
An Incremental Interpreter for High�Level

Programs with Sensing

Giuseppe De Giacomo� and Hector J� Levesque�

� Dipartimento di Informatica e Sistemistica
Universit�a di Roma �La Sapienza�
Via Salaria ���� ���	
 Rome� Italy
degiacomo�dis�uniroma��it

� Department of Computer Science
University of Toronto
Toronto� Canada M�S �H�
hector�cs�toronto�edu

Abstract� Like classical planning� the execution of high�level agent programs re�
quires a reasoner to look all the way to a 
nal goal state before even a single action
can be taken in the world� This deferral is a serious problem in practice for large
programs� Furthermore� the problem is compounded in the presence of sensing ac�
tions which provide necessary information� but only after they are executed in the
world� To deal with this� we propose �characterize formally in the situation calcu�
lus� and implement in Prolog� a new incremental way of interpreting such high�level
programs and a new high�level language construct� which together allow much more
control to be exercised over when actions can be executed� We argue that such a
scheme leads to a practical way to deal with large agent programs containing both
nondeterminism and sensing�

� Introduction

The research reported in this paper is strongly based on Ray Reiter�s work
on the situation calculus� on the frame problem� and on cognitive robotics�

In ���� it was argued that when it comes to providing high level control
to autonomous agents or robots� the notion of high�level program execution

o	ers an alternative to classical planning that may be more practical in many
applications� Brie
y� instead of looking for a sequence of actions a such that

Axioms j� Legal�do�a� S�

 � ��do�a� S�



where � is the goal being planned for� we look for a sequence a such that

Axioms j� Do��� S�� do�a� S�



where � is a high�level program andDo��� s� s�
 is a formula stating that � may
legally terminate in state s� when started in state s� By a high�level program
here� we mean one whose primitive statements are the domain�dependent
actions of some agent or robot� whose tests involve domain�dependent 
uents



� Giuseppe De Giacomo and Hector J� Levesque

�that are caused to hold or not hold by the primitive actions
� and which
contains nondeterministic choice points where reasoned �non�random
 choices
must be made about how the execution should proceed�

What makes a high�level agent program di	erent from a deterministic
�script� is that its execution is a problem solving task� not unlike planning�
An interpreter needs to use what it knows about the prerequisites and e	ects
of actions to �nd a sequence with the right properties� This can involve con�
siderable search when � is very nondeterministic� but much less search when �

is more deterministic� The feasibility of this approach for AI purposes clearly
depends on the expressive power of the programming language in question�
In ����� a language called Golog is presented� which in addition to nonde�
terminism� contains facilities for sequence� iteration� and conditionals� In this
paper� we extend the expressive power of this language by providing much
�ner control over the nondeterminism� and by making provisions for sensing
actions� To do so in a way that will be practical even for very large programs
requires introducing a di	erent style of on�line program execution�

In the rest of this section� we discuss on�line and o	�line execution in�
formally� and show why sensing actions and nondeterminism together can
be problematic� In the following section� we formally characterize program
execution in the language of the situation calculus� Next� we describe an incre�
mental interpreter in Prolog that is correct with respect to this speci�cation�
The �nal section contains discussion and conclusions�

��� O��line and On�line execution

To be compatible with planning� the Golog interpreter presented in ����
executes in an o��line manner� in the sense that it must �nd a sequence of
actions constituting an entire legal execution of a program before actually
executing any of them in the world�� Consider� for example� the following
program�

�ajb
 �� � p�

where a and b are primitive actions� j indicates nondeterministic choice� � is
some very large deterministic program� and p� tests whether 
uent p holds� A
legal sequence of actions should start with either a or b� followed by a sequence
for �� and end up in state where p holds� Before executing a or b� the agent
or robot must wait until the interpreter considers all of � and determines
which initial action eventually leads to p� Thus even a single nondeterministic
choice occurring early in a large program can result in an unacceptable delay�
We will see below that this problem is compounded in the presence of sensing
actions�

If a small amount of nondeterminism in a program is to remain practical
�as suggested by ����
� we need to be able to choose between a and b based on

� It is assumed that once an action is taken� it need not be undoable� and so
backtracking �in the world� is not an option�



An Incremental Interpreter for High�Level Programs with Sensing �

some local criterion without necessarily having to go through all of �� Using
something like

�ajb
 � r� �� � p�

here does not work� since an o	�line interpreter cannot settle for a even if
it leads to a state where r holds� We need to be able to commit to a choice
that satis�es r� with the understanding that it is the responsibility of the
programmer to use an appropriate local criterion� and that the program will
simply fail without the option of backtracking if p does not hold at the end�

It is convenient to handle this type of commitment by changing the ex�
ecution style from o	�line to on�line� but including a special o	�line search
operator� In a on�line execution� nondeterministic choices are treated like
random ones� and any action selected is executed immediately� So if the pro�
gram

�ajb
 �� � p�

is executed on�line� one of a or b is selected and executed immediately� and
the process continues with �� in the end� if p happens not to hold� the entire
program fails� We use a new operator � for search� so that ��� where � is
any program� means �consider � o	�line� searching for a successful termina�
tion state�� With this operator� we can control how nondeterminism will be
handled� To execute

�f�ajb
 � r�g �� � p�

on�line� we would search for an a or b that successfully leads to r� execute it
immediately� and then continue boldly with �� In this scheme� it is left to
the programmer to decide how cautious to be� If the programmer drops the
search operator completely thus writing

�ajb
 � r��� � p�

then the choice between a and b will be random� If the programmer puts the
entire program within a � operator� thus writing

�f�ajb
 � r��� � p�g

then the choice between a and b will be based on full lookahead to the end
of the program� i�e�� the program will be executed essentially in the old way�

��� Sensing actions

This on�line style of execution is well�suited to programs containing sensing
actions� As described in ���������� sensing actions are actions that can be
taken by the agent or robot to obtain information about the state of cer�
tain 
uents� rather than to change them� The motivation for sensing actions
involves applications where because the initial state of the world is incom�
pletely speci�ed or because of hidden exogenous actions� the agent must use
sensors of some sort to determine the value of certain 
uents�



� Giuseppe De Giacomo and Hector J� Levesque

Suppose� for example� that nothing is known about the state of some

uent q� but that there is a binary sensing action readq which uses a sensor
to tell the robot whether or not q holds� To execute the program

a � readq � if q then �� else �� endIf � p�

the interpreter would get the robot to execute a in the world� get it to execute
readq� then use the information returned to decide whether to continue with
�� or ��� But consider the program

�ajb
 � readq � if q then �� else �� endIf � p��

An o	�line interpreter cannot commit to a or b in advance� and because of
that� cannot use readq to determine if q would hold after the action� The only
option available is to see if one or a or b would lead to p for both values of
q� This requires considering both �� and ��� even though in the end� only
one of them will be executed� Similarly� if we attempt to generate a low�level
robot program �as suggested in ���� for planning in the presence of sensing
�
we end up having to consider both �� and ���

The situation is even worse with loops� Consider

�ajb
 � readq �while q do � � readq endWhile � p��

Since an o	�line interpreter has no way of knowing in advance how many
iterations of the loop will be required to make q false� to decide between
a and b� it would be necessary to reason about the e	ect of performing �

an arbitrary number of times �by discovering loop invariants etc�
� But if a
commitment could be made to one of them on local grounds we could modify
the program as follows

�f�ajb
� r�g � readq �while q do � � readq endWhile � p��

and then use readq to determine the actual value of q� and it would not be
necessary to reason about the deterministic loop� It therefore appears that an
on�line execution style is often more practical for large programs containing
nondeterminism and sensing actions�

� Preliminaries

The technical machinery we use to de�ne on�line program execution in the
presence of sensing is based on that of ���� i�e�� we use the predicates Trans
and Final to de�ne a single step semantics of programs �������� However some
adaptation is necessary to deal with on�line execution� sensing results� and
the � operator�



An Incremental Interpreter for High�Level Programs with Sensing �

��� Situation calculus

The starting point in the de�nition is the situation calculus ����� We will not
go over the language here except to note the following components� there is a
special constant S� used to denote the initial situation� namely that situation
in which no actions have yet occurred� there is a distinguished binary function
symbol do where do�a� s
 denotes the successor situation to s resulting from
performing the action a� relations whose truth values vary from situation
to situation� are called �relational
 �uents � and are denoted by predicate
symbols taking a situation term as their last argument� there is a special
predicate Poss�a� s
 used to state that action a is executable in situation s�
�nally� following ����� there is a special predicate SF�a� s
 used to state that
action a would return the binary sensing result � in situation s�

Within this language� we can formulate domain theories which describe
how the world changes as the result of the available actions� One possibility
is an action theory of the following form �����

� Axioms describing the initial situation� S�� Note that there can be 
uents
like q about which nothing is known in the initial state�

� Action precondition axioms� one for each primitive action a� characteriz�
ing Poss�a� s
�

� Successor state axioms� one for each 
uent F �� stating under what condi�
tions F �x� do�a� s

 holds as function of what holds in situation s� These
take the place of the so�called e	ect axioms� but also provide a solution
to the frame problem �����

� Unique names axioms for the primitive actions�
� Some foundational� domain independent axioms�

Finally� as in ����� we include

� Sensed 
uent axioms� one for each primitive action a of the form SF�a� s
 �
�a�s
� characterizing SF�

For the sensing action readq used above� we would have �SF�readq� s
 � q�s
��
and for any ordinary action a that did not involve sensing� we would use
�SF�a� s
 � true��

��� Histories

To describe a run which includes both actions and their sensing results� we
use the notion of a history� By a history we mean a sequence of pairs �a� x

where a is a primitive action and x is � or �� a sensing result� Intuitively� the
history �a�� x�
 � � � � � �an� xn
 is one where actions a�� � � � � an happen starting

� A �uent whose current value could only be determined by sensing would normally
not have a successor state axiom� However� see ��� for a proposal that overcomes
this limitation�



� Giuseppe De Giacomo and Hector J� Levesque

in some initial situation� and each action ai returns sensing value xi� The
assumption is that if ai is an ordinary action with no sensing� then xi � ��
Notice that the empty sequence � is a history�

Histories are not terms of the situation calculus� It is convenient� however�
to use end�	� as an abbreviation for the situation term called the end situation

of history 	 on the initial situation S�� and de�ned by� end��� � S�� and
inductively� end�	 � �a� x
� � do�a� end�	�
�

It is also useful to use Sensed�	� as an abbreviation for a formula of the
situation calculus� the sensing results of a history� and de�ned by� Sensed��� �
true� and inductively� Sensed�	 � �a� �
� � Sensed�	� � SF�a� end�	�
� and
Sensed�	 � �a� �
� � Sensed�	� � �SF�a� end�	�
� This formula uses SF to tell
us what must be true for the sensing to come out as speci�ed by 	 starting
in the initial situation S��

��� The Trans and Final predicates

In ��� two special predicatesTrans and Final were introduced�Trans��� s� ��� s�

was intended to say that by executing program � starting in situation s� one
can get to situation s� in one elementary step with the program �� remaining
to be executed� that is� there is a possible transition from the con�guration
��� s
 to the con�guration ���� s�
� Final��� s
� instead� was intended to say that
program � may successfully terminate in situation s� that is� the con�guration
��� s
 is �nal�

For example� the transition requirements for sequence is

Trans����� ���� s� �
�� s�
 �

Final���� s
 � Trans���� s� �
�� s�
 �

�
��Trans���� s� 

�� s�
 � �� � �
�� ��
�

This says that to single�step the program ���� ��
� either �� terminates and
we single�step ��� or we single�step �� leaving some 
�� and �
�� ��
 is what is
left of the sequence�

For our account here� we adopt the de�nitions of Trans and Final in ���
�the details of which we omit
��

� O��line lookahead

On�line executions are characterized by the fact that the robot at each step
makes a transition chosen among those that are legal �we�ll see later in which
precise sense
 and execute it in the real world� In executing it the robots
commits to the transition chosen since there is no possibility of undoing it�
This is to be contrasted with the o	�line execution mode where we commit

� For an in�depth study of Trans and Final� including a suitable treatment of
procedures and constructs for concurrency� can be found in ������



An Incremental Interpreter for High�Level Programs with Sensing �

to a sequence of actions to be executed only after having shown that the
sequence is guaranteed to terminate successfully�

Since when we execute a program on�line there is no possibility of back�
tracking� how to select among the possible transitions the one to execute is
a critical step� How should this selection be done� As discussed in Section ��
one extreme possibility is to make a random choice� Obviously this selection
mechanism is very e�cient� however the choice made may compromise the
successful termination of the program� On the other extreme we may require
the robot to be very cautious and do full lookahead to the end of the program
to make a transition only if it is guaranteed to lead to a successful termination
of the program� Naturally� this is quite heavy computationally� �

Here we introduce a mechanism to have a controlled form of lookahead�
so that the amount of lookahead to be performed is under the control of the
programmer� Namely� we introduce a search operator in the programming
language�

We de�ne Final and Trans for the new operator as follows� For Final� we
simply have that ���� s
 is a �nal con�guration of the program if ��� s
 itself
is� and so we get the requirement

Final���� s
 � Final��� s
�

For Trans� we have that the con�guration ���� s
 can evolve to ��
�� s�

provided that ��� s
 can evolve to �
�� s�
 and from �
�� s�
 it is possible to
reach a �nal con�guration in a �nite number of transitions� Thus� we get the
requirement

Trans���� s� ��� s�
 �
�
�� �� � �
� � Trans��� s� 
�� s�
 �

�
��� s���Trans��
�� s�� 
��� s��
 � Final�
��� s��
�

In this assertion� Trans� is the re
exive transitive closure of Trans� de�ned
by

Trans���� s� ��� s�

def
� 	T �� � � 
 T ��� s� ��� s�
�

where the ellipsis stands for the conjunction of �the universal closure of


T �
� s� 
� s

T �
� s� 
�� s�
 � Trans�
�� s�� 
��� s��
 
 T �
� s� 
��� s��
�

The semantics of � can be understood as follows� ��
 ���� s
 selects from
all possible transitions of ��� s
 those from which there exists a sequence
of further transitions leading to a �nal con�guration� ��
 the � operator
is propagated through the chosen transition� so that this restriction is also

� In �
� on�line executions were considered to allow execution monitoring and re�
covery� There a brave and a cautions interpreter were de
ned which corresponded
to exactly to these two extreme approaches�




 Giuseppe De Giacomo and Hector J� Levesque

performed on successive transitions� In other words� within a � operator� we
only take a transition from � to 
�� if 
� is on a path that will eventually
terminate successfully� and from 
� we do the same� As desired� � does an
o	�line search before committing to even the �rst transition�

It is not too hard to prove that� has some intuitively plausible properties�
In particular we have the following ones�

Property ��

Trans���� s� ��� s�
 
 �
��� � �


i�e�� a program of the form�� can evolve only to programs of the form���� In
other words� the search operator is indeed propagated through the transition�

Property ��

Trans���� s����� s�
 � Trans��� s� ��� s�
 � �s���Do���� s�� s��


i�e�� in performing a transition step for a con�guration ���� s
 we are in fact
performing a transition from ��� s
 and verifying that such transition leads to
successful termination�

Property ��

Trans����� s������ s�
 � Trans���� s����� s�

Final����� s
 � Final���� s


i�e�� nesting search operators is equivalent to apply the search operator only
once�

� Characterizing on�line executions

The on�line execution of a program consists of a suitable sequence of legal
single�step transitions� We distinguish the case where we do not have sensing
from the one in which we do�

��� Without sensing

In the absence of sensing� we say that a � can be executed in the current
situation s leading to the new situation s� with program �� that remains to
be executed� only when

Axioms j� Trans��� s� ��� s�


i�e�� a transition step is legal if only if is logically implied by Axioms� In this
way we capture the intuition that a transition is legal if on the base of our
knowledge �as expressed by Axioms
 we are certain that the transition can



An Incremental Interpreter for High�Level Programs with Sensing 	

be executed� Analogously� we are allowed to successfully terminate a program
� in s when

Axioms j� Final��� s


i�e�� � can legally terminate in s if and only if it is logically implied byAxioms�
Hence� without sensing an on�line execution of a program � starting from

a situation s is a sequence ��� � �� s� � s
� � � � � ��n� sn
 such that for i �
�� � � � � n���

Axioms j� Trans��i� si� �i��� si��
�

An on�line execution is successful if

Axioms j� Final��n� sn
�

It is possible to prove the following theorem�

Theorem �� If there exists a successful on�line execution ��� � �� s� �
s
� � � � � ��n� sn � s�
 of a program � in the situation s leading to s�	 then

there exists a successful o��line execution of � in s leading to s�	 i�e�	

Axioms j� Do��� s� s�


The converse of this theorem does not hold� since an on�line execution re�
quires all transition steps to be logically implied by Axioms� while an o	�line
execution does not� For example� consider the program � � �� a j ��� a� where
Axioms �j� ��S�� and Axioms �j� ���S��� � executed in S� has a successful
o	�line execution� namely Axioms j� Do��� S�� do�a� S�

� But it has no suc�
cessful on�line executions� since there are no transitions logically implied by
Axioms�

We do not impose any selection criteria on on�line executions� The robot
at each step makes a legal transition that is randomly chosen� Thus we can�
not guarantee that the robot follows a successful on�line execution a priori�
We can however make use of the search operator for giving the robot the
possibility� under the control of the programmer� of doing some lookahead
and avoid dead�end executions� Indeed by Property � above we have that�

Axioms j� Trans���� s����� s�


if and only if

Axioms j� Trans��� s� ��� s�
 and Axioms j� �s���Do���� s�� s��


i�e�� there is a legal transition from ���� s
 to ����� s�
 if and only if �i
 there
is a legal transition from ��� s
 to ���� s�
� and �ii
 there exists an execution of
�� in s� that successfully terminates�

By Theorem �� if Axioms �j� �s���Do���� s�� s��
 then there are no successful
on�line executions of �� in s�� It follows that applying the search operator to
a program � we prune potential on�line executions that are bound to be
unsuccessful��

� Note that� although we can guarantee the existence of a successful execution� it
is not always the case that we can actually 
nd an successful on�line execution�



�� Giuseppe De Giacomo and Hector J� Levesque

��� With sensing

First we observe that we did not require special axioms for Trans and Final

in order to deal with sensing� Sensing actions are just like ordinary actions in
all respects except for what speci�ed by the sensed 
uent axioms involving
SF � However� the existence of a given legal transition may now depend on
the values sensed so far� That is� if s is end�	� where 	 is the history of actions
and sensing values starting from the initial situation S�� then � in s can make
a legal transition leading to s� with program �� that remains to be executed
when

Axioms 
 fSensed�	�g j� Trans��� s� ��� s�
�

In other words� now we are looking for a transition that is logically implied
by Axioms together with the values sensed so far�

In executing the next step we can take into account that the transition
may have result in getting some new information from the sensors� Specif�
ically� if the transition did not result in any action� i�e�� s� � s�� then we
still consider logical implication from Axioms 
 fSensed�	�g� If� instead� an
action a was performed and the value x returned� then we consider logical
implication from Axioms
fSensed�	��g where 	� � 	 ��a� x
� i�e�� we consider
the value returned by action a as well�

Similarly� we are allowed to terminate the program � successfully if

Axioms 
 fSensed�	�g j� Final��� end�	�
�

where again the history 	 is taken into account�
Thus� in presence of sensing� an on�line execution of a program � starting

from a situation end�	� is a sequence ��� � �� 	� � 	
� � � � � ��n� 	n
 such that
for i � �� � � � � n���

Axioms 
 fSensed�	i� j� Trans��i� end�	i�� �i��� end�	i���


	i�� �

�
	i if end�	i��� � end�	i�
	i � �a� x
 if end�	i��� � do�a� end�	i�
 and a returns x

An on�line execution is successful if

Axioms 
 fSensed�	n�g j� Final��n� end�	n�
�

Note that� if no sensing action is performed then Sensed�	� becomes equiv�
alent to true� and hence the speci�cation correctly reduces to the speci�ca�
tion from before�

Finally� let us focus on the meaning the search operator in the context of
on�line executions in presence of sensing� By Property � above we have that�

which in fact requires the existence of a sequence of transitions that are logically
implied by Axioms�

� Such �null transitions� arise from tests in the program�



An Incremental Interpreter for High�Level Programs with Sensing ��

Axioms 
 fSensed�	�g j� Trans���� s����� s�


if and only if

Axioms 
 fSensed�	�g j� Trans��� end�	�� ��� s�
 and
Axioms 
 fSensed�	�g j� �s���Do���� s�� s��


i�e�� in looking for the existence of a successful execution of �� in s�� we
obviously do not take into account how the sensing values will turn out to be
�we will know these values only when we actually execute the actions in the
transitions
� Hence now Theorem � implies that if Axioms 
 fSensed�	�g �j�
�s���Do���� s�� s��
 then there� are no successful on�line executions of �� in s�

that do not gather new information by sensing� It follows that applying the
search operator to a program � we prune potential on�line executions that
depend on how sensing turns out in order to be successful�

� An incremental interpreter

Next we present a simple incremental interpreter in Prolog� Although the on�
line execution task characterized above no longer requires search to a �nal
state� it remains fundamentally a theorem�proving task� does a certain Trans

or Final formula follow logically from the axioms of the action theory together
with assertions about sensing results�

The challenge in writing a practical interpreter is to �nd cases where this
theorem�proving can be done using something like ordinary Prolog evaluation�
The interpreter in ��� as well as in earlier work on which it was based ���� was
designed to handle cases where what was known about the initial situation
S� could be represented by a set of atomic formulas together with a closed�
world assumption� In the presence of sensing� however� we cannot simply
apply a closed�world assumption blindly� As we will see� we can still avoid
full theorem�proving if we are willing to assume that a program executes
appropriate sensing actions prior to any testing it performs� In other words�
our interpreter depends on a just�in�time history assumption	 where it is
assumed that whenever a test is required	 the on�line interpreter at that point
has complete knowledge of the �uents in question to evaluate the test without

having to reason by cases etc�

��� The main loop

As it turns out� most of the subtlety in writing such an interpreter concerns
the evaluation of tests in a program� The rest of the interpreter derives almost

� The notion of just�in�time histories is investigated further in ����



�� Giuseppe De Giacomo and Hector J� Levesque

directly from the axioms for Final� and Trans described above� It is conve�
nient� however� to use an implementation of these predicates de�ned over
encodings of histories �with most recent actions �rst
 rather than situations�
We get

�� P is a program ��

�� H is a history� initially �	 ��

�� H 

� �	 � �
Act������H	 ��

incrInterpret
P�H� 
� final
P�H��

incrInterpret
P�H� 
�

trans
P�H�P���
Act����H	�� �� execute
Act�Sv��

incrInterpret
P���
Act�Sv��H	��

incrInterpret
P�H� 
�

trans
P�H�P��H�� ��

incrInterpret
P��H��

So to incrementally interpret a program on�line� we either terminate success�
fully� or we �nd a transition involving some action� commit to that action�
execute it in the world to obtain a sensing result� and then continue the inter�
pretation with the remaining program and the updated history�
 In looking
for the next action� we skip over transitions involving successful tests where
no action is required and the history does not change� To execute an action
in the world� we connect to the sensors and e	ectors of the robot or agent�
Here for simplicity� we just write the action� and read back a sensing result�

execute
Act�Sv� 
�

write
Act��


senses
Act��� ��


write
�
��� read
Sv�� � 
nl� Sv�����

We assume the user has declared using senses �described below
 which ac�
tions are used for sensing� and for any action with no such declaration� we
immediately return the value ��

��� Implementing Trans and Final

Clauses for trans and final are needed for each of the program constructs�
For example� for sequence� we have

trans
seq
P��P���H�P�H�� 
�

final
P��H�� trans
P��H�P�H���

trans
seq
P��P���H�seq
P��P���H�� 
�

trans
P��H�P��H���

� In practice� we would not want the history list to get too long� and would use
some form of �rolling forward� �����



An Incremental Interpreter for High�Level Programs with Sensing ��

which corresponds to the axiom given earlier except for the use of histories
instead of situations� We omit the details for the other constructs� except for
� �search
�

final
search
P��H� 
� final
P�H��

trans
search
P��H�search
P���H�� 
�

trans
P�H�P��H��� ok
P��H���

ok
P�H� 
� final
P�H��

ok
P�H� 
� trans
P�H�P��H�� ok
P��H��

ok
P�H� 
� trans
P�H�P���
Act����H	��


senses
Act��� ��


 ok
P���
Act����H	� �

ok
P���
Act����H	� � �

ok
P���
Act����H	���

The auxiliary predicate ok here is used to handle the Trans� and Final part
of the axiom by searching forward for a �nal con�guration�� Note that when
a future transition involves an action that has a sensing result� we need the
program to terminate successfully for both sensing values� This is clearly ex�
plosive in general� sensing and o	�line search do not mix well� It is precisely to
deal with this issue in a 
exible way that we have taken an on�line approach�
putting the control in the hands of the programmer�

��� Handling test conditions

The rest of the interpreter is concerned with the evaluation of test conditions
involving 
uents� given some history of actions and sensing results� We assume
the programmer provides the following clauses�

� poss�Act�Cond�� the action is possible when the condition holds�

� senses�Act�F luent�� the action can be used to determine the truth of
the 
uent���

� initially�F luent�� the 
uent holds in the initial situation S��

� causesTrue�Act�F luent�Cond�� if the condition holds� performing the
action causes the 
uent to hold�

� causesFalse�Act�F luent�Cond�� if the condition holds� performing the
action causes the 
uent to not hold�

	 In practice� a breadth�
rst search may be preferable� Also� we would want to cache
the results of the search to possibly avoid repeating it at the next transition�

�
 The speci
cation allows a sensor to be linked to an arbitrary formula using SF�
the implementation insists it be a �uent�



�� Giuseppe De Giacomo and Hector J� Levesque

In the absence of sensing� the last two clauses provide a convenient speci��
cation of a successor state axiom for a 
uent F � as if we had �very roughly


F �do�a� s

 �
���causesTrue�a� F� �
 � ��s�
 �
F �s
 � ����causesFalse�a� F� �
 � ��s�
�

In other words� F holds after a if a causes it to hold� or it held before and a did
not cause it not to hold� With sensing� we have some additional possibilities�
We can handle 
uents that are completely una	ected by the given primitive
actions by leaving out these two clauses� and just using sensing� We can
also handle 
uents that are partially a	ected� For example� in an elevator
controller� it may be necessary to use sensing to determine if a button has
been pushed� but once it has been pushed� we can assume the corresponding
light stays on until we perform a reset action causing it to go o	� We can also
handle cases where some initial value of the 
uent needs to be determined
by sensing� but from then on� the value only changes as the result of actions�
etc� Note that an action can provide information for one 
uent and also cause
another 
uent to change values�

With these clauses� the transitions for primitive actions and tests would
be speci�ed as follows�

trans
prim
Act��H�nil��
Act����H	� 
�

poss
Act�Cond�� holds
Cond�H��

trans
test
Cond��H�nil�H� 
� holds
Cond�H��

where nil is the empty program� The holds predicate is used to evaluate
arbitrary conditions� Because of the just�in�time histories assumption� the
problem reduces to holdsf for 
uents �we omit the reduction
� For 
uents�
we have the following�

holdsf
F��	� 
� initially
F��

holdsf
F��
Act�X��H	� 
�

senses
Act�F���� X��� �� mind the cut ��

holdsf
F��
Act�X��H	� 
�

causesTrue
Act�F�Cond�� holds
Cond�H��

holdsf
F��
Act�X��H	� 
�

not 
 causesFalse
Act�F�Cond�� holds
Cond�H� ��

holdsf
F�H��

Observe that if the �nal action in the history is not a sensing action� and not
an action that causes the 
uent to hold or not hold� we regress the test to
the previous situation� This is where the just�in�time histories assumption�



An Incremental Interpreter for High�Level Programs with Sensing ��

for this scheme to work properly� the programmer must ensure that a sensing
action and its result appear in the history as necessary to establish the current
value of a 
uent�

��� Correctness

This completes the incremental interpreter� The interpreter presented above
is correct under suitable hypotheses� In particular� apart from the usual as�
sumption required when we encoding an action theory in Prolog �see ����
�
we make the hypothesis that the predicate holds satis�es the following prop�
erties��� Let � and 	 contain free variables only on objects and actions�

�� If a goal holds��� 	
 succeeds with computed answer �� then �by 	�� we
mean the universal closure of �


Axioms 
 fSensed�	�g j� 	��end�	�
��

�� If a goal holds��� 	
 �nitely fails� then

Axioms 
 fSensed�	�g j� 	���end�	�
�

Although we do not attempt to show it formally here� it should be intuitively
clear that our de�nition for holds under the just�in�time histories assumption
does actually satisfy the requirements above�

We can formally state the correctness of the incremental interpreter as
follows�

Theorem �� Let � and 	 contain free variables only on objects and actions�

Then under the hypotheses above


�� If a goal trans��� 	� ��� 	�
 succeeds with computed answer �	 then

Axioms 
 fSensed�	�g j� 	Trans��� end�	���� end�	��
�

moreover ��� and 	�� contain free variables only on objects and actions�
�� If a goal trans��� 	� ��� 	�
 �nitely fails	 then

Axioms 
 fSensed�	�g j� 	�Trans��� end�	�� ��� end�	��
�

�� If a goal final��� 	
 succeeds with computed answer �	 then

Axioms 
 fSensed�	�g j� 	Final��� 	
��

�� If a goal final��� 	
 �nitely fails	 then

Axioms 
 fSensed�	�g j� 	�Final��� end�	�
�

Notably� because of the assumption above on holds �and hence because of
the just�in�time histories assumption� we have that if trans succeeds for a
program of the form ���� s
 then an on�line successful execution exists indeed�

�� We keep implicit the translation between Prolog terms and the programs� histo�
ries� and terms of the situation calculus



�� Giuseppe De Giacomo and Hector J� Levesque

� Discussion

The framework presented here has a number of limitations beyond those
already noted� it only deals with sensors that are binary and noise�free� no
explicit mention is made of how the sensing in
uences the knowledge of the
agent� as in ����� the interaction between o	�line search and concurrency is
left unexplored� �nally� the implementation has no �nite way of dealing with
search over a program with loops�

One of the main advantages of a high�level agent language containing
nondeterminism is that it allows limited versions of �runtime
 planning to be
included within a program� Indeed� a simple planner can be written directly���

while �� do 
a� �Acceptable�a
� � a
 endWhile�

Ignoring Acceptable� this program says to repeatedly perform some nonde�
terministically selected action until condition � holds� An o	�line execution
would search for a legal sequence of actions leading to a situation where �

holds� This is precisely the planning problem� with Acceptable being used as
a forward �lter� in the style of ����

However� in the presence of sensing� it is not clear how even limited forms
of planning like this can be handled by an o	�line interpreter� since a single

nondeterministic choice can cause problems� as we saw earlier� The formal�
ism presented here has more chances of being practical for large programs
containing both nondeterministic action selection and sensing�

One concern one might have is that once we move to on�line execution
where nondeterministic choice defaults to being random� we have given up
reasoning about courses of action� and that our programs are now just like the
pre�packaged �plans� found in rap ��� or prs ����� Indeed in those systems�
one normally does not search o	�line for a sequence of actions that would
eventually lead to some future goal� execution relies instead on a user�supplied
�plan library� to achieve goals� In our case� with �� we get the advantages
of both worlds� we can write agent programs that span the spectrum from
scripts where no lookahead search is done and little needs to be known about
the properties of the primitive actions being executed� all the way to full
planners like the above� Moreover� our formal framework allows considerable
generality in the formulation of the action theory itself� allowing disjunctions�
existential quanti�ers� etc� Even the Prolog implementation described here
is considerably more general than many strips�like systems� in allowing the
value of 
uents to be determined by sensing intermingled with the context�
dependent e	ects of actions�

A more serious concern� perhaps� involves how to build an e	ective pro�
gram to be executed on�line� There is a di�cult tradeo	 here that also shows
up in the work on so�called incremental planning ������� Even if we have an
important goal that needs to be achieved in some distant place or time� we

�� The � operator is used for a nondeterministic choice of value�



An Incremental Interpreter for High�Level Programs with Sensing ��

want to make choices here and now without worrying about it� How should
I decide what travel agent to use given that I have to pick up a car at an
airport in Amsterdam a month from now� The answer in practice is clear�
decide locally and cross other bridges when you get to them� exactly the mo�
tivation for the approach presented here� It pays large dividends to assume
by default that routine choices will not have distant consequences� chaos and
the 
apping of butter
y wings notwithstanding� But as far as we know� it
remains an open problem to characterize formally what an agent would have
to know �test�sense
 to be able to quickly con�rm that some action can be
used immediately as a �rst step towards some challenging but distant goal�

References

�� J� A� Ambros�Ingerson and S� Steel� Integrating planning� execution and mon�
itoring� In Proc� AAAI���� �	

�

�� F� Bacchus and F� Kabanza� Planning for temporally extended goals� In Proc�

AAAI���� �		��
�� R� J� Firby� An investigation in reactive planning in complex domains� In Proc�

AAAI���� �	
��
�� G� De Giacomo� Y� Lesp�erance� and H� Levesque� Reasoning about concur�

rent execution� prioritized interrupts� and exogenous actions in the situation
calculus� In Proc� IJCAI���� �		��

�� G� De Giacomo� Y� Lesp�erance� and H� Levesque� CONGOLOG� a concurrent
programming language based on the situation calculus� language and imple�
mentation� submitted� �			�

�� G� De Giacomo� Y� Lesp�erance� and H� Levesque� CONGOLOG� a concurrent
programming language based on the situation calculus� foundations� submitted�
�			�

�� G� De Giacomo and H� Levesque� Progression and regression using sensors� In
Proc� IJCAI���� �			�


� G� De Giacomo� R� Reiter� and M� Soutchanski� Execution monitoring of high�
level robot programs� In Proc� of KR���� pages �������� �		
�

	� K� Golden and D� Weld� Representing sensing actions� the middle ground
revisited� In Proc� KR���� �		��

��� M� Hennessy� The Semantics of Programming Languages� John Wiley � Sons�
�		��

��� F� F� Ingrand� M� P� George�� and A� S� Rao� An architecture for real�time
reasoning and system control� IEEE Expert� ����� �		��

��� P� Jonsson and C� Backstrom� Incremental planning� In Proc� �rd European

Workshop on Planning� �		��
��� H� Levesque� What is planning in the presence of sensing� In Proc� AAAI����

�		��
��� H� Levesque� R� Reiter� Y� Lesp�erance� F� Lin� and R� Scherl� GOLOG� A logic

programming language for dynamic domains� Journal of Logic Programming	

special issue on actions� ���������	�
�� �		��
��� F� Lin and R� Reiter� How to progress a database� Arti
cial Intelligence�

	���������� �		��



�
 Giuseppe De Giacomo and Hector J� Levesque

��� J� McCarthy and P� Hayes� Some philosophical problems from the standpoint
of arti
cial intelligence� Machine Intelligence� �� �	�	�

��� G� Plotkin� A structural approach to operational semantics� Technical Re�
port DAIMI�FN��	� Computer Science Department Aarhus University Den�
mark� �	
��

�
� R� Reiter� The frame problem in the situation calculus� A simple solution
�sometimes� and a completeness result for goal regression� In Arti
cial Intel�

ligence and Mathematical Theory of Computation	 Papers in Honor of John

McCarthy� pages ��	��
�� Academic Press� �		��
�	� R� Reiter� Knowledge in action� Logical foundation for describing and imple�

menting dynamical systems� In preparation�� �			�
��� R� Scherl and H� Levesque� The frame problem and knowledge producing

actions� In Proc� of AAAI���� pages �
	��	�� �		��


