ; while ¢ do 6) A ¢[s] A Trans(d, s,7, s')

. Concurrent execution:

Trans(dy || 02,8,8",s") =
3y.6" = (v || 62) A Trans(éy, s,7,s’) V
3y.6" = (81 || v) A Trans(ds, 8,7, s')

. Prioritized concurrent execution:

Trans(dy )) d2,8,0',s'") =
Iv.8" = (v )) 62) A Trans(dy,s,7,5") V
Fy.6" = (61 )) v) A Trans(8s, s,7v,s") A =3¢, s". Trans(6y, s, ¢, s")

. Concurrent iteration:

Trans(6l,s,0',s") =
3y.6" = (v || 1) A Trans(s, s, v, s")

11



The assertions above characterize when a configuration (4, s) can evolve (in a single
step) to a configuration (¢, s"). Intuitively they can be read as follows:

1.

2.

10.

(nil, s) cannot evolve to any configuration.

(a,s) evolves to (nil, do(a[s], s)), provided that a[s] is possible in s. After having
performed a, nothing remains to be performed and hence nil is returned. Observe
that in Trans(a, s,d',s"), a stands for the program term encoding the corresponding
situation calculus action, while Poss and do take the latter as argument; we take
the function -[-] as mapping the program term a into the corresponding situation
calculus action als], as well as replacing now by the situation s.

(97, s) evolves to (nil, s), provided that ¢[s] holds, otherwise it cannot proceed. Note
that the situation remains unchanged. Analogously to the previous case, we take
the function -[-] as mapping the program term for condition ¢ into the corresponding
situation calculus formulas ¢[s], as well as replacing now by the situation s.

. (01502, s) can evolve to (d7;dz2, '), provided that (41, s) can evolve to (47, s"). More-

over it can also evolve to (8%, s'), provided that (dy, s) is a final configuration and
(02, s) can evolve to (65, s').

(01]09, s) can evolve to (¢, s"), provided that either (dy, s) or (42, s) can do so.

(mv.d, s) can evolve to (d',s"), provided that there exists an = such that (42, s) can
evolve to (¢, s'). Here 0Y is the program resulting from ¢ by substituting v with the
variable z.”

. (0%, s) can evolve to (¢';0% s") provided that (d,s) can evolve to (d§',s"). Observe

that (0%, s) can also not evolve at all, (6%, s) being final by definition (see below).

(if ¢ then §; elseds, s) can evolve to (&', s'), if either ¢[s| holds and (41, s) can do
so, or —¢[s] holds and (d2, s) can do so.

(while ¢ do ¢, s) can evolve to (§'; while ¢ do §,s'), if ¢[s] holds and (4, s) can
evolve to (&', s').

(01 || d2,s) can evolve to (07 || d2,s’), provided that (d1,s) can evolve to (47,s’).
Similarly, (§; || d2,s) can evolve to (&1 || 85, '), provided that (s, s) can evolve to
(04, s"). In other words, you single step d; || d2 by single stepping either d; or d, and
leaving the other process unchanged.®

"To be more precise, v is substituted by a term of the form name0f(z), where name0f is used to convert
situation calculus objects/actions into program terms of the corresponding sort.

8Observe that with (81 || 62), if both §; and &2 are always able to execute, the amount of interleaving
between them is left completely open. It is legal to execute one of them completely before even starting

12



11. (81 )) 09, ) can evolve to (8] || d2,s"), provided that (d1,s) can evolve to (01, s).
However, (§; || d2,5) can evolve to (§; || 65,s") only if (d1,s) is blocked (cannot
perform any transition) and (dz, s) can evolve to (85, s'). That is the d; )) d; construct
is identical to d; || 0o, except that you are only allowed to single step d if there is
no legal step for §;. This ensures that ¢; will execute as long as it is possible for it
to do so.

12. (4!, 5) can evolve to (8" || !, s'), provided that (6, s) can evolve to (§,s'). That is
you single step d! by single stepping §, and what is left is the remainder of § as well
as 0l itself. This allows an unbounded number of instances of § to be running.

Final(6, s) tells us whether a program ¢ can be considered to be already in a final
state (legally terminated) in the situation s. Obviously we have Final(nil, s), but also
Final(0*, s) since §* requires 0 or more repetitions of § and so it is possible to not execute
0 at all, the program completing immediately.

The predicate Final for programs without procedures is characterized by the set of
axioms F:

1. Empty program:

Final(nil,;s) = True
2. Primitive action:

Final(a,s) = False
3. Wait/test action:

Final(¢?,s) = False

4. Sequence:

Final(01; 02, 8) =
Final(6y, s) A Final(d2, s)

5. Nondeterministic branch:

Final(6y | 62,5) =
Final(é1,s) V Final(ds,s)

6. Nondeterministic choice of argument:

Final(mv.6,s) = 3Jx.Final(d,,s)

the other, and it also legal to switch back and forth after each primitive or wait action. It is not hard to
define, however, new concurrency constructs ||min and ||max that require the amount of interleaving to be
minimized or maximized respectively. We omit the details.

13



7. Iteration:
Final(6*,s) = True

8. Synchronized if-then-else:
Final(if ¢ then 0, else §3,s) =
o[s| A\ Final(61,s5) VvV —¢[s] A Final(d, s)
9. Synchronized while:
Final(while ¢ do §,s) =
—¢ls] VvV Final(4, s)

10. Concurrent execution:

Final(0y || 02,8) =
Final(01, s) A Final(ds, s)

11. Prioritized concurrent execution:
Final(6, ) 62,s) =

Final(6y, s) A Final(d2, s)

12. Concurrent iteration:
Final(0l,s) = True

The assertions above can be read as follows:
1. (nil,s) is a final configuration.

2. (a, s) is not final, indeed the program consisting of the primitive action a cannot be
considered completed until it has performed a.

3. (47, s) is not final, indeed the program consisting of the test action ¢? cannot be
considered completed until it has performed the test ¢7.

d1; 02, s) can be considered completed if both (41, s) and (0, s) are final.

1|02, s) can be considered completed if either (41, s) or (s, s) is final.

(
(
6. (mv.d,s) can be considered completed, provided that there exists an x such that
(02, s) is final, where §? is obtained from § by substituting v with x.
(

0%, s) is a final configuration, since by §* is allowed to execute zero times.

14



8. (if ¢ then 0, else 2, s) can be considered completed, if either ¢[s] holds and (1, s)
is final, or if —¢[s] holds and (d2, s) is final.

9. (while ¢ do 6, s) can be considered completed if either =¢[s] holds or (4, s) is final.

- (

10. (81 || 02, s) can be considered completed if both (d, s) and (d2, s) are final.
11. (81 )) d2,8) can be considered completed if both (d1, s) and (d2, s) are final.
- (

12. (6!, s) is a final configuration, since it is legal to execute the & in §l zero times.

In the following, we will denote by C the set of axioms for Trans and Final plus the axioms
needed for encoding programs as first-order terms (see Appendix A).

4.3 Interrupts

Observe that we didn’t define Trans and Final for interrupts. Indeed, these can be
explained using other constructs of ConGolog:

<¢p—d> “/ while Interrupts_running do
if ¢ then 0 else False?

To see how this works, first assume that the special fluent Interrupts_running is iden-
tically True. When an interrupt <¢ — 0 > gets control, it repeatedly executes ¢ until ¢
becomes false, at which point it blocks, releasing control to anyone else able to execute.
Note that according to the above definition of Trans, no transition occurs between the
test condition in a while-loop or an if-then-else and the body. In effect, if ¢ becomes false,
the process blocks right at the beginning of the loop, until some other action makes ¢
true and resumes the loop. To actually terminate the loop, we use a special primitive
action stop_interrupts, whose only effect is to make Interrupts_running false. Thus, we
imagine that to execute a program § containing interrupts, we would actually execute the
program {start_interrupts; (6 )) stop_interrupts)} which has the effect of stopping all
blocked interrupt loops in § at the lowest priority, ¢.e. when there are no more actions in
0 that can be executed.

4.4 Exogenous events

Finally, let us consider exogenous actions. These are primitive actions that may occur
without being part of a user-specified program. We assume that in the background theory,
the user declares, using a predicate Ezo, which actions can occur exogenously. We model
the occurrence of exogenous events by means of a special program:

Sexo & (ma. Exo(a)?;a)*
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Executing this program involves performing zero, one, or more nondeterministically cho-
sen exogenous events.” Then we make dgxo run concurrently with the user-specified
program §:

0 || 5EXO

In this way we allow exogenous actions whose preconditions are satisfied to asynchronously
occur (outside the control of §) during the execution of . See the companion paper [5]
for examples.

4.5 Trans® and Do

The possible configurations that can be reached by a program § starting in a situation
s are those obtained by repeatedly following the transition relation denoted by Trans
starting from (4, s), i.e. those in the reflexive transitive closure of the transition relation.
Such a relation, denoted by Trans®, is defined as the (second-order) situation calculus
formula:

Trans*(9,s,d', s") «f VT[... D T(d,s,8,s")]

where . .. stands for the conjunction of the universal closure of the following implications:

True O T(9,s,0,s)
Trans(6,s,d",s") NT(8",s",8',s") D T(6,s,¢,s")

Using Trans* and Final we can give a new definition of Do as:!°

Do(8,s,s") % 35" Trans*(8,s,8',s') A Final(§', s').
In other words, Do(d, s, s") holds if it is possible to repeatedly single-step the program J,
obtaining a program ¢’ and a situation s’ such that ¢’ can legally terminate in s’. For
Golog programs such a definition for Do coincides with the one given in [15].
Formally, we can state the the following result:

90Observe the use of 7: the program nondeterministically chooses an action a, tests that this a is an
exogenous event, and executes it.
10Equivalently we can define Do directly as:

Do(8,s,s") = VD.[... D D(4,s,s")]

where ... stands for the conjunction of the universal closure of the following implications:

Final(6,s) D D(d,s,s)
Trans(6,s,8",s"Y AN D(8",s",s") D D(d,s,s').
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Theorem 1: Let Doy be the original definition of Do in [15], presented in Section 2, and
Do, the new one given above. Then for each Golog program §:

C E Vs, Dods,s') = Doy(d,s,s)

Proof: See Appendix B. O

Let us note that a Trans-step which brings the state of a computation from one con-
figuration (, s) to another (&', s') need not change the situation part of the configuration,
i.e., we may have s = s'. In particular, test actions have this property. If we want to
abstract from such computation steps that only change the state of the program, we
can easily define a new relation, TransSit, that skips transitions that do not change the
situation:

TransSit(d, s, ', s) «f VI'.[... D T'(4,s,0", )]
where ... stands for the conjunction of the universal closure of the following implications:

Trans(6,s,8',s'YNs' #s D T'(4,s,8,s")
Trans(6,s,d",s) NT'(6",s,0',8'") D T'(d,s,0",s").

4.6 Formal properties

We are going to show that the axioms for Trans and Final are definitional, in the sense
that they completely characterize Trans and Final for programs without procedures.

Lemma 1: For any ConGolog program term 6(Z) containing only variables & of sort
object or action, there exist two formulas ®(Z,s,0,s') and Y(Z,s), where Z,s,0',s" and
Z, s are the only free variables in ® and in ¥ respectively, that do not mention Final and
Trans, and are such that:

C E V& s,0,s. Trans(6(Z),s,d',s') = ®(Z,s,0,5) (1)
C E VZ s Find(6(2),s) = V(Z,s) (2)

Proof: For both (1) and (2), the proof is similar; it is done by induction on the program
structure considering as base cases programs of the form nil, a, and ¢7. Base cases: the
thesis is an immediate consequence of the axioms of Trans and Final since the right-
hand side of the equivalences does not mention Trans and Final. Inductive cases: by
inspection, all the axioms have on the right-hand side simpler program terms, which
contain only variables of sort object or action, as the first argument to Trans and Final,
hence the thesis is a straightforward consequence of the inductive hypothesis. O

It follows from the lemma that the axioms in 7 and F, together with the axioms
for encoding of programs as first-order terms, completely determine the interpretation of
the predicates Trans and Final on the basis of the interpretation of the other predicates.
That is 7 and F implicitly define the predicates Trans and Final. Formally, we have the
following theorem:

17



Theorem 2: There are no pair of models of C that differ only in the interpretation of
the predicates Trans and Final.

Proof: By contradiction. Suppose that there are two models M; and M, of C that agree
in the interpretation of all non-logical symbols (constant, function, predicates) other than
either Trans or Final. Let’s say that they disagree on Trans, i.e. there is a tuple of domain
values (5, 5,6, §") such that (5, 5,6, §') € Trans™* and (5, 5,0, §') ¢ Trans™. Considering
the structure of the sort programs (see Appendix A), we have that for every value of the
domain of sort programs § there is a program term §(Z), containing only variables & of
sort object or action, such that for some assignment o to &, §M17 = §M27 — 5. Now let us
consider three variables s,d’, s’ and an assignment ¢’ such that ¢'(Z) = o(%), o'(s) = 8,
o'(8") = ¢, and ¢o'(s') = §. By Lemma 1, there exists a formula & such that neither Trans
nor Final occurs in ® and:

M;, o' | Trans(§,s,d',s") iff M;,0 = ®(Z,s,8,s") i=1,2.

Since, My, o' = ®(Z,s,0',s") iff My, 0’ = ®(&,s,d',s'), we get a contradiction. O

5 Extending the Transition Semantics to Procedures

We now extend the transition semantics introduced above to deal with procedures. Be-
cause a recursive procedure may do an arbitrary number of procedure calls before it
performs a primitive action or test, and such procedure calls are not viewed as transi-
tions, we must use a second-order definition of Trans and Final. In doing so, great care
has to be put in understanding the interaction between recursive procedures and the very
general form of prioritized concurrency allowed in ConGolog

Let proc P;(%;)6; end;...; proc P,(7,)d, end be a collection of procedure definitions.
We call such a collection an environment and denote it by Enwv. In a procedure definition
proc P;(¥;)0;end, P; is the name of the i-th procedure in Env; @; are its formal pa-
rameters; and ¢; is the procedure body, which is a ConGolog program, possibly including
both procedure calls and new procedure definitions. We use call-by-value as the parameter
passing mechanism, and lexical (or static) scope as the scoping rule.

Formally we introduce three program constructs:

e P(t) where P is a procedure name and f actual parameters associated to the pro-
cedure P; as usual we replace the situation argument in the terms constituting ¢
by now. P(f) denotes a procedure call, which invokes procedure P on the actual
parameters ¢ evaluated in the current situation.

e {Enwv;0}, where Env is an environment and § is a program extended with procedures
calls. {Enwv;d} binds procedures calls in ¢ to the definitions given in Env. The usual
notion of free and bound apply, so for e.g. in {proc Pi() a end; P(); P,()}, P, is
bound but P, is free.
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e [Env : P(f)], where Env is an environment, P a procedure name and # actual
parameters associated to the procedure P. [Env : P(t)] denotes a procedure call
that has already been contextualized: the environment in which the definition of P
is to be looked for is Enwv.

We define the semantics of C'onGolog programs with procedures by defining both Trans
and Final by a second-order formula (instead of a set of axioms).!' Trans is defined as

follows:
Trans(d,s,0',s') =VT.[... D T(4s,0,5)]

where ... stands for the conjunction of 7,77 — i.e. the set of axioms 7 modulo textual
substitution of Trans with T' — and (the universal closure of) the following two assertions:

T({Env;d},s,0',s") = T(&Pi@ 5,0, 8")

[Env:P;(t)]’
T([Env : P(t)],s,0',s") = T({Env; 0P} S &', s")
where 6[1;;52: ()] denotes the program ¢ with all procedures bound by Env and free in §

replaced by their contextualized version (this gives us the lexical scope), and where § P?»[I; ]
denotes the body of the procedure P in Env with formal parameter ¢ substituted by the
actual parameters ¢ evaluated in the current situation.

Similarly, Final is defined as follows:

Final(6,s) =VF.[... D F(d,s)]

where ... stands for the conjunction of F£™® — i.e. the set of axioms F modulo textual
substitution of Final with F' — and (the universal closure of) the following assertions:

F({Env;6Y,s) = F@E0O )

[Env:P;(1)]’

F([Env: P(t)],s) = F({Env;dpg’;}},s)

Note that no assertions for (uncontextualized) procedure calls are present in the definitions
of Trans and Final. Indeed a procedure call which cannot be bound to a procedure
definition neither can do transitions nor can be considered successfully completed.
Observe also the two uses of substitution to deal procedure calls. When a program
with an associated environment is executed, for all procedure calls bound by Env, we
simultaneously substitute the corresponding procedure calls, contextualized by the enwvi-
ronment of the procedure in order to deal with further procedure calls according to the
static scope rules. Then when a (contextualized) procedure is actually executed, the ac-
tual parameters are first evaluated in the current situation, and then are substituted for

1 For compatibility with the formalization in Section 4, we treat Trans and Final as predicates, although
it is clear that they could be understood as abbreviations for the second-order formulas.
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the formal parameters in the procedure bodies!?, thus yielding call-by-value parameter
passing.
The following example program dg;s. illustrates ConGolog’s static scoping:

{ proc P;()

end;
proc P;()
Pi()
end;
proc Ps()

{ proc Py()
b

end;
Ps(); Pr()
¥

end;
Ps()
}

One can show that for this program, the sequence of atomic actions performed will be a
followed by b (assuming that both a and b are always possible):

Vs[Poss(a, s) A\ Poss(b, s)] D
Vs, 8'[Do(0sest, $,8") = s' = do(b, do(a, s))]

To see this consider the following. Let

Env,  proc Pi() a end;
proc P() Pi() end;
proc P3() {Envs; Ps(); P1()} end;

Env, & proc Pi() b end;

12T be more precise, every formal parameter v is substituted by a term of the form name0£(#[s]), where
again nameOf is used to convert situation calculus objects/actions into program terms of the corresponding
sort (see appendix A).
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Then it is easy to see that:

Trans(éStsc,s 8, s")

= Tmns({Envl,Pg()} s,0', ")

= Trans([Env : Ps()],s,0',s")

= Trans({ Envy; {Env2,P2() Pi()}},s,4',8")

= Trans({ Envs; [Em)l P()]; Pi() )
= Trans([Envy : Py()]; [Envy : Py()] )
= Tmns({Envl,Pl()} [Envy : Pi()],s,0",s")
= Trans([Env; : ()], [Env2 : P()] )
= Trans(a; [Envg Pi()],s,d',s")
= Poss(a, s) s' = do(a, s) /\ §' = (nil; [Envy : Py()]).

Similarly, one can show that: Trans([Envy : Pyi()], do(a,s),nil, do(b, do(a, s)))
and Final(nil, do(b, do(a, s))), which yields the thesis.
Our next example illustrates ConGolog’s call-by-value parameter passing:

{ proc P(n)
if (n = 1) then nil
else goDown; P(n — 1)
end;
P(floor)
}

Intuitively, this program is intended to bring an elevator down to the bottom floor of
a building. If we run the program starting in situation Sp, the procedure call P(floor)
invokes P with the value of the functional fluent floor in Sy, i.e. P is called with floor[Sy],
the floor the elevator is on in Sy, as actual parameter. If ConGolog used call-by-name
parameter passing, P would be invoked with the term “floor” as actual parameter, and
the elevator would only go halfway to the bottom floor. Indeed at each iteration of the
procedure the call P(n — 1) would be evaluated by textually replacing n by floor, which
at that moment has already decreased by 1

As mentioned earlier, the need for a second-order definition of Trans(d,s,d',s') and
Final(6, s) when procedures are introduced comes from recursive procedures. The second-
order definition allows us to assign a formal semantics to every such procedure, including
viciously circular ones. The definition of Trans disallows the execution of such ill-formed
procedures. At the same time the definition of Final considers them not to have com-
pleted (non-final). For example, the program {proc P() P() end; P()} does not have any
transitions, but it is not final for any situation s.
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5.1 Formal properties

We observe that the second-order definitions of Trans and Final can easily be put in the
following form:

Trans(d,s,d',s") =
VT[V(Slv S1, 527 S2. (pTrans(Tv 517 S1, 527 82) = T(517 S1, 527 82)]
D T(4,s,8,s")

Final(6,s,0',s") =
VF[V(;la S1. (I)F'inal(Fa 517 81) = F((Sla 81)]
D F(d,s)

where ®7,4,s and Pp;,q are obtained by rewriting each of the assertions in the definition
of Trans and Final so that only variables appear in the left-hand part of the equations,
ie.

T(0,s,0',s") = &(T,6,s,0',s) F(8,5) = ¢4(F,4,s)

and then getting the disjunction of all right-hand sides, which are mutually exclusive since
each of them deals with programs of a specific form.

From such definitions, natural “induction principles” emerge (cf. the discussion on
extracting induction principles from inductive definitions in [22]). These are principles
saying that to prove that a property P holds for instances of Trans and Final, it suffices
to prove that the property P is closed under the assertions in the definition of Trans and
Final, i.e.:

q)Trans(P; (51,81,(52,82) = P(51,81,52,82)
Prina(P,01,51) = P(61,51)

Formally we can state the following theorem:

Theorem 3: The following sentences are consequences of the second-order definitions of
Trans and Final respectively:

V-P[V/(Sla S1, 527 S2. (I)Trans(Pa 517 S1, 527 82) = P((Sla S1, 527 82)] D)
V4, s,0',s". Trans(d,s,8',s') D P(4,s,0',s")

VP[V(Sl, S1. @Final(P; (51, 81) = P((Sl, 81)] D)
V4, s. Final(d,s,8',s") D P(4,s)

Proof: We prove only the first sentence. The proof of the second sentence is analogous.
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By definition we have:

Vé,s,8',s". Trans(d,s,0',s') =
VP[VCSD S1, 527 S2. q)Trans(Pv 517 S1, 527 32) = P(517 S1, 527 32)]
D P(6,s,0',s")

By considering the only-if part of the above equivalence, we get:

V4, s,8',s'. Trans(d,s,d',s") A
VP-[V(;la81752782'¢T7‘an5(P7 51781752782) = P(51781752782)]
D P(d,s,0',s)

So moving the quantifiers around we get:

VP-[V(;la81752782'¢T7‘an5(P7 51781752782) = P(51781752782)] A
V6, s,0', 8. Trans(6, s,d', s")
D P(4,s,0',8")

and hence the thesis. O
These induction principles allow us to prove that Trans and Final for programs with
procedures can be considered an extension of those for programs without procedures.

Theorem 4: With respect to ConGolog programs without procedures, Trans and Final
introduced above are equivalent to the versions introduced in Section 4.

Proof: Let us denote Trans defined by the second-order sentence as Transsor, and Trans
implicitly defined through axioms in Section 4 as Transgpor. Since procedures are not
considered we can drop, without loss of generality, the assertions for { Env;d} and [Env :
P(t)] in the definition of Transsor. Then:

e Transsor(9,s,0',s')D Transror (6, s,8', '), is proven simply by noting that Transror,
satisfies (is closed under) the assertions in the definition of Transsor,, and then using
Theorem 3.

e Transpor(9,s,d',s')D Transsor (9, s,d', s'), is proven by induction on the structure of
0 considering as base cases nil, a, and ¢?, and then applying the induction argument.

Similarly for Final. O
It is interesting to examine whether Trans and Final introduced above are themselves

closed under the assertions in their definitions. For Final a positive answer can be estab-
lished:

Theorem 5: The following sentence is a consequence of the second-order definition of
Final:
@ pinal(Final(d, s),d,s) = Final(d, s).
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Proof: Observe that ®p;,q is monotonic'3, i.e.:

VZl, Z2[V5, 5.2 ((5, 8)322(5, S)] D [V(S, s-(I)Final(Zla (5, S)D(I)Fmal(ZQ, (5, S)]

Hence the thesis is a direct consequence of the Tarski-Knaster fixpoint theorem [25]. O
For Trans an analogous result does not hold in general. Indeed consider the following
program d,:

{ proc Q()
Q) ) a
end;
Q()
¥

Observe that the definition of Transimplies that Trans(d,, s, d’,s') = False. Hence if Trans
was closed under ®7,.4y,5, then we would have T'rans(d, )) a,s,d',s') = Trans(a, s, d',s'),
which would imply that Trans(d,, s, d',s’) = Trans(a, s, d',s"). Contradiction.

Obviously there are several classes of ConGolog programs that are closed under ®7,.4;,5.
For instance, if we disallow prioritized concurrency in procedures we get one such class.
Another such class is that obtained by allowing prioritized concurrency to appear only in
non-recursive procedures. Yet another quite general class is immediately obtainable from
what is discussed next.

6 First-order Trans and Final for Procedures

In this section we investigate conditions that allow us to replace the second-order defini-
tions of Trans and Final for programs with procedures by the first-order definitions, as in
the case where procedures are not allowed.

6.1 Guarded configurations

We define a quite general condition on configurations (pairs of programs and situations)
that guarantees the possibility of using first-order axioms for Trans and Final for proce-
dures as well. To this end we introduce a notion of “configuration rank”. Intuitively, a
configuration is of rank n if and only if makes at most n (recursive) procedure calls before
trying to make an actual program step (either an atomic action or a test).

We define the rank of a configuration inductively. A configuration is of rank n denoted
by Rank(n,d, s) iff:

Rank(n,nil;s) = True

13In fact syntactically monotonic.
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Rank(n, a, s)
Rank(n, ¢7, s)
Rank(n, d1; 02, s)
Rank(n, 01 | 02, s)
Rank(n,mv.4, s)
Rank(n, 6", s)
)

)

s)

s)

Rank(n,if ¢ then §; else 42, s
Rank(n,while ¢ do 4, s
Rank(n, dy || 92,
Rank(n, d; )) 0o,

Rank(n, 0l s) =
Rank(n,{Env;d},s) =
Rank(n, [Env : P(t)],s)

True

True

Rank(n, 61, s) A (Final(61, s)DRank(n, ds))
Rank(n, d1, s) A Rank(n, d2, s)
Vz.Rank(n, 02, s)
Rank(n,é, s)

P[s] A Rank(n,d1,s) V
@[s]D Rank(n, d, s)
Rank(n, 61, s) A Rank(n, b2, s)

Rank(n, 81, s) A

(=361, s'. Trans(dy, s, 67, 8')) D Rank(n, b2, s))
Rank(n,é, s)

Rank(n, 8 i(0) ,S)

[Env:P;(t)]’
Rank(n — 1, {Env; 5pﬂ 1 s)

—¢p[s] A Rank(n, 02, s)

A configuration (4, s) is guarded if and only if it is of rank n for some n:

Guarded (0, s)

I 3. Rank(n, 0, s)

6.2 First-order Trans and Final for procedures

For guarded configurations, we do not need to use the second-order definitions of Trans

and Final when dealing with procedures.
Section 4 together with the following:'4

Trans({Env;6},s,6', s
Trans([Env : P(t)],s,6', s’

Final({Env;d},
Final([Env : P(t)], s)

s) =

Instead we can use the first-order axioms in

Tmns(5[1;(ap @S 08"

Trans({ Env; <5pT }os, 88"

)
) =

Final(0 E(jp @) s)

= Final({Env; 5p£[ 1 s)

Let us call Transpor, and Finalgoy the predicates determined by the first-order ax-
ioms and Transsor, and Finalsor, the original predicates determined by the second-order
definition for procedures. We can prove the following result:

14The form of these axioms is exactly that of the conditions on the predicate variables T and F in the

second-order definitions.
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Theorem 6:

Guarded (6, s)D
Vé', 8" Transsor (0, s,0',8') = Transpor(0,s,0',s")
Guarded (6, s)D
Finalsor (8, s) = Finalpor (9, s).
Proof:(outline) By induction on the rank of the configuration (4, s). For rank 0 the thesis
is trivial. For rank n + 1, we assume that the thesis holds for all configurations of rank n,
and show the thesis by induction on the structure of the program considering nil, a, ¢?

and [Env : P(t)] as base cases. O
A configuration (4, s) has a guarded evolution, if and only if:

GuardedEvol (6, s) 4
Vo', 8. Transso (0, s,0', 8') D Guarded(§', s')

For configurations with guarded evolution we have the following easy consequences:

GuardedEvol(0, s)D

Vo', s'. Transso (6, 8,0', ') = Transyor (6, 5,8, s")
GuardedEvol(d, s)D

Vs'.Dosor (6, s,s") = Doror(9, s, s')

6.3 Sufficient condition for guarded evolutions

Theorem 7: If all procedures P with environment Env in a program 0 are such that
Vt, s.Guarded ([Env : P(t)], s)

then we have:

Vs.GuardedEvol (4, s).

Proof:(outline) By induction on the number of transitions. For 0 transitions, we get the
thesis by induction on the structure of the program (considering nil, a, $? and [Env : P(t)]
as base cases). For k + 1 transitions, we assume the thesis holds for & transitions, and
we prove by induction on the structure of the program (again considering nil, a, ¢? and
[Env : P(f)] as base cases) that making a further transition from the program resulting
from the k transitions still preserves the thesis. O

It is easy to verify that non-recursive procedures, as well as procedures whose body
starts with an atomic action or a wait action, trivially satisfy the hypothesis of the the-
orem. Observe also that all procedures in [15] satisfy such hypothesis, except for the
procedure d at page 9 whose definition is reported below (n is a natural number):

procd(n) (n =07?) | d(n — 1); goDown end
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However, the variants
procd(n) (n = 07) | goDown;d(n — 1) end
procd(n) (n =07) | (n > 0)?;d(n — 1); goDown end
procd(n) if (n = 0) then nilelse (d(n — 1); goDown) end
do satisfy the hypothesis.

7 Conclusion

In summary, we have seen how, given a basic action theory describing an initial state and
the preconditions and effects of a collection of primitive actions, it is possible to combine
these into complex actions for high-level agent control. The semantics of the resulting
programming language ends up deriving directly from that of the underlying primitive
actions. In this sense, the solution to the frame problem provided by successor state
axioms for primitive actions is extended to cover the complex actions of ConGolog.

With all of this procedural richness (nondeterminism, concurrency, recursive proce-
dures, priorities), however, it is important not to lose sight of the basic logical framework.
ConGolog is indeed a programming language, but one whose execution, like planning,
depends on reasoning about actions. Thus, a crucial part of a ConGolog program is its
declarative part: the precondition axioms, the successor state axioms, and the axioms
characterizing the initial state. This is central to how the language differs from superfi-
cially similar “procedural languages” supporting concurrency.

Standard semantic accounts of programming languages require the initial state to be
completely specified; our account does not; an agent may have to act without knowing ev-
erything about its environment. Our account accommodates domain-dependent primitive
actions and allows the interactions between the agent and its environment to be modeled
— actions may change the environment in a way that affects what actions can later occur
or what their effects will be. Standard semantic accounts do not attempt to characterize
dynamic properties of the external environment in which a program is executed [8].

As mentioned in the introduction, an important motivation for the development of
ConGolog is the need for “reactive” intelligent agent programs. In the companion paper
[5], a comparison is made between ConGolog and agent architectures with similar goals
such as IRMA [2] and PRS [20], as well as related agent programming languages such as
AGENT-0 [23], Concurrent MetateM [9], and 3APL [12].

A prototype implementation of ConGolog in Prolog has been developed. Indeed, a
simple if somewhat inefficient interpreter can be lifted directly from the axioms for Final,
Trans, and Do introduced above.'® For example, for (8, )) d2), we would have the following
two Prolog clauses for Trans:

15Exogenous actions can be simulated by generating them probabilistically or by asking the user at
runtime when they should occur.
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trans(prconc(Sigmal,Sigma2),S1,prconconc(Delta,Sigma2),52) :-
trans(Sigmal,S1,Delta,S2).

trans(prconconc (Sigmal,Sigma2),S1,prconconc(Sigmal,Delta),S2) :-
trans(Sigma2,S51,Delta,S52), not trans(Sigmal,S1,_,_).

This implementation requires that the program’s precondition axioms, successor state
axioms, and axioms about the initial state be expressible as Prolog clauses. This is a
limitation of the implementation, not the theory. Further details on the implementation
as well as on a number of ConGolog applications can be found in the companion paper
[5].

From a more theoretical point of view, there remain, however, many areas for future
research. Among them, we mention: 1) incorporating sensing actions, that is, actions
whose effect is not to change the world so much as to provide information to be used by
the agent at runtime; 2) handling non-termination, that is, developing accounts of pro-
gram correctness (fairness, liveness etc.) appropriate for controllers expected to operate
indefinitely; 3) incorporating utilities, so that nondeterministic choices in execution can
be made to maximize the expected benefit. Regarding (1), in [7], we adapt the transi-
tion semantics developed in this paper so that execution can be interleaved with program
interpretation in order to accommodate sensing actions.
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A Appendix: Programs as Terms

In this section, we develop an encoding of programs as first-order terms. Although some care
is required (e.g. introducing constants denoting variables and defining substitution explicitly in
the language), this does not pose any major problem; see [14] for an introduction to problems
and techniques in this area.

We add to the sorts Sit, Obj and Act of the Situation Calculus, the following new sorts:
Idz, PseudoSit, PseudoAct, PseudoObj, PseudoForm, ENV, and PROG.

Intuitively, elements of Idz denote natural numbers, and are used for building indexing
functions. Elements of PseudoAct, PseudoQObj, PseudoSit and PseudoForm are syntactic devices
to denote respectively actions, objects, situations and formulas within programs. Elements of
ENYV denote environments, i.e sets of procedure definitions. And finally, elements of PROG
denote programs, which are considered as simply syntactic objects.

A.1 Sort ldx

We introduce the constant 0 of sort Idz, and a function succ : Idz — Idz. For them we enforce
the following unique name axioms:

succ(i) # 0
succ(i) = succ(d) Di=1

We define the predicate Idx : Idx as:
Idx(i) = VX[... D X(i)]
where ... stands for the universal closure of

X(0)
X(i) DO X(succ(7))

Finally we assume the following domain closure axiom for sort Idz:

Vi.Idx(7)

A.2 Sorts PseudoSit, PseudoObj, PseudoAct
The languages of PseudoSit, PseudoObj and PseudoAct are as follows:
e A constant Now : PseudoSit.

e A function name0f g, : Sort — PseudoSort for Sort = Obj, Act. We use the notation [z]
to denote name0f g, (), leaving Sort implicit.

e A function varg,, : Idt — PseudoSort for Sort = Obj, Act. We call terms of the form
varg,,(i) pseudo-variables and we use the notation z; (or just x,y,z) to denote vargy.(i),
leaving Sort implicit.
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e A function f : PseudoSort; X ... X PseudoSort, — PseudoSort, 1 for each fluent or
nonfluent function f of sort Sort; x ... x Sort, — Sort,,1 with Sort; = Obj, Act, Sit in
the original language (note that if n = 0 then f is a constant).

We define the predicates PseudoSit : PseudoSit, PseudoObj : PseudoObj and PseudoAct :
PseudoAct respectively as:

PseudoSit(z) = VPs;.VPoyj.VPact[ ... D Psit()]
Pseudo0bj (x) = \VIPSit-\VIPObj-VPAct[ ... D PObj (:L')]
PseudoAct(z) = VPs;t.VPoyj.VPsct[ ... D Pact(z)]

where ... stands for the universal closure of

Ps;t(Now)
Pg,rt (name0f g4t () for Sort = Obj, Act
Psort(z;) for Sort = Obj, Act
Psort(x1) A ... A Psort(2) D Pgore(f(z1...,25)) (for each f)

We assume the following domain closure axioms for the sorts PseudoSit, PseudoObj and

PseudoAct:
Vz.PseudoSit(x)

Vx.PseudoObj(z)
Vz.PseudoAct(x)

We also enforce unique name axioms for them, that is, for all functions g, ¢’ of any arity (including
constants) introduced above:

g(CL‘1,---,CL‘n) #g,(yla'--aym)
g1, ..., xn) =91, Yn) DT =Y1 A ... AT = Y

Observe that the unique name axioms impose that name0f(z) = name0f(y)Dx = y but do not
say anything on domain elements denoted by x and y since these are elements of Act or Obj.
Next we want to relate pseudo-situations, pseudo-objects and pseudo-actions to real sit-
uations, object and actions. In fact we do not want to relate all terms of sort PseudoQObj
and PseudoAct to real object and actions, but just the “closed” ones, i.e. those in which no
pseudo variable z; occur. To formalize the notion of closedness, we introduce the predicate
Closed : PseudoSort for Sort = Sit, Obj, Act, characterized by the following assertions'®

Closed(Now)
Closed(name0f(z))
—Closed(z;)

)

(2
Closed(f(z1,...,2,)) = Closed(xzy)A...AClosed(z,) for each £

Closed terms of sort PseudoObj and PseudoAct are related to real objects and actions by
means of the function decode : (PseudoSort x Sit — Sort) for Sort = Sit, Obj, Act. We use the

16We say the following theory is “characterizing” since it is complete, in the sense that it partitions
the elements in PseudoSort into those that are closed and those that are not.
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notation z[s] to denote decode(z, s). Such a function is characterized by the following assertions:

decode(Now,s) = s
decode(name0f(z),s) = x
decode(f(z1...,x,),s) = f(decode(xy,s),...,decode(xy,,s)) (for each f)

A.3 Sort PseudoForm

Next we introduce pseudo-formulas used in tests. Specifically, we introduce:

e A function p : PseudoSorty X ... x PseudoSort, — PseudoForm for each nonfluent/fluent
predicate p in the original language (not including the new the predicates introduced in
this section).

e A function and : PseudoForm x PseudoForm — PseudoForm. We use the notation p1 A pa
to denote and(p1, p2).

e A function not : PseudoForm — PseudoForm. We use the notation —p to denote not(p).

e A function someg, : PseudoSort x PseudoForm — PseudoForm, for PseudoSort =
PseudoObj, PseudoAct. We use the notation Jz;.p to denote some(varg,(i),p), leaving
Sort implicit.

We define the predicate PseudoForm: PseudoForm as:
PseudoForm(p) = VPrym| .- O Prorm(p)]

where ... stands for the universal closure of

(for each p)
D Prorm (Pl A P2)
D Prorm(—p)
D) PForm(Elzi-P)

Prorm (p(z1, -, 2n))
Prorm (pl) A Prorm (Pz)
Prorm (P)

Prorm (P)

We assume the following domain closure axiom for the sort PseudoForm:
Vp.PseudoForm(p).

We also enforce unique name axioms for pseudo-formulas, that is, for all functions g, g’ of any
arity introduced above:

g(xla"'axn) #gl(yla"'aym)
g(x1,. .y x2n) =91, Un)DTL =YL A ATy =Yg

Next we formalize the notion of substitution. We introduce the function sub : PseudoSort x
PseudoSort x PseudoSort' — PseudoSort' for Sort = Obj, Act and Sort’ = Sit, Obj, Act. We
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use the notation ¢y to denote sub(z,y,t). Such a function is characterized by the following
assertions:

Nowy = Now

name0f(t), = name0£(t)

Ziy =y

x££z D Z =z;

£(t1,...,tn), = £(t1y,... tny) (for each £)

We extend the function sub to pseudo-formulas (as third argument) as follows:

P(t1,-- - tn)y =P(t1y,. .. tny) (for each p)
(P1 A p2)y = (p1)y A (p2)y

(=p)y = =(p)y

(Fz;. p) =Jz;.p

x#z O (Jzi.p), = 3zi.(p)

Next we extend the predicate Closed to pseudo-formulas in a natural way:

Closed(p(z1,...,%n)) = Closed(xi)A...AClosed(z,) for each p
Closed(p1 /\ pg) = Closed(pi) A Closed(pQ)
Closed(—p) = Closed(p;)
Closed(dz;.p) = Vy.Closed (pnameof )

We relate closed pseudo-formulas to real formulas by introducing a predicate Holds : PseudoForm x
Sit, characterized by the following assertions:

Holds(p(zi,...,2n), s)
Holds(p1 /\ P2, 8)
Holds(—p, s)
Holds(Jz.p, s)

p(decode(zy, s),...,decode(z,,s)) (for each p)
Holds(pi, s) A Holds(pz, s)
—Holds(p, )

Hy.Holds(pIZlameof(y), s)

where y in the last equation is any variable that does not appear in p.

A.4 Sorts PROG and ENV

Now we are ready to introduce programs. Specifically, we introduce:
e A constant nil: PROG.

e A function act : PseudoAct — PROG. As notation we write simply a to denote act(a)
when confusion cannot arise.

e A function test : PseudoForm — PROG. We use the notation p? to denote test(p).

e A function seq : PROG x PROG — PROG. We use the notation d1;d2 to denote
seq((51,(52).
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A function choice : PROG x PROG — PROG. We use the notation d; | d2 to denote
choice(d1, d2).

e A function iter : PROG — PROG. We use the notation §* to denote iter(d).

e Two functions pickg,,, : PseudoSort x PROG — PROG, where PseudoSort is either
PseudoObj or PseudoAct. We use the notation 7z;.0 to denote pickg,,,(vargo(i),d),
leaving Sort implicit.

e A function if : PseudoForm x PROG x PROG — PROG. We use the notation if p then
91 else 02 to denote if(p,d1,d2).

e A function while : PseudoForm x PROG — PROG. We use the notation whilep do §
to denote while(p,d).

e A function conc : PROG x PROG — PROG. We use the notation §; || d2 to denote
conc(dy, d2).

e A function prconc : PROG x PROG — PROG. We use the notation d; )) d2 to denote
prconc(dy, d2).

e A function iterconc : PROG — PROG. We use the notation 6! to denote iterconc(d).

To deal with procedures we need to introduce the notion of environment together with that
of program. We introduce:

e A finite number of functions P : PseudoSort; X ... X PseudoSort, — PROG, where
PseudoSort; is either PseudoObj or PseudoAct. These functions are going to be used as
procedure calls.

e A function proc : PROG x PROG — PROG. This function is used to build procedure
definitions and so we will force the first argument to have the form P(z; e ,Z;,), where

z1...zp are used to denote the formal parameters of the defined procedure. We use the
notation proc P(z1,...,2zn) 0 end to denote proc(P(zy,...,2zn),0).

e A constant ¢ : ENV, denoting the empty environment.

e A function addproc : ENV x PROG — ENV. We will restrict the programs allowed
to appear as the second argument to procedure definitions only. We use the notation
&;proc P(Z) 0 end to denote addproc(€, proc P(Z) 4 end).

e A function pblock : ENV x PROG — PROG. We use the notation {£;d} to denote
pblock(€, ).

e A function c_call : ENV x PROG — PROG. We will restrict the programs allowed to
appear as the second argument to procedure calls only. We use the notation [£ : P(£)] to
denote c_call(&,P(t)).

35



We next introduce a predicate defined : PROG X ENV meaning that a procedure is defined
in an environment. It is specified as:

defined(c,£) = VD[... D D(c€)]

where ... stands for
D(P(%),e;proc P(¢) 0 end)

D(c,&") D D(c,&'54d)

Observe that procedures P are only defined in an environment £, and that the parameters the
procedure is applied to do not play any role in determining whether the procedure is defined.
Now we define the predicate Prog : PROG and the predicate Env : ENV as:

Prog(d)
Env (&)

VPproG-VPeNV] .- D Pproc(0)]
VPpRog.VPENv[ e D PENV( )]

where ... stands for the universal closure of

Pproc(nil)
Pproc(act(a)) (a pseudo-action)
Pproc(p?) (p pseudo-formula)

Pproc({€;6})
D) PpRog([g : P(l‘b oo )xTI)])

Penv(E) A PPROG(
Pgyy(E) A defined(P(2), €&

U

Pproc(01) A Prroc(02) D Pprocg(d1;02)
Pproc(61) A PproG(02) O Pprocg(d1 | 02)
Pproc(0) D Prroc(d*)
Pproc(6) DO Pproc(nz;.0)
PpRog((51) A PpRog( 2) D) PpRog(lf p then 01 else (52)
Pproc(6) D Pproc(while p do )
Pproc(61) A Pproc(02) O Pprog(d1 || 62)
Pproc(01) A Pproc(02) D Pprog(61 ) d2)
Pproc(d) D PPROG(5")
Pprog(P(z1,...,2p)) (for each P)
)
)

Pgyv(e)
PENV(g) A PpRog(5) A —ndefined(P(Z’), 5) AN (/\Z,k:l z;, 7’5 Zik) D)
Pgyv (E;proc P(z;,,...,2;,) 0 end)

We assume the following domain closure axioms for the sorts PROG and ENV:
Vd.Prog(d) VE Env(E).

We also enforce unique name axioms for programs and environments, that is for all functions
g,¢g' of any arity introduced above:

g(xla"'axn) #gl(yla"'aym)
9@,y x2n) =91, Un)DTL =YL A ATy = Yp
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We extend the predicate Closed to PROG by induction on the structure of the program
terms in the obvious way so as to consider closed, programs in which all occurrences of pseudo-
variables z; are bound either by 7, or by being a formal parameter of a procedure. Only closed
programs are considered legal.

We introduce the function resolve : ENV x PROG x PROG — PROG, to be used to
associate to procedure calls the environment to be used to resolve them. Namely, given the

P(f)

[£:P(H)]
replaces P(#) by c_call(&,P(#)) in order to obtain static scope for procedures. It is obvious
how the function can be extended to resolve whole sets of procedure calls whose procedures are
defined in the environment £. Formally this function satisfies the following assertions:

procedure P defined in the environment £, resolve(&,P(t),d) denoted by () suitably

(nal) [5(?(5)} = mnil
(a)P(m) a
1[;9(;)(5)}
L
(51, 2)1[;9(;)(5)} (51)5%( )]a (52)[25()5)}
(01 [ 82y = (O0)igp(ay | (92) (e
(72:.0) ey = 72O ey
54)P@ P(Z) \s
(9 )1[;( p = (O)a) . )
(if p then §; else 52)1[)5(?(5)} if p then (51)%(?( 7 else (52)[5(?(5)}
(whilep do 5)[5(?(5)} Whlle p do (5)[5(?((5)}
61 82)ispey = Oy | 6 fma
(61 02 ey = () é’? 6
{)(d)( )] [€:P(7)] [€:P(%)]
Mierey = (O
P@))eom = [€:P@)
(Q(f))fé? 5 = Q(f) for any procedure call Q(#) different from P(Z)
£ 51)P%) _ {&€';6} if procedure P is (re)defined in &’
(€50} 5? @ {&'; (5)1[35(?3(5)]} otherwise
f] @ = [£:Q(t)] for every procedure call Q(f) and environment £’

Finally, we extend the function sub to PROG (as third argument) again by induction on the
structure of program terms in the natural way considering 7 as a binding construct for pseudo-
variables and without doing any substitutions into environments. sub is used for substituting
formal parameters with actual parameters in contextualized procedure calls, as well as to deal
with . We also introduce a function c_body : PROG x ENV — PROG to be used to return the
body of the procedures. Namely, c_body(P(Z), ) returns the body of the procedure P in £ with
the formal parameters substituted by the actual parameters #. Formally this function satisfies
the following assertions:

c_body(P(Z%),E; proc P() 6 end) = 5g
c_body(P(Z),E;proc Q(¥) § end) = c_body(P(Z),E) (Q #P)
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A.5 Consistency preservation

The encoding presented here preserves consistency as stated by the following theorem.

Theorem 8: Let H be the axioms defining the encoding above. Then every model of an action
theory D (involving sorts Sit, Act and Obj) can be extended to a model of HUD (involving the
additional sorts Idz, PseudoSit, PseudoAct, PseudoObj, PseudoForm, ENV and PROG).

Proof: It suffices to observe that for each new sort (Idz,..., PROG) H contains:

e A second-order axiom that explicitly defines a predicate which inductively characterizes
the elements of the sort.

e An axiom that closes the domain of the new sort with respect to the characterizing pred-
icate.

e Unique name axioms that extend the interpretation of = to the new sort by induction on
the structure of the elements (as imposed by the characterizing axiom).

e Axioms that characterize predicates and functions, such as Closed, decode, sub, Holds,
etc., by induction on the structure of the elements of the sort.

Hence, given a model M of the action theory D it is straightforward to introduce domains
for the new sorts that satisfy the characterizing predicate the domain closure axioms and the
unique name axioms for the sort by proceeding by induction on the structure of the elements
forced by the characterizing predicate and then establishing the extension of the newly defined
predicates/functions for the sort. O

38



B Appendix: Proof of Theorem 1 — Equivalence be-
tween the Do’s for Golog programs

In this section, we prove Theorem 1, i.e. the equivalence of the original definition of Do and
the new one given in this paper, in the more general language which includes procedures. To
simplify the presentation of the proof, we use the same symbols to denote terms and elements
of the domain of interpretation; the meaning will be clear from the context.

B.1 Alternative definitions of Trans and Final

For proving the following results, it is convenient to reformulate the definitions of Trans and
Final:

e Trans(d,s,d8',s') = VT.[... D T(4,s,8,s")], where ... stands for the conjunction of
the universal closure of the following implications:

Poss(a[s],s) D T(a,s,nil, do(a[s],s))
o[s] D T(¢7?,s,nils)
T(4,s,0',8") D T(é;’y,s,é';*y,s')
Final(y,s) NT(d,s,0",s") D T(v;0,s,0',s
T(d,s,8',s")y D T(6|n,s, 5 ,8")
T(4,s,0",s"y D T(v]46,s,d,s)
T(8%,s,8',s") D T(mwv.d,s,d,s")
T(4,s,0",s") D T(5*,s,(5' 5* s")
T(5[IZ:’2P 0] ,8,0', 8"y D T({Env;d},s,d,s)
T({Env; 5p-.[ },3,5',3') > T([Env: P(t)],s,d,s")

e Final(d,s) = VF.]... D F(d,s)], where ... stands for the conjunction of the universal
closure of the following implications:

True O F(nil,s)
F(0,s) NF(y,s) D F(;7,s)
F(ss) > F(5]7s)
F(6,s) D F(y]d,s)
F(62,5) D F(mwv.d,s)
True O F(6%,s)
F(J[I;igp or® 2 ({Env 5}, s)
F({Env; (5pﬂ s) D F([Env:P(t),s

Theorem 9: With respect to Golog programs, the definitions above are equivalent to the ones
given in Section 5 of the paper.
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Proof: To prove this equivalence, consider first the following general results, which are a direct
consequence of the Tarski-Knaster fixpoint theorem [25]. If

S(#) = VZ[[Vy.®(Z,9)D>Z(§)]DZ(%)] (3)
and ®(Z,y) is monotonic (i.e. VZi, Z3[Vy.Z1(y)DZ2(y)] D [Vy.®(Z1,9)D®(Z2,9)]), then we get
the following consequences!'”

S(@) = ¥(S,7) (4)
S(@) = vZ[lvy.zZ(y) = (Z,9)|>Z(Z)). (5)

Now it is easy to see that the above definition of Trans and Final can be rewritten as (3) and
that the resulting ® is indeed monotonic (in particular it is syntactically monotonic since the
predicate variables T and F' do not occur in the scope of any negation). Thus, by the Tarski-
Knaster fixpoint theorem, the above definitions can be rewritten in the form of (5). Once in
this form it is easy to see that for Golog programs they are equivalent to those introduced in
Section 5. O

B.2 Do, is equivalent to Doy

Let Do; be the original definition of Do in [15] extended with Doy (nil, s, s') © ¢ = 5 and

Do([Env : P(t)], s, s") def Do({Env; P(t)},s,s'), and Doy the new definition in terms of Trans
and Final. Also, we do not allow procedure calls for which no procedure definitions are given.

Lemma 2: For every model M of C, there exist 61,81 ... Op, S, such that M |= Trans(d;, S, 0i41, Si+1)
fori=1,...,n—1 if and only if M |= Trans* (61, s1,0n, Sn)-

Proof: = By induction on n. If n = 1, then M | Trans*(d1,$1,01,81) by definition of
Trans*. If n > 1, then by induction hypothesis M | Trans*(ds, s2,0n, Sn), and since M =
Trans(61, s1, 02, s2), we get M |= Trans*(d1, $1,0n, Sn) by definition of Trans*.

< Let R be the relation formed by the tuples (d1, 81, 0p, $p) such that there exist 61,81 ...dp, $n
and M | Trans(d;, s;, 8i+1,8i+1) for ¢ = 1,...,n — 1. It is easy to verify that (i) for all d, s,
(6,8,8,8) € R; (ii) for all §,s,d",s',8",s", M |= Trans(d,s,d',s') and (&', s',6",s") € R implies
(6,s,0",s"y e R. O

Lemma 3: For every model M of C, M = Doy (6, s,s') implies that there exist 61,81 ...0p, Sy
such that 6y = 6, s1 = s, sp, = s, M = Final(6p,sn), and M = Trans(d;, s;,0;+1, Si+1) for
t=1...,n—1.

Proof: We prove the lemma by induction on the structure of the program. We only give details
for the most significant cases.

17n fact, (4) is only mentioned in passing and not used in the proof.
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1. a (atomic action). M = Doj(a,s,s') if M | Poss(a[s],s) and s’ = do(a[s],s). Then
M = Trans(a, s, nil, do(a[s], s)), and hence the thesis.

2. §;7 (sequence). M = Doy (6;7,s,s') iff M = Doy(8,s,s") and M |= Doy(y,s",s").

Then by induction hypothesis: (i) there exist 01,81 ...,0k, Sg such that §; = §, s; = s,
s = 8", M = Final(6y,s;) and M = Trans(d;,s;,0i41,8;) for ¢ = 1,... .k — 1; (ii)
there exist yg, Sk - - - ,Yn, Sn such that v1 = v, s, = §", s, = s/, M | Final(vyy, sn) and
M = Trans(7vi, SiyVit1,8:) fori =k, ...,n— 1.

Since Trans itself is closed under the assertions in its definition we have that: M k=
Trans(6;, i, 0i+1, Sit+1) implies M = Trans(d;;7, Si, 851157, Si+1). Moreover M = Final(dg, si)
and M |= Trans(Vk, Sk, Yk+1, Sk+1) implies M = Trans(k; Vi, Sk, Ve+1, Sk+1)- Similarly in
the case k = n we have that, since Final is also closed under the assertions in its definition
M = Final(y, sg) and M = Final(yg, sg) implies M = Final(d; v, s ). Hence the thesis.

3. 0% (iteration). M |= Doy (6*,s,s") if M = VP.[ ... DP(s,s')] where ... stand for the
following two assertions: (i) Vs.P(s,s); (ii) Vs, s',s".Do1(d,s,s") A P(s",s")DP(s,s').
Consider the relation Q defined as the set of pairs (s, s’) such that: there exist d1, 81 ...,0n, s
with 6, = 6%, 51 = s, s, = s', M | Final(6,,s,) and M = Trans(d;, s;, 0;41, s;) for
t =1,...,n — 1. To prove the thesis, it is sufficient to show that Q satisfies the two
assertions (i) and (ii).

e (i) Let 6y = 9, = §*, s1 = s, = s; since M |= Final(§*, s), it follows that for all s,

(s,8) € Q.

e (ii) By the first induction hypothesis (the induction on the structure of the program):
M = Doy(4,s,s") implies that there exist 41,57 ..., 0, s such that 6, = 4, s; = s,
s = 8", M | Final(d,s;) and M | Trans(d;, 8i,0i41,8i41) for i = 1,...k — 1.
This implies that M = Trans(d;; 6%, s;,0i+1; 0%, si+1) for i : 2,...,k — 1. Moreover,
we must also have M |= Trans(6*, s1, d2; 6%, s2).

By the second induction hypothesis (rule induction for P), we can assume that there
exist Vg, Sk - -+, Vn, Sn such that v, = 6*, s, = §”, s, = s', M | Final(y,, sp) and
M = Trans(vi, i, Vi+1, Si+1) for i =k,...,n — 1.

Now observe that Final(dx,s;) and Trans(yg, Sk, Ye+1, Sk+1) implies that
Trans(0; Vi, Sk, Vk+1, Sk+1).- Thus, we get that (ii) holds for Q.

Hence the thesis.
4. {Env;d} (procedures). M = Doy ({Enwv;d},s,s’) iff
M =VYPy,...,P,. [® D Doy(4,s,s")]

where

n
o= [/\ V%, s, .Doy(6:;%,s,8" ) DPi(&, s,5")]. (6)

Z
i=1
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To get the thesis, it suffices to prove it for the case:
M):vplv"'apn' [@ ) R(fasasl)] (7)

and then apply the induction argument on the structure of the program considering as
base cases nil, a, ¢?, and P(t).

Consider the relations Q; defined as the set of tuples (Z,s,s’) such that there exist
61,51 -..,0n,8, with &, = {Env; Pi(£)}'®, s; = s, s, = s', M |= Final(0,,s,) and
M = Trans(6;, si,0i+1,8;) for i = 1,...,n — 1. To prove the thesis it is sufficient to
show that each Q; satisfies (is closed under) the assertion (6).

Recall that Doy (P;(Z)),s,s') def P;(Z,s,s') where P; is a free predicate variable. This

means that for any variable assignment o, M, 0193117,'.'.'.’,13; E Doi(P;(Z), s, s") implies (%, s, s') €
Q;, i.e., there exist d1,81...,0,,8, with & = {Env; Pi(Z)}, s1 = s, s, = s, M |

Final(6y,sp) and M | Trans(d;, 8;,0;+1,8;) for ¢ = 1,...,n — 1. Hence by induction

on the structure of the program, considering as base cases nil, a, ¢? and P(f), we

have that M, ?gllg"n = Doi(diy,s,s') implies that there exist d1,s1...,0p,5, with

o1 = {Env; 6}, s1 = s, s, = 8, M = Final(d,,s,) and M ):#Tmns((Si,si,(SiH,si)

for i = 1,...,n — 1. Now considering that M |= Trans({Env;d;3'}, s1,02,52) implies

M |= Trans([Env : P;(Z)], s1,d2, s2) implies M |= Trans({Env; P;(Z)}, s1, d2, s2), we get

that (Z,s,s') € Q;.

Lemma 4: For all Golog programs § and situations s:

Final(8,s)D Doy (4, s, s)

Proof: It is easy to show that Do;(d,s,s) is closed with respect to the implications in the
inductive definition of Final. O

Lemma 5: For all Golog programs 8,8’ and situations s, s':

Trans(6,s,8',s") A Doy (8',s',8")DDoy (4, s, s").

Proof: The property we want to prove can be rewritten as follows:

with

Trans(6,s,8',s')D®(d,s,0',s)

®(4,s,8,s") def Vs".Doy (8,8, s")D Doy (6, 5,5").

Hence it is sufficient to show that ® is closed under the implications that inductively define
Trans. Again, we only give details for the most significant cases.

18To be more precise, the variables z; in P;(Z) should be read as name0f(z;) thus converting situation
calculus objects/actions variables into suitable program terms (see appendix A).
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. Implication for primitive actions. We show that Poss(a[s], s)D®(a[s], s, nil, do(a[s], s)) i.e.:
Poss(als], s)DVs". Doy (nil, do(als], s), s" ) D Doy (a, s, s").

Since Doy (nil, s, s") wf g = s, this reduces to Poss(a[s], s)DDoi(a, s,do(a, s)), which holds

by the definition of Do;.

. First implication for sequences. We have to show ®(4,s,d’,s')D®(d;7,s,d’,s'), i.e.
Vs"[Doy(8',s',8")D Doy (8, 5,5")|DVs". Doy (8';7, 8, 8" ) D Doy (857, s, 8").

By contradiction. Suppose that there is a model M such that M |= Vs".Doy (¢, s',s") D Doy (6, s, s"),

and M = Doi(d';7,s',s.) and M | —Doy(d;7,s,s.) for some s.. This means that

M = Doy(8',s',s¢) A Doy (7, st, Sc) for some s¢, but M |= Vt.—Doy (8, s,t) V = Doy (7,t, s¢).
Since M |= Doy (0,8, s¢) implies M = Doy (9, s, s¢), we have a contradiction.

. Second implication for sequences. We have to show Final(d, s)A®(v, s,v',s ) D®(d;7,s,7,5"),
ie.:

Final(8,s) ANVs".[Doy (v, ', 8")D Doy (v, s,s")|DVs".Doi (', 8', 8" D Doy (857, s, 8").
By contradiction. Suppose that there is a model M such that M | Final(d,s), M |
Vs".Do1(v',s',s")D Do (v, s,s"), and M | Doi(v,s',s.) — thus M | Doy(v,s,s.) —
and M = —Doyi(d;7,s,s.) for some s.. The latter means that M = Vt.~Doy(6,s,t) V

—Doi(7,t,5.). Since M |= Final(,s) implies M |= Doy(4,s,s) by lemma 4, then M =
—Doy (7, s, s¢), contradiction.

. Implication for iteration. We have to show ®(4, s,d’, s')D®(d*,s,d';0%,s'), i.e.:

Vs"[Doy (8, 8',s")D Doy (6, 5,8")|DVs". Do (85 6%, s, 8" YD Doy (6%, s,5").
By contradiction. Suppose that there is a model M such that M |= Vs".Do, (¢, s',s") D Doy (6, s,s"),
and M |= Doy (8';6%,5',s.) and M = —Doy (6%, s, s¢) for some s.. Since M = Doy (d';6*, ', s¢)

implies M = Doy (8',s',st) — thus M | Doy(6,s,s:) — and M = Doy (6*, s¢,8c), and
M = Doy (6, s,s¢:) and M = Doy(6*, s, s.) imply M |= Doy(6*, s, s¢), contradiction.

. Implication for contextualized procedure calls. We have to show that
<I>({Env;5igs]},s,5',s') > ®([Env: P(t)],s,0',s")
It suffices to prove that:
Dol({Env;Jigfs]},s,s') O Doy([Env : Pi(t)],s,s").
We proceed by contradiction. Suppose that there exists an model M such that M
Dol({Env;(Siz_’fS]},s,s’) and M = —Doy([Env; P;(t)], s, s'), for some t, s and s'. That is:
M = VP,..
M E 3p,..

P [T D Dol((sigis],s,s')] (8)
P [U A —Pi(t]s]), s, 8")]. (9)
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where ¥ = [\, V&, s,s'. Doy (6%, s,s')DP;(Zi,s,s')]. Then by (9) there exists a vari-

i
able assignment such that M,o = ¥ and M,0 —P;(t]s], s,s'), which implies M, o =
—nDol(J%is], s, 8'), which contradicts (8).
6. Implication for programs within an environment.
We have to show @
P(i
@(5[Env:Pi(£)]’8’51’sl) D ®({Env;d},s,d,s).

It suffices to prove that:

P;(i) ' . ’
DOl((s[Env:Pi(f)]’s’s) D Doi({Env;é},s,s)

This can be done by induction on the structure of the program ¢ considering nil, a, ¢7?,
and [Env' : P(t)] as base cases (such programs do not make use of Env).

a

Lemma 6: For every model M of C, if there exist 61,81 ...0n, Sy such that 61 = 6, s1 = s,
sp = 8', M | Final(dy, s,) and M |= Trans(d;, i, 0i11,8i+1) fori = 1,...,n— 1, then M |
Doy (6, s,8).

Proof: By induction on n. If n = 1, then Final(d,s)DDo1(d,s,s) by lemma 4. If n > 1, then
by induction hypothesis M |= Do;(d2, s2,s'), hence by applying Lemma 5, we get the thesis. O

With these lemmas in place we can finally prove the wanted result:
Theorem 1: For each Golog program ¢:
C E Vs, s Doi(d,s,s') = Dos(6,s,s").

Proof: = by Lemma 3 and Lemma 2; < by Lemma 2 and Lemma 6. O
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