Automata-Theoretic Approach to Planning for
Temporally Extended Goals

Giuseppe De Giacomo! and Moshe Y. Vardi?

! Dip. Informatica e Sistemistica, Univ. Roma “La Sapienza”,
Via Salaria 113, I-00198 Roma, Italy
degiacomo@dis.uniromal.it
2 Department of Computer Science, Rice University,
P.O. Box 1892, Houston, TX 77251-1892, U.S.A.
vardi@cs.rice.edu

Abstract. We study an automata-theoretic approach to planning for
temporally extended goals. Specifically, we devise techniques based on
nonemptiness of Biichi automata on infinite words, to synthesize sequen-
tial and conditional plans in a generalized setting in which we have that:
goals are general temporal properties of desired execution; dynamic sy-
stems are represented by finite transition systems; incomplete informa-
tion on the initial situation is allowed; and states are only partially obser-
vable. We prove that the techniques proposed are optimal wrt the worst
case complexity of the problem. Thanks to the scalability of the nonemp-
tiness algorithms, the techniques presented here promise to be applicable
to fairly large systems, notwithstanding the intrinsic complexity of the
problem.

1 Introduction

Artificial Intelligence has always been interested in the analysis and synthesis of
dynamic systems behavior. In particular, the research area of reasoning about
actions has been concerned with representing and reasoning on such systems in
order to analyze interesting properties of their behavior; the area of planning
has instead been concerned with the synthesis of devices (plans) in order to
control the system behavior so as to achieve desired conditions (goals). The two
areas have developed their research in quite different directions. In reasoning
about actions a lot of work has been done in finding ways to represent and
reason on dynamic systems and dynamic properties of increasing generality [39]
42J4T]). In the area of planning the focus has been in achieving effectiveness of
the planning process (and lately notable results have been obtained [29/5]), while
being contented with limited capabilities both in modeling dynamic system and
in the kind of goals considered.

In this paper, we study synthesis of sequential and conditional plan in a
setting which is close to that considered in the area of reasoning about actions.
1 We call sequential plans plans that are sequences of primitive actions, and conditional

plans plans that include choice points to be resolved by ascertaining given conditions
at runtime.

S. Biundo and M. Fox (Eds.): ECP-99, LNAI 1809, pp. 226-[238, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Automata-Theoretic Approach to Planning for Temporally Extended Goals 227

In particular following, in spirit, Reiter’s formalization of dynamic systems in
the Situation Calculus [39], we assume (i) incomplete information on the initial
situation (several initial states are compatible with the information available on
the initial situation); (ii) deterministic actions, that is, performing an action in
a state brings about a univocally determined next state; (iii) actions with con-
ditional effects, that is, the effects of an action depend on the state in which
the action is performed. Also, we allow for partially observable states. In other
words, the agent can observe only part of the state and hence its choices on the
action to perform next may depend only on that part. The kind of goals we con-
sider are temporally extended goals, i.e., goals that specify acceptable sequences
of states as in [2]27)]. This kind of goal subsumes the usual goals expressing re-
achability of desired conditions, as well as generalized goals as don’t-disturb and
restore requirements [47]. More generally, complex temporal properties typically
used in the specification of processes can be expressed [T6/3146]. Observe that
as we deal with goals expressing general temporal properties, even sequential
plans may in fact involve loops, since goals of this form may require infinite
ezecutions. Consider, for example, a plan to satisfy the requirement that whe-
never certain triggering conditions are met within a finite (but undetermined)
number of steps, a specified state of affairs must be brought about in which the
triggering conditions are met again. The major compromise we accept, in order
to get effective planning techniques in the outlined setting, is to restrict our at-
tention to systems that have a finite number of states. Although this is a radical
simplification wrt [39], it is a compromise that is widely accepted in planning.

Formally, we model dynamic systems as finite transition systems. A transi-
tion system can be thought as a graph, where nodes represent states and are
labeled by the part of the state that is observable, while edges represent state
transitions and are labeled by actions that cause the state transitions. Several
representation formalisms in Al are based on transition systems. For example,
both STRIPS-like formalisms [18/3] and Action Languages [22] are formalisms
to compactly represent transition systems (of different generality). Furthermore,
formalizations based on logics such as the Situation Calculus [34)39], or Dynamic
Logics [40/13], are also tightly related to transition systems.

As goal specification we adopt automata on infinite words: the desirable tra-
ces correspond to the language accepted by the automaton. This way of specify-
ing goals is very close to adopting linear time temporal logic (LTL) [16] as goal
specification language, since every LTL-based specification can be translated into
an automaton-based one [46].

In such a framework we establish techniques and characterize the worst-
case computational complexity of synthesizing sequential and conditional plans
by adopting an approach based on the theory of automata on infinite objects
(infinite words in our case), an approach that is widely used in verification of
hardware and control-intensive (as opposed to data-intensive) software [45]44].

The rest of the paper is structured as follows. We first introduce transition

systems and Biichi automata on infinite words. Then, we study sequential plan-
ning when the initial state is unique (we have complete information on the initial

228 G. De Giacomo and M.Y. Vardi

situation) and states are fully observable. In Section 4 and Section 5, we study
sequential planning and conditional planning when the initial state is not uni-
que and states are only partially observable. Then, we briefly discuss algorithmic
techniques, and related works. Finally, we draw some conclusions.

2 Preliminaries

2.1 Transition Systems

A (finite) transition system T is defined as T = (W, wy, Act, R, Obs, w) where:

W is the finite set of possible states.

— Wy C W is the finite set of possible initial states

Act is the set of possible actions.

— R: W x Act — W is the transition function (actions are deterministic), i.e.,
a function that given a state and an action return the next state[

Obs is the finite set of possible observations, which model the observable
part of states.

w: W — Obs is the observability function, which returns the current obser-
vation, i.e., the observable part of the current state.

An execution on the transition system is an infinitive sequence of states
wp, W1, W3, ... s.t. wg € Wy and w11 = R(w;,a) for some a € Act. A trace
is what we can observe of an execution. For example, 7(wq), 7(w1), w(ws), ... is
the trace corresponding to the execution wg, w1, wa, The observable behavior
of the dynamic system is the set of all possible traces of the transition system

2.2 Automata on Infinite Words

Given a finite nonempty alphabet X, an infinite word is an element of X“| i.e.,
an infinite sequence ag, a1, @y, . . . of symbols from X.
A Biichi automaton is a tuple A = (X, S, Sy, p, F') where:

X is the alphabet of the automaton.

— S is the finite set of possible states.

Sy C S is the set of possible initial states.

p: S x X — 2% is the transition function of the automaton (the automaton
need not to be deterministic).

— F C S is the set of accepting states.

For simplicity and wlog, we assume that R is a total function. We can model the case
in which a transition does not exists by making R return a special dummy state.
3 This way of describing the observable behavior of a dynamic system corresponds to
the so called linear time view of dynamic system, and is to be contrasted to the so
called branching time view —see [16] for a discussion.

Automata-Theoretic Approach to Planning for Temporally Extended Goals 229

The input words of A are infinite words ag, a1, as,... € X“. A run of A on a
infinite word ag, a1, as,... is an infinite sequences of states sg, s1, S2,... € S¥
s.b. 89 € S and s;41 € p(s;,a;). A run r is accepting iff lim(r) N F # (), where
lim(r) = {s | s occurs in r infinitely often}. In other word a run is accepting if it
gets into F' infinitely many times, which in turn means, being F finite, that there
is at least one state sy € F' that is visited infinitely often. The language accepted
by A, denoted by L(.A), is the set of words for which there is an accepting run.

The nonemptiness problem for an automaton is to decide given an automaton
A whether L(A) # (, i.e., if the automaton accepts at least one word.

Proposition 1. [46] The nonemptiness problem for Bichi automata is
NLOGSPACE-complete.

Algorithms for nonemptiness are based on fair reachability on graphs. The idea
behind the algorithms is best explained by the following three line Prolog im-
plementation:

nonempty :- ini(X),cn(X,Y),acc(Y),cn(Y,Y).
cn(X,Y) :- rho(X,A,Y).
cn(X,Y) :- rho(X,A,Z),cn(Z,Y).

where ini denotes the elements in Sy, acc denotes the elements in F', rho denotes
the relation corresponding to the transition function, and cn denotes that two
states are connected by a rho-chain (cn is the transitive closure of rho)H

In other words an automaton is nonempty if starting from some initial state
we can reach an accepting state from where there is a cycle back to itself.

A nondeterministic algorithm for nonemptiness can then work as follows: it
nondeterministically chooses an initial state x and an accepting state y and then
checks that x is connected to y and y is connected to itself. To run the algorithm
we only need to store the state y, as well as the current and next states, plus
a constant number of control bits. To encode states as bit vectors we need only
O(log(]S])) bits. This gives the NLOGSPACE bound.

A linear time deterministic algorithm for nonemptiness is the following (i) de-
compose the transition graph of the automaton into mazximally strongly connec-
ted components (mscc) (linear cost [I1]); (ii) verify that one of the mscc’s inters-
ects with F' (linear cost).

Biichi automata are widely used in verification to specify properties of dy-
namic systems [31/46]. Given transition system representing a dynamic system,

4 Observe the strong similarity with the following naive algorithm to check plan
existence in more traditional approaches (which is in fact reachability on graphs):

planexis :- ini(X),cn(X,Y),goal(Y).
cn(X,Y) :- result(X,A,Y).
cn(X,Y) :- result(X,A,Z),cn(Z,Y).

where ini denotes the initial states (typically one), goal the states where the goal
is satisfied, result corresponds to the result function that return a state resulting
from executing an action (operator) in the current state, cn its transitive closure.

230 G. De Giacomo and M.Y. Vardi

q,7q
q

O

Fig. 1. Automaton for “eventually always q”

/N
—
~ ., O
Fig. 2. Automaton for “always eventually ¢”

the words accepted by the automaton can be put in correspondence with traces
of the transitions system that have specified properties. Two examples of such
specifications are shown in Figure [[l and Figure [The automaton in Figure [
accepts traces where from a certain point on the property ¢ will hold forever.
The automaton in Figure 2 instead, accepts traces where at every point of the
trace it is guaranteed that sooner or later a certain property ¢ will hold. More
generally any property expressible in propositional linear time temporal logic
(LTL) can be expressed as a Biichi automaton, but not Vice-versa

In the following, we will also make use of generalized Biichi automata. A
generalized Bichi automaton A, = (X, S, S0, p, {Fv,...,Fx—1}) is a variant of
Biichi automata which has k sets of accepting states Fy, ..., Fx_1 instead of one,
and whose acceptance condition for a run r is lim(r)NF; # @ fori =0,..., k—1.
Given a generalized Biichi automaton A, = (X, S, Sy, p, {Fo, ..., Fx—1}), it can
be transformed into an equivalentfl Biichi automaton A, = (2,587,800, F)
where:

S'=5x{0,...,k—1}

8= S x {0}

p/((S,i), a) = p(s,a) x {7’} if s € Fj, and pl((sa i),a) = p(s,a) X {(Z+1m0dk)}
if s € F;

F' = FO X {0}

3 Planning with Complete Information

We start our investigation by considering a simplified case. We assume, that we
have complete information on initial situation and that we have full observability
on the state. The only kind of plans of interest in this case are sequential ones
(sequences of actions), since a conditional plan exists iff a sequential plan does.

5 There are standard techniques to transform LTL formulas into Biichi automata. The
size of the resulting automaton is worst-case exponential wrt the formula [46].
% In the sense that L(Ay) = L(4y).

Automata-Theoretic Approach to Planning for Temporally Extended Goals 231

We model the dynamic system of interest as a transition system 7 =
(W, Wy, Act, R, Obs,) where:

— Wy C W is a singleton set containing the initial state (which is unique since
we are assuming complete information on the initial situation).

— Obs =W, and 7 : W — Obs is simply the identity function (since we are
assuming full observability).

Let A be a Biichi automaton specifying the behavior of the desired executions
of the system. Formally, A = (Obs, S, So, p, F') where:

— Obs plays the role of the alphabet of the automaton.

— S is the finite set of possible states of the automaton.

Sy C S is the set of possible initial states.

p:Sx Obs — 29 is the transition function of the automaton (the automaton
need not to be deterministic).

— F C S is the set of accepting states.

A plan p for T is an infinite sequence of actions ag, a1, as,... € Act®”. The
execution of p (starting from the initial state wg) is the infinite sequence of
states wo, wy, wa,... € W st. wg € Wy and w41 = R(w;,a;). The trace,

tr(p,wp), of p (starting from the initial state wg) is the infinite sequence
m(wg), w(w1), m(ws), A plan p realizes a specification A iff tr(p,wp) € L(A).

How can we synthesize such a plan? We check for nonemptiness the following
Biichi automaton Ay = (Act, ST, S109, p1, F7) wWhere:

Act is the alphabet of the automaton

- Sr=85xW

— STO = So X {wo}

= (s5,w;) € pr((si,w;),a) iff w; = R(w;,a) and s; € p(s;, m(w;))
— F7‘ =FxW

For A7 we get the following result:
Theorem 1. A plan p for T realizing the specification A exists iff L(A1) # 0.

Notably the nonemptiness algorithm can be easily modified to return a plan if
a plan exists. The plan returned always consists of two parts: a sequence arriving
to a certain state, and a second sequence that forms a cycle back into that state.
Thus, such plans have finite representations.

As an immediate consequence of the construction we get:

Theorem 2. Planning in the setting above is decidable in NLOGSPACE.

Proof. The automaton A7 can be built on the fly, thus for checking nonemptiness
using a nondeterministic algorithm we only need O(log(|W]) + log(|S])) bits.

232 G. De Giacomo and M.Y. Vardi

Observe that if we adopt a compact (i.e., logarithmic) representation of the
transition system, for example by using propositions to denote states and com-
puting the transitions directly on such propositions7then planning in the above
setting becomes PSPACE. This is the complexity of planning in STRIPS [g],
which can be seen as a special case of the setting considered here — reachabi-
lity of a desired state of affairs is the only kind of goal considered in STRIPS;
moreover, only certain transition systems are (compactly) representable.

Moreover considering that STRIPS is PSPACE-hard [§], we can conclude:

Theorem 3. Planning in the selting above is NLOGSPACE-complete
(PSPACE-complete wrt a compact representation of T).

4 Sequential Planning with Incomplete Information

Next we consider the more general case. We assume to have only partial infor-
mation on the initial situation, and we assume that only part of the state is
observable. In this section we consider generating sequential plans, in the next
section we turn to conditional plans.

We model the dynamic system of interest as a general transition system 7 =
(W, Wo, R, Act, Obs,) defined as in Section [2:] Such a transition system has
several initial states Wy = {wqo, - . ., wor—1}, for k > 1, reflecting our uncertainty
about the initial situation.

As in the previous section we specify the behavior of the desired executions
of the system by a Biichi automaton A.

A plan p for T is an infinite sequence of actions ag, ai, as, ... € Act”. The exe-
cution of p starting from w,y, is the infinite sequence of states wop, wip, Waop, - .. €
W« s.t. wor, € Wo and wiyr1p = R(win,a;). The trace, tr(p,wop), of the plan
p in T is the infinite sequence m(wop,), w(wip), T(wap), - ... A plan p realizes a
specification A iff tr(p, won) € L(A) for h =0,...k—1.

How can we synthesize such a plan? Again we check for nonemptiness a Biichi
automaton. This time, however, the construction is slightly more involved.

We first build the generalized Biichi automaton Ay = (Act, S, Stg, o1, Fr)
where:

- ST = Sk X Wk

Sro = S§ x {(woo, - ., wor—1)}

— (85,w;) € pr((si,w;),a) iff wj, = R(win,a) and sj, € p(sin, m(wipn)) for
h=0,.. . k—1.

— Pr={F x SF1xWk ... SF1x Fx Wk}

" We want to stress that assuming that there are formalisms able to represent every
transition system compactly is not realistic. Indeed, the number of possible transi-
tion functions is |[W|'"!, while the number of transition functions distinguishable
with O(log(|W])) bits is 2°9UeIWD) — 1157|°(M) In many cases, however, compact re-
presentations of transitions systems do exist, e.g., digital circuits are often described
compactly by means of hardware description languages.

Automata-Theoretic Approach to Planning for Temporally Extended Goals 233

From such an automaton we get an equivalent Biichi automaton .Al;— =
(Act, S5, Sh, p5-, F2) where:

— Sb =8k x Wk x {0,...,k—1}

- S%O = S(]jc X {(w007 e ,’LUOkfl)} X {0}

— (sj,wj,4;) € pg—((si,wi,ﬁi),a) iff wjp, = R(win,a) and s;n, € p(sin, m(wir))
for h=0,...,k—1, and ¢; = (¢;+1) mod k if s;,, € F and ¢; = ¢; otherwise.

— Fb =F x S*1 x Wk x {0}

Theorem 4. A plan p for T realizing the specification A exists iff L(Ar) =
L(A%) #0.

Again the nonemptiness algorithm can be easily modified to return a plan
if a plan exists. The plan again consist of two parts: a sequence arriving to a
certain state, and a second sequence that forms a cycle back into that state.
Note that the possibility of expressing the plan as a finite sequence and a cycle
is guaranteed in spite of the uncertainty about the initial state.

Building the automaton A7 on the fly, we can check nonemptiness with a
nondeterministic algorithm needing O(k - log(|W]) + log(]|S|)) bits, where k is
bounded by the size of |[W|. Considering that NPSPACE=PSPACE, we get:

Theorem 5. Planning in the setting above is decidable in PSPACE.

If we adopt a compact representation of the transition system, then planning in
the above setting becomes EXPSPACE. What about lower bounds? The follo-
wing theorem says that our upper bounds are tight.

Theorem 6. Planning in the setting above is PSPACE-complete (EXPSPACE-
complete wrt a compact representation of T).

Proof. We only need to prove the hardness. Consider that the problem of fin-
ding a string that is accepted by the intersection of k deterministic finite state
automata over the same alphabet is PSPACE-complete [19]. It is easy to reduce
such a problem to planning in the above setting. In particular, the reduction
works even with the following two restrictions: (i) Obs = S and = is the identity
function; (ii) the specification automaton denotes an achievement goal. When
the transition system is represented compactly, techniques from [25] can be used
to lift the PSPACE lower bound to EXPSPACE lower bound.

Note that plan existence in STRIPS with incomplete information on the
initial situation is PSPACE-complete [3] — polynomial reduction to the case
where the initial situation is completely known. This means that we do pay
a price this time in generalizing the setting wrt more traditional approaches.
Observe that the reduction used in the proof of Theorem [f tells us that the
increase in the complexity is essentially due to coping with the general form of
transition systems once we allow for several possible initial states, and not to
the partial observability of states or the more general form of goals considered
here.

234 G. De Giacomo and M.Y. Vardi
5 Conditional Planning with Incomplete Information

Now we turn to synthesis of conditional plans in the general setting introduced
in the previous section.

Let 7 be the transition system and .4 be the specification automata both
defined as in the previous section.

A vector plan p is an infinite sequence of vectors of actions ag, a1, as,... €
(Act®)*. The execution, exp,(p, won) of its h-component (starting from the initial
state woy,) is the infinite sequence of states wop, W1p, Wap, - .. € WY s.t. wop, € Wy
and wit1p, = R(win, a;p). The trace, try(p, won), of its h-component is the infinite
sequence 7(wop), 7(wip), T(wap), A vector plan p realizes a specification A
iff try,(p,won) € L(A) for h=0,...k—1.

A vector plan is not a conditional plan yet, it is simply the parallel com-
positions of k sequential plans, one for each initial state. Conditional plans are
vector plans whose actions agree on executions with the same observations.

To formally define conditional plans, we introduce the following notion of
equivalence on finite traces. Let woy, ..., w,1 and wom, ..., Wnm be two finite
traces, then

<w0l, N ,wn1>~<w0m, ey wnm> iff
(m(wor), -, T(Wn1))={m(Wom), - - - s T(Wpm))-

A conditional plan p is a vector plan such that given the executions
Wol, W1g, Wal, - . . and Wom, Wim, Wam, - .. of a pair of components [and m, we
have that a,; = apnm whenever (woy, . .., Wp1)~{Wom, - -« s Wy)-

Intuitively a conditional plan can be though of as composed by an (infinite)
sequence of case instructions that at each step on the base of the observations
select how to proceed.

How can we synthesize a conditional plan? We follow the line of the con-
struction in the previous section, checking nonemptiness of a Biichi automaton
which this time has Act”® as alphabet. Specifically, we build the generalized Biichi
automaton Ay = (Act”, Sr, Srg, pr, Fr) where:

— Sp = 8% x Wk x &, where & is the set of equivalence relations on the set
{0,...,k—1},
- STO = S(lf X {(’LUOO7 N ,’ka,l)}X =0, where i =0 j iff Wo; = Wojy,
- (sj,wj,z’) S pT((si,wi),a,E) iff
- Wjp = R(wih,ah) and Sih S p(sih,w(wih))
— if Il = m then a; = a,,
—1="miff | =m and m(wj;) = m(wjm)
— Fr={FxSF 1 xWFx&,...,8* 1 x F x Wk x &}

Such automaton can be transformed into a Blichi automaton A%— as before.

Theorem 7. A conditional plan p for T realizing the specification A exists iff
L(A7) = L(AY) # 0.

Automata-Theoretic Approach to Planning for Temporally Extended Goals 235

The nonemptiness algorithm can again be immediately modified to return a
plan if a plan exists. The plan returned again consists of two parts: a sequence
arriving to a certain state and a second sequence that forms loop over that state
(however, this time the element of the sequences are k-tuples of actions). Observe
that even if formally we still deal with vectors of sequential plans, the conditional
plan returned can be put in a more convenient form using case instructions and
loops.

Finally, It is easy to verify that the same complexity bounds of the previous
case still holdﬁ

Theorem 8. Finding a conditional plan in the setting above is PSPACE-
complete (EXPSPACE-complete wrt a compact representation of T).

6 Practical Algorithms

The results above show that planning can be reduced to nonemptiness of Biichi
automata. Algorithms for checking nonemptiness of Biichi automata have pro-
ved to be well suited for scaling up to very large systems [7]. A breakthrough
technology has been the use of symbolic methods [35], based on the idea being of
encoding states as bit vectors, representing sets of states and transitions symbo-
lically as Boolean functions on the encoding, and using ordered binary decision
diagrams (OBDDs) to efficiently manipulate Boolean functions [6]. Industrial
strength system used in hardware and protocol verification have been developed
and used commercially with success [24126].

This indicates that notwithstanding the worst-case complexity, it should be
actually possible to implement planners even for the most general setting consi-
dered here. The experimental results in [9I0] on adopting symbolic techniques
for planning are quite promising (see also [12]). The focus there is on attai-
ning propositional goals when actions can be nondeterministic, but the symbolic
techniques can be adapted to our framework.

7 Related Work

The need of dealing with incomplete information has often put forward in the
area of planning, e.g., [33B6I1723/32], as has the need of going beyond goals
that specify the reachability of desired state of affair, e.g., [IRI470272]. In par-
ticular, in [27] a planning setting close to the one considered here is studied,
where: dynamic systems are represented by transition systems with a single
initial state, nondeterministic actions (which allow for modeling incomplete in-
formation), and fully observable states; goals are temporally extended goals,
expressed in a variant of LTL that includes a metric over time; plans generated
are reactive (conditional) plans. In [2/4] an analogous planning setting is studied,

8 Observe that we only need k bits to represent an equivalence relation on {0,. ..,k —

1}.

236 G. De Giacomo and M.Y. Vardi

under the additional assumption of deterministic actions: [2] focuses on genera-
ting finite sequential plans only, while [4] considers plans consisting of possibly
infinite sequences of actions. The approach adopted in [27/2/4] for obtaining plan-
ning algorithms is somewhat ad-hoc (it is based on formula decomposition). The
approach proposed here is based on the fundamental relationship between LTL
and Biichi automata. The automata-theoretic approach separates the logical and
the algorithmic aspects of the planning problem, resulting in clean and optimal
algorithms. As we demonstrated, our approach is quite flexible and can be ea-
sily adapted to various planning scenarios. Also, neither of [27/2/4] studies the
intrinsic complexity of the specific planning problem they tackle. In particular,
no complexity lower bounds are established.

It is also worth mentioning that there are some similarities between the au-
tomata theoretic approach adopted here and approaches to planning based on
techniques from operations research, such as MDPs and POMDPs, which are
considered quite promising in dealing with incomplete information and gene-
ralized goals in stochastic domains [28[T2TI20]. Precise relationships, however,
are yet to be established. In particular, to the best of our knowledge, encoding
general temporally extended goals, as those expressible with Biichi automata or
LTL, as a MDPs/POMDPs rewarding function still remains an open problem.

Finally, automata on infinite objects have already been studied for synthesis
of hardware and control-software [37/4330]. Also, automata theoretic techniques
have been used in synthesizing discrete controllers [38l[14]. The setting studied
here (incomplete information on the initial situation plus deterministic actions),
however, which naturally arise in planning and reasoning about actions, is simp-
ler than the general synthesis framework, enabling us to obtain algorithms that
are both simper and of lower computational complexity.

8 Conclusions

In this paper we have studied planning for temporally extended goals when in-
complete information on the initial situation is available, states are only partially
observable, and the number of possible states is finite. We have devised techni-
ques based on nonemptiness of Biichi automata on infinite words, to synthesize
sequential and conditional plans, and have characterized the worst case computa-
tional complexity. The techniques introduced here in an abstract framework can
be easily specialized to a wide range of formalisms for reasoning about actions
that are based on transition systems. Moreover, in spite of the high worst-case
complexity, the scalability of the practical algorithms involved promises to make
the automata-theoretic approach to planning actually feasible even in the most
general setting considered here.

Acknowledgments. We would like to thank Yves Lesperance, who participated
to the discussion that set the stage for this work at ESSLLI'98, and Amedeo Ce-
sta, who gave us precious comments on how to relate our material to traditional
planning. This work was partially supported by the NSF grants CCR-9628400
and CCR-9700061, by ASI, by MURST, and by ESPRIT LTR Project No. 22469
DWQ.

Automata-Theoretic Approach to Planning for Temporally Extended Goals 237

References

[1] F. Bacchus, C. Boutilier, and A. Grove. Structured solution methods for non-
markovian decision processes. In Proc. of AAAI’97, 112-117, 1997.

[2] F. Bacchus and F. Kabanza. Planning for temporally extended goals. Ann. of
Math. and Al 22:5-27, 1998.

[3] C. Backstrom. Equivalence and tractability results for SAS+ planning. In Proc.
of KR’92, 1992.

[4] M. Barbeau, F. Kabanza, and R. St-Denis. Synthesizing plant controllers using
real-time goals. In Proc. of IJCAI’95, 791-798, 1995.

[5] A. Blum and M. Furst. Fast planning through planning graph analysis. Artif.
Intell., 90(1-2):281-300, 1997.

[6] R. Bryant. Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Surveys, 24(3):293-318, 1992.

[7] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic model
checking: 10%° states and beyond. Information and Computation, 98(2):142-170,
1992.

[8] T. Bylander. Tractability and artificial intelligence. J. of Experimental and Theo-
retical Computer Science, 3:171-178, 1991.

[9] A. Cimatti, E. Giunchiglia, F. Giunchiglia, and P. Traverso. Planning via model
checking. In Proc. of the ECP’97, 1997.

[10] A. Cimatti, M. Roveri, and P. Traverso. Automatic OBDD-based generation of
universal plans in non-deterministic domains. In Proc. of AAAI’98, 875-881, 1998.

[11] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The
MIT Press, 1990.

[12] M. Daniele and P. T. M. Y. Vardi. Strong cyclic planning revisited. submitted,
1999.

[13] G. De Giacomo, L. Iocchi, D. Nardi, and R. Rosati. Moving a robot: the KR&R
approach at work. In Proc. of KR’96, 1996.

[14] A. Deshpande and P. Varaiya. Sementic tableau for control of PLTL formulae. In
Proc. of the 85th Conf. on Decision and Control, 2243-2248. IEEE, 1996.

[15] M. Drummond. Situated control rules. In Proc. of KR’89, 103-113, 1989.

[16] E. Emerson. Temporal and modal logic. Handbook of Theoretical Computer
Science, 997-1072, 1990.

[17] O. Etzioni, S. Hanks, D. Weld, D. Draper, N. Lesh, and M. Williamson. An
approach to planning with incomplete information. Proc. of KR’92, 1992.

[18] R. Fikes and N. J. Nilsson. A new approach to the application of theorem proving
to problem solving. Artif. Intell., 2(3/4), 1971.

[19] M. R. Garey and D. S. Johnson. Computers and Intractability—A guide to NP-
completeness. W. H. Freeman and Company, San Francisco, 1979.

[20] H. GefIner. Classical, probabilistic and contingent planning: Three models, one
algorithm. In Proc. AIPS’98 Work. on Planning as Combinatorial Search, 1998.

[21] H. Geffner and B. Bonet. High-level planning and control with incomplete in-
formation using POMDPs. In Proc. AIPS’98 Work. on Integrating Planning,
Scheduling and Ezecution in Dynamic and Uncertain Environments, 1998.

[22] M. Gelfond and V. Lifschitz. Action languages. Linkoping Electronic Articles in
Computer and Information Science, 3(16), 1998.

[23] K. Golden and D. S. Weld. Representing sensing actions: The middle ground
revisited. Proc. of KR’96, 174-185, 1996.

[24] R. Hardin, Z. Har’el, and R. Kurshan. COSPAN. In Computer Aided Verification,

Proc. 8th Int’l Conf, LNCS 1102, 423-427. Springer-Verlag, 1996.

238

[25]

[26]
[27]
[28]
[29]

[30]

[31]
32]
[33]
[34]

[35]
[36]

[37]
[38]
[39]
[40]
[41]
[42]

[43]
[44]
[45]

[46]

[47]

G. De Giacomo and M.Y. Vardi

D. Harel, O. Kupferman, and M. Y. Vardi. On the complexity of verifying concur-
rent transition systems. In Proc. 8th Int’l Conf. on Concurrency Theory, LNCS
1243, 258-272, Warsaw, July 1997. Springer-Verlag.

G. Holtzmann. Tutorial: proving correctness of concurrent systems with spin. In
Proc. 6th Int’l Conf. on Concurrency Theory, 453—-455. Springer-Verlag, 1995.

F. Kabanza, M. Barbeau, , and R. St-Denis. Planning control rules for reactive
agents. Artif. Intell., 95(1):67-113, 1997.

L. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in par-
tially observable stochastic domains. Artif. Intell., 101:99-134, 1998.

H. Kautz, D. McAllester, and B. Selman. Encoding plans in propositional logic.
In Proc. of KR’96, 1996.

O. Kupferman and M. Y. Vardi. Synthesis with incomplete informatio. In 2nd
Int’l Conf. on Temporal Logic, 91-106, Manchester, July 1997. Kluwer Academic
Publishers.

R. Kurshan. Computer Aided Verification of Coordinating Processes. Princeton
Univ. Press, 1994.

H. J. Levesque. What is planning in presence of sensing? In Proc. of AAAI’96,
1139-1149. AAAT Press/The MIT Press, 1996.

Z. Manna and R. J. Waldinger. How to clear a block: A theory of plans. J. of
Automated Reasoning, 3(4), 1987.

J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. Machine Intelligence, 4:463-502, 1969.

K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

E. Pednault. ADL: exploring the middle ground between STRIPS and the situa-
tion calculus. In Proc. of KR’89, 324-332, 1989.

A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th
ACM Symp. on Principles of Programming Languages, Austin, January 1989.

P. Ramadge and W. Wonham. The control of discrete event systems. Proc. of
IEFEE, 77(1):81-98, Jan. 1989.

R. Reiter. Knowledge in Action: Logical Foundation for Describing and Imple-
menting Dynamical Systems. 1998. In preparation.

S. J. Rosenschein. Plan synthesis: A logical perspective. In Proc. of IJCAI'81,
331-337, 1981.

E. Sandewall. Features and Fluents. The Representation of Knowledge about Dy-
namical Systems. Volume I. Oxford University Press, 1994.

M. Shanahan. Solving the Frame Problem: A Mathematical Investigation of the
Common Sense Law of Inertia. The MIT Press, 1997.

M. Y. Vardi. An automata-theoretic approach to fair realizability and synthesis.
In P. Wolper, editor, Computer Aided Verification, Proc. 7Tth Int’l Conf., LNCS
939, 267-292. Springer-Verlag, Berlin, 1995.

M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In F. Mol-
ler and G. Birtwistle, editors, Logics for Concurrency: Structure versus Automata,
LNCS 1043, 238-266. Springer-Verlag, Berlin, 1996.

M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic pro-
gram verification. In Proc. 1st Symp. on Logic in Computer Science, 322-331,
Cambridge, June 1986.

M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Information
and Computation, 115(1):1-37, November 1994.

D. S. Weld and O. Etzioni. The first law of robotics (a call to arms). In Proc. of
AAAT’94, 1042-1047, 1994.

	Introduction
	Preliminaries
	Transition Systems
	Automata on Infinite Words

	Planning with Complete Information
	Sequential Planning with Incomplete Information
	Conditional Planning with Incomplete Information
	Practical Algorithms
	Related Work
	Conclusions

