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Abstract

We present a framework for reasoning about processes (complex actions) that are constituted by
several concurrent activities performed by various interacting agents. The framework is based on
two distinct formalisms: a representation formalism, which is a CCS-like process algebra associated
with an explicit global store; and a reasoning formalism, which is an extension of modal mu-
calculus, a powerful logic of programs that subsumes dynamic logics such as PDL and APDL, and
branching temporal logics such as CTL and CTL*. The reasoning service of interest in this setting is
model checking in contrast to logical implication. This framework, although directly applicable only
when complete information on the system behavior is available, has several interesting features for
reasoning about actions in Artificial Intelligence. Indeed, it inherits formal and practical tools from
the area of Concurrency in Computer Science, to deal with complex actions, treating suitably aspects
like nonterminating executions, parallelism, communications, and interruptions. © 1999 Published
by Elsevier Science B.V. All rights reserved.

Keywords: Process algebra; Modal mu-calculus; Reasoning about actions; Concurrency; Model checking;
Logical implication

1. Introduction

In this paper, we present a piece of research that can be regarded as a bridge between
the area of Reasoning about Actions in Artificial Intelligence and the area of Concurrency
in Computer Science.
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On the one hand, we follow a methodology that is typical of Reasoning about Actions
in Artificial Intelligence for specifying and reasoning about dynamic systems (e.g., see the
situation calculus in [49]): introducing a set of facts whose value changes as the system
evolves (cf. fluents in [49]); specifying effects of (atomic) actions on such a set of facts
(cf. effect axioms in [49]); devising a suitable means to obtain the successor-state resulting
from executing an action in the current state (cf. successor-state axioms in [49]). We also
introduce a specification of preconditions for executing actions (cf. precondition axioms in
[49]). However, we allow such a specification to change during the evolution of the system
(differently from precondition axioms in [49]). In addition to this general picture, we allow
for multiple atomic actions to occur together (for reasons that will become clear later
on, we call the resulting actions syrchronized actions instead of concurrent (elementary)
actions as, e.g., in [2,5,24,42,50]), and we allow for organizing actions within suitable
control structures (sequential composition, parallel composition, iteration, recursion, etc.)
by introducing an explicit notion of process in describing the system.

On the other hand, we make use of modeling tools that have been developed in the area
of Concurrency in Computer Science to formalize concurrent processes, instead of the ones
typically used in Reasoning about Action in Artificial Intelligence (i.e., logics). However,
in order to make use of such tools, we need to describe the dynamic system on a more
concrete level of abstraction than the one typically adopted in Reasoning about Actions.

In general, we may choose among several levels of abstraction when describing a
dynamic system, depending on the information we assume available. We distinguish the
following three levels:

(1) At a very concrete level, we may characterize the system by its unique actual
evolution, which can be represented as a sequence of states/actions. At this level,
we assume complete information on each state, and we assume knowledge of which
action will be performed next.

(2) At a more abstract level, we may characterize the system by all its possible
evolutions. In this case, the system is represented as a transition graph, called
transition system, instead of a single sequence. The single evolution at level 1
is represented as a path on such a graph. One of these paths is going to be the
actual evolution of the system, yet we do not have the knowledge on which one
it is. Each node (representing a state) has several labeled out-arcs which represent
the actions that can be performed in that state. Each action causes the transition
of the system from the current state to a possible successor-state. We remark that
different out-arcs may be labeled by the same action. In this case, the action
has several alternative outcomes: the action is nondeterministic. At this level, we
assume complete information on the possible evolutions of the system: each state
is completely known, including which actions enabled to be performed, and each
action leads to some completely known state. However, we do not know which
action is going to be performed next. Moreover, for nondeterministic actions, it is
not known which of the alternative resulting states is going to be the next one.

(3) At the third level, we model the system by selecting a set of transition systems
instead of a unique one. Each of such transition systems represents an alternative
possible behavior. At this level, we assume partial information on the possible
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evolutions of the system: each state is only partially known, and so are the states
resulting from performing an action in it.

Generally, level 1 is considered too concrete: it is unrealistic to obtain such complete
information in order to single out a unique system run. % Levels 2 and 3 instead, have been
both used in modeling dynamic systems.

In particular, level 3 is the one usually adopted by research in reasoning about actions
[24,37,38,41,42,49,51], where a certain logic (situation calculus, dynamic logic, etc.) is
used both to represent and to reason about the dynamic systems. The typical reasoning
problem of interest in this case is logical implication (validity) in the form

I'' = Sipiy = @

where I” are axioms used to select the set of transition systems that represent the dynamic
system, S;p;; is a formula, which is a (partial) description of the initial state; @ is a formula,
which is the property we want to prove, e.g., the reachability of a state where a certain
property (the goal) holds.

In this paper, we adopt the viewpoint of level 2. Following the model checking
approach proposed in [27], we use a representation formalism to define the transition
system representing the possible evolutions of the system, and a reasoning formalism
(a suitable logic) for specifying properties we want to check. This framework is the
one typically used in process algebras (e.g., CCS [45], CSP [30], ACP [3]) to model
concurrent and reactive systems.? Process algebras are generally recognized as a
convenient tool for describing concurrent and multiprocess systems. They provide us with a
clean way to express parallelism, reactivity, communications, interruptions, coordinations,
synchronizations/asynchronizations, etc. Moreover, for finite state processes (processes
that can be interpreted on finite transition systems), various practical tools have been
developed and implemented to verify whether a given modal/temporal logic formula is
satisfied by the process (e.g., [6,10,11,44]).

The reasoning problem of interest in this case is model checking in the form

T, Simir =P

where 7 is a transition system representing the possible evolutions of our dynamic system;
Sinir 18 the initial state of 7'; @ is a formula, which is the property we want to prove, e.g.,
the reachability of a state where a certain property (the goal) holds.

In our work, the state of the system called configuration, is composed of an active
component called process and a passive component called global store. The process
describes the activities of all the agents (e.g., robots, persons, pieces of software,
subroutines, environment, etc.) in the system. The global store, which is characterized by
a set of primitive propositions, describes the state of the world except for the activities that
are going on. The configuration can only be changed by the activities in the process, which
in fact make the system evolve.

2 However, one can describe a dynamic system by specifying its properties using Linear-time Temporal Logics
that are interpreted over system runs (see, e.g., [18]).

3 In Artificial Intelligence, research in search-based planning, including much work on STRIPS (e.g., [8]) can
be considered at this level. In contrast, research in deductive planning is typically carried out at level 3.



66 X.J. Chen, G. De Giacomo / Artificial Intelligence 107 (1999) 63-98

Making use of a global store associated to a process, we specify the effects of an
action in terms of the difference between the current global store and the resulting one,
Properties not mentioned among such effects are kept unchanged.* Note that this treatment
is different from most of the approaches in the literature on logics of programs [34], where
all properties of the state resulting from an action must be specified explicitly.

In order to reason about the properties of such modeled dynamic systems, we develop
a suitable extension of modal mu-calculus [32], a powerful logic of programs which
subsumes dynamic logics such as PDL, APDL [34], and temporal logics such as CTL,
CTL* [18]. We show that model checking in our logic can be linearly reduced to model
checking in standard modal mu-calculus. By means of this reduction, it is possible to reuse
efficiently the existing verification tools mentioned above, for reasoning about actions in
our setting.

We also discuss two important additional issues: (1) the relationship between model
checking and logical implication in our setting; (2) how to identify two representations of
a dynamic system. For the former, we device a suitable notion of characteristic formula
[53], which is a logical formuia that completely characterizes a transition system. For the
latter, we introduce a suitable notion of equivalence based on bisimulation [45].

The rest of the paper is organized as follows. In Section 2, we present our representation
formalism in detail. In Section 3, we discuss the main feature of the representation
formalism by illustrating several examples. In Section 4, we present the reasoning
formalism and show its ability to express a wide variety of dynamic properties. In
Section 5, we show by means of examples, the use of the reasoning formalism for reasoning
about actions in the proposed framework. In Section 6, we devise a suitable reasoning
technique for model checking in our setting, by reducing it to a standard setting. In
Section 7, we discuss the relationship between model checking and logical implication, and
the issue of equivalent descriptions. In Section 8, we draw some conclusions and sketch
some possible future research directions.

2. Representation formalism: A process algebra with global store

We represent dynamic systems in terms of possible evolutions of the system caused by
actions. We call configuration the state of the system at a point of its possible evolutions.
A configuration is represented as a pair:

(p.o)

where p is called process and o is called global store. Intuitively, the process describes
all the activities that are being performed by the agents in the system—or to be precise,
the status of such activities in the current configuration. The global store describes the
properties characterizing the current configuration that do not involve activities being
performed. As the activities in the process are performed, both the global store and the
process evolve, and hence the configuration of the system changes.

4 In this way we address the simplified variant of the frame problem that arises in our setting.
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We formalize possible global stores simply as propositional interpretations. Let Prop be
a finite set of propositions of propositional logic (ranged over by A, B, ..., possibly with
a subscript). A global store ¢ is a propositional interpretation over Prop. Given a global
store o and a proposition A € Prop, o (A) = 1t if the fact denoted by A is true in o and
o (A) =ff if the fact denoted by A is false in o.

Before formalizing processes, we need to introduce elementary actions. Indeed, a
process carries the information on “which elementary actions are possible next”, and for
each of such actions, “what is the process left to be performed afterwards”.

We consider two kinds of elementary actions:

— Atomic actions which are basic uninterruptible actions executed by an agent. We

assume the set of all possible atomic actions to be finite.

~ Synchronized actions which are constituted by any nonempty set of atomic actions

performed together by various agents. Intuitively, to execute a synchronized action
means to execute a set of atomic actions simultaneously as a unity. That is, the
execution of each atomic action in a synchronized action, implicitly relies on the
feedback of the executions of the others.

Each action has some effects on the global store. The specification of such effects is
supplied separately from the process by defining an effect function. The effect function
specifies the effects of each atomic action with respect to different conditions on the global
store. On the base of such an effect function, a successor-state function is defined which,
given a global store and an atomic or synchronized action, returns the set> of possible next
global stores. ©

Besides effects, each action has typically some associated preconditions, i.e., conditions
under which an action can be performed. In our setting, action preconditions are specified
within the process. This treatment provides us with the capability of describing action
preconditions which depend not only on the status of the global store but also on the
status of the process. So a process can, for instance, dynamically block the possibility
of executing an action in some configurations when certain activities are being performed.

2.1. Atomic actions

Let Act be the finite set of all possible atomic actions (ranged overby a, b, ..., possibly
with a subscript).

We define an effect function effct that associates to each action a € Act, a finite set of
pairs of premise and effect:

effct(a) = {1, E1). ..., (n, En)}

where for each pair (y;, E;):
— The premise ¥; is a propositional formula over Prop describing the properties the
global store must satisfy so that the corresponding effect E; can be applied.

5 Recall that actions are generally nondeterministic, so we have a set of (rather than a single) possible next
global stores.
6 Such an approach for specifying effects is quite similar to that of the .A-family action languages [23,39].
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— The effect E; is a set of literals—atomic propositions or their negations—over Prop
that describes a possible effect of the execution of action @ under premise ;. The
literals in E; are required to be true in the successive global store.

Each pair (¥, E;) in effct(a), can be intuitively interpreted as an assertion that if the
premise v; is true in the current global store, then there is a possible execution of a that
causes the literals in E; to be true in the resulting global store. In other words, the action a
under the premise v; has E; as possible effect.

Next, we introduce a simple update operator o that, given an interpretation o and a set

of non-contradictory literals £, returns a new interpretation o’

Definition 2.1. Let o be an interpretation over Prop and L a set of non-contradictory
literals over Prop. We define the update operator o (infix) as follows: YA € Prop,

b4 Ael,
(coL)A) =1 f —~AeL,
0(A) A¢Land-A¢L.

Intuitively, the operator returns an interpretation that satisfies the literals in £, and retains
the value of the original interpretation o for those literals not occurring in L.

Making use of the above update operator, we define a successor-state function that
specifies how an atomic action affects the global store.

Definition 2.2. Let a be an atomic action, and o a global store (i.e., an interpretation over
Prop). The set of possible global stores obtained by executing a in o, denoted by o/a, is
the set of all interpretations:

ool

such that

re E if 3y st. (¥, E) € effct(a) and o (V) = 1t,

) otherwise,
— £ does not contain contradictory literals.

Intuitively, the set o /a of alternative global stores resulting from executing action g on
o is formed by one alternative updated global store for each effect E of a whose premise
¥ is satisfied in o. For each E, the resulting global store is equal to ¢ o E, that is, it is
identical to o except that the values of the atomic propositions occurring in E are changed
so as to make E true.

Observe that action a is nondeterministic (with respect to the effects on the global store)
in o—i.e., o/a is not singleton—if more then one premise in effct(a) is satisfied. It is
deterministic (with respect to the effects on the global store)—i.e., o /a is singleton’ —if
just one premise is satisfied.

7 Note that even if o /a is singleton, there may still be more than one resulting configurations since the current
process may evolve in several possible ways by performing a.
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By definition, if no premise in effct(a) is satisfied then o/a = o, i.e., the action has no
effect (though it may still be performed).

Finally, if an effect E in effct(a) is contradictory, it will not generate a possible resulting
global store in o/a. In particular, if every effect E that has its premise satisfied is
contradictory, then action a cannot be executed (thus influencing the preconditions for
performing a).

2.2. Synchronized actions

For synchronized actions (ranged over by «, possibly with a subscript), we use set
notations with their obvious meanings. In particular, we denote by {ai,...,a,} the
synchronized action composed by ay, ..., a, € Act. Observe that as a special case, we
have the synchronized action {a} which is in fact simply the atomic action a, i.e., every
atomic action is vacuously a synchronized action as well.

We extend the previously defined successor-state function so as to cope with synchro-
nized actions as follows,

Definition 2.3. Leta = {ay, ..., a,}, with n > 1, be a synchronized action, and o a global
store (i.c., an interpretation of the propositions in Prop). The set of possible global stores
obtained by executing «, denoted by o /a, is the set of all interpretations:

oo (LijU---ULy,)

such that, fori =1, ..., n,
c E if 3y st. (Y, E) € effct(a;) and o (Y) = 11,
- L=
#  otherwise.
— L1 U---UL, does not contain contradictory literals.

Observe that o/{a} = o/a. Intuitively, the effects of a synchronized action are the sum
of the effects of the participating atomic actions. For example, let @ and # be two atomic
actions whose applicable effects in a given configuration o are (A}, {B} for a and {C, D)
for b. That is, a is nondeterministic and its effect is either to set A to true, or to set B
to true in the resulting global store, while b is deterministic and its unique effect is to
set both C and D to true. The effect of the synchronized action {a, b} is either to set
A,C, D to true in the resulting global store, or to set B, C, D to true. In other words,
{a, b} nondeterministically leads to a global store, where either A, C, D is true and all
other atomic propositions, including B, remain unaffected, or B, C, D is true, and all other
atomic propositions, including A, remain unaffected.

For actions a, ay, az, with effct(a) = effct(a)) = effct(ar), it is easy to check that,
if a is deterministic in o—i.e., o/a is singleton—then ¢ /a = o/{a;, a;}. However, if a
is nondeterministic in o—i.e., o/a is not singleton—then executing {a;, a} may have
different effects with respect to executing a. Generally the nondeterminism of {ai, a>}

8 In fact, it has often been noticed that state change’s laws may influence preconditions of actions, see, for
example, [40].
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increases with respect to that of @: {a|, ap} still has all the effects a has, but furthermore
it allows to combine such effects in pairs. For example, consider some resources and two
consumers each consuming one resource at a time. Their actions have the same effect: to
consume one of the resource. If two consumers take the action simultaneously, then two
resources will be taken out, while if only one consumer takes the action, there will be only
one resource taken out.

Let us now consider action {a, b}, where the only applicable effect of a is {A} and the
only applicable effect of b is {—A}. Then the set of alternative global stores resulting from
executing {a. b} is empty: o/{a, b} = @. This means that the synchronized action {a, b}
cannot be executed, i.e., the atomic actions g and » cannot be synchronized. In general,
in our setting, the effects of the atomic actions that constitute a synchronized action must
be compatible in order to perform the synchronized action. The intuition behind is this:
synchronizing two actions means not only to perform them at the same time, but also
to perform each of them taking into account the feedback from the others. Actions with
conflict effects cannot be synchronized. For example, pushing and pulling a handle cannot
be synchronized.

Observe the difference between performing together actions @ and # when they take
into account the feedback of each other (as we assume in synchronized action {a, b})
and performing together @ and b when they are fully independent. If @ and b are
independent, it is reasonable to assume that they can be performed together even though
they have contradictory effects.® The contradiction can be resolved into nondeterminism.
For example, let {A} and {—A} be the only applicable effect of @ and b, respectively. Botha
and b try to set the proposition A to the desired value independently. Nondeterministically,
one of the two actions has “the last word” and succeeds. Hence, two resulting situations
are possible: one in which A is true, and another in which A is false. This intuition is
formulated in our setting by adopting an interleaving semantics for concurrent processes
as in CCS (see below).

Finally, note that we have assumed that the effects of synchronized actions are the sum
of those of the component actions. This is sufficient for most of the purposes, especially
when we consider the additional modeling power that processes give us. Several alternative
proposals for specifying effects of “compound elementary actions™ have been considered
in the literature, e.g., [2,5,24,42,50]. Many of these proposals are compatible with our
framework (especially those based on .A-family action languages [2,5]). In general, our
framework applies whenever it is possible to provide a successor-state function from global
stores to sets of global stores.

2.3. Processes

We adopt CCS-style constructs to combine elementary actions into processes. CCS, i.e.,
Calculus of Communicating Systems, is a well-known formalism for expressing concurrent
processes, which includes processes constructs for sequence, choice, parallel composition,
and restriction [45]. We suitably extend CCS in order to deal with global stores and
synchronization of multiple actions.

9 Discussions on this issue may be found in, e.g., [5].
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Due to the appearances of recursions, process equations P = p are used to define
processes. Here P is a process name and p is a process expression (or simply process).
Each process name is associated with a unique process definition. We will use Proc to
denote the set of process names.

Processes follow the syntax below:

pi=nl|Pl@—a)plpi+p2lp1lp2lp\y

where nil denotes a predefined atomic process, P is a process name defined in Proc,
¢ denotes a propositional formula over Prop, a denotes an atomic action in Act, and y
denotes a set of expressions of the form ¢ — ¢ with ¢ a propositional formula over Prop
and g a propositional formula over Act.

Intuitively, process constructs have the following meaning:

(1)
(2)

(3)
4

)

nil represents the termination of a process.

(¢ — a).p is the process which, under the “precondition” ¢, is capable of
performing the action a, and then behaves as the process p. This term can be viewed
as an extension of CCS-term a.p where no preconditions are specified.

p1 + p2 represents the alternative composition of p; and p;.

Pt || p2, the parallel composition of p; and p3, is the process which can perform
any interleaving or synchronizations of the actions of p; and p».

p\y is the process obtained from p restricting the allowed actions to those satisfying
the constraints in y, i.e.:

{e |V(p — o) € y.(0(¢p) =1t implies a(p) = 11)}

where o (¢) denotes the truth-value of ¢ in o, and a(g) denotes the truth-value of @
in the interpretation over Act obtained by assigning the value # to the atomic actions
in @ and ff to those in Act — . The restriction construct can be used to dynamically
restrict the possibility of executing synchronized actions, thus specifying “which
group of actions can be synchronized at what time”. Note that this construct is an
extension of the CCS construct -\y, where y is simply a set of atomic actions that
are not allowed.

The semantics of a dynamic system is given in terms of the transition relation _ = _
defined as the least relation satisfying the set of structural rules in Table 1. Such structural
rules have the following schema:

ANTECEDENT

SIDE-CONDITION

CONSEQUENT

which is to be interpreted logically as:

Y(ANTECEDENT A SIDE-CONDITION => CONSEQUENT)

where V(...) stands for the universal closure of all free variables occurring in (...). 1% In
case either the ANTECEDENT or the SIDE-CONDITION is missing, they are interpreted as

frue.

10 Observe that, typically, ANTECEDENT, S[DE-CONDITION and CONSEQUENT share free variables.
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Table 1
Structural rules

Act: 7 , whereo(¢) =1, o’ €a/{a}
(¢ = a).p.0)~—(p,o’)

3 [
(p,o)—(p.0o")
Def: —me7m —8 ¥ —— P=p

(P,0) = (p' 0"

(p1.0) >(p}.0N (p2.0) > (ph.a")
Sum; : ~ Sum; : -
(p1+p2,0) —(p}.0") (p1+ p2.0)—>(ph.0")
(p1.0) > (p}.0") (P2.0) —>(ph.a")
Inty : P Inty : =
(p1 } p2.0) —(p} |} p2.”) (p1 l p2.0)—(p1 || ph. 0"

! ‘ot LI
S (PI,U)_’(P]J’]) (PZvU)—’(PQ,Uz)
yn :

P where o’ € 0/0) Uarp
! 7 !
(1l p2.o) —>(py ll P2, 07)

, ) _‘z_) r‘ /)
Res: ok w0 . where V(¢ — g) € y. (0(¢p) = tt implies a(p) =17)

(P\y, o) > (p"\y,0")

The rules in Table 1 have the following intuitive meaning:

Act: The configuration ((¢ — a).p,o) can evolve to the configuration (p,c’) by
executing the action {a}, provided that the precondition ¢ is true in o, and ¢’
is a possible global store obtained by executing {a} in 0, i.c., o’ € a/{a}.

Def: The configuration (£, o), where P = p, can evolve to the configuration (p’, o’)
by executing the (synchronized) action «, provided that (p, o) can.

Sum: The configuration (p; + p2,0) can evolve to a configuration by executing the
(synchronized) action «, provided that either (p;, o) or (p2, o) can evolve to that
configuration.

Int: The configuration (p; || p2,0) can evolve to the configuration (p| || p2,0")
by executing the (synchronized) action o, provided that (p1, o) can evolve to
(p}.0') by executing «. Similarly, (p1 || p2, o) can evolve to (p || p},o”) by
executing ¢, provided that (p2, o) can evolve to (p}, o) by executing .

Syn: The configuration (p || p2,0) can evolve to the configuration (p] || ph,0') by
executing the (synchronized) action «; U a2, provided that (p;, o) can evolve to
(p}. ') by executing 1 and (p2, o) can evolve to (pj, o’) by executing a3.

Res: The configuration (p\y.o) can evolve to the configuration (p’\y,c’) by
executing the (synchronized) action «, provided that (p,o) can evolve to
(p’,0’) by executing «, and « is allowed by y, ie., Y(¢ — ) € y. (o(¢) =
1t implies a (@) = 1t).
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Given an initial configuration (pinjs, Ginir), the structural rules in Table 1 allow us
to associate to a configuration a transition system (Kripke structure) whose states are
the configurations reachable from (pini, Oiniz), via the transitions inferred by using the
structural rules,

Let us formally define the notion of transition system, and the notion of transition system
generated by a configuration.

Definition 2.4. Given a set P of propositions, and set A of atomic actions, a transition
system is a triple (S, {Rqy | @ € 24}, IT), with a set of states S, a family of transition
relations Ry, € S x S, and a mapping /7 from P to subsets of S.

Definition 2.5. Given a configuration (pinir, Oinir), We call (pinir, Ginit)-generated transi-
tion system, the transition system 7 = (S, {Rq @ € ZA}, I7), with P = Prop, A = Act,
and
— S =A{(p, o) | (Pinit Oinit) (—)*(p, o)}, where _ = _is the least relation satisfying
the structural rules in Table 1, and _(-—=)*_ is its reflexive transitive closure;
~ ((p.0), (p'.0")) € Ry iff (p,0) > (p, 0");
- (A ={(p.o) |o(A) =1}

The transition system generated by the initial configuration describes all the possible
configuration’s evolutions, and hence constitutes our model of the dynamic system.

3. Examples of descriptions

The examples in this section illustrate the main aspects of the proposed representation
formalism.

3.1. Russian Turkey Shoot

In this first example, we mainly focus on those aspects of the formalism that are common
to most formalisms for reasoning about actions, in which the notion of process is not put
forward. In particular, we show various instances of effects, premises, preconditions as well
as instances of deterministic and nondeterministic actions. Notably, the process described
in the example corresponds to the one implicitly assumed in those formalisms where no
process is explicitly specified. The transition system obtained from the description is also
illustrated.

The scenario of the example is a variant of the well-known Yale Shooting scenario in
which we have a turkey that gets killed if it is shot by a loaded gun. The variation consists
in adding an extra nondeterministic action spin that represents spinning the gun’s bullet
cylinder. This action has no effects if the gun is unloaded. If the gun is loaded instead, then
after the action spin, the gun can either still be loaded or be unloaded. 1

11 For sake of simplicity, we make the (somewhat unrealistic) hypothesis that if the bullet is not in the shooting
chamber, then it is not in the cylinder either. It is easy to modify the representation of the scenario in order to
consider the position of the bullet in the cylinder (we invite the reader to try).
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We formalize the scenario by introducing a set of propositions to model the relevant
facts, and a set of atomic actions that change the values of these facts:

Prop = {Loaded, Alive}
Act = {load, shoot, spin,wait}
The effects of the actions are:

effct(load) = {(#t, {Loaded})}

effct(shoot) = {(Loaded, {—Alive, —~Loaded})}

effct(spin) = {(Loaded, {Loaded}), (Loaded, {—Loaded}}}
effct(wait) = {}

which can be read as follows. Performing load results in having the gun loaded.
Performing shoot, under the premise of having the gun loaded, results in having the
turkey killed and the gun unloaded. If the gun is unloaded, performing shoot has no
effect. Performing spin, under the premise of having the gun loaded, results in either
having the gun still loaded, or having it unloaded. If the gun is unloaded, performing spin
has no effect. Finally performing wait has no effect in any cases.

In this scenario, at any moment, we can (1) load the gun if it is not already loaded; (2)
shoot the turkey; (3) spin the cylinder; (4) wait. That is, at any moment, to perform the
action 1oad, the precondition —Loaded must be satisfied, while for the other actions, no
preconditions are required (i.e., their preconditions are vacuously #). We formulate these
requirements by means of the following process:

P = (—Loaded — load).P + (&t - shoot).P+ (#t = spin).P
+ (1t > wait).P

Observe that process P is very simple: it performs an action, whose precondition is
satisfied, and becomes itself. In other words, while the configuration evolves since the
effects of the actions change the status of the global store, the process remains always in
the same status. Obviously, in this case, the number of possible configurations depends
only on the number of possible global stores, which is at most 2771,

The form of the above process is typical of those formalisms for reasoning about actions
that concentrate only on the specification of elementary actions, specifying preconditions
and effects for them, and do not specify explicitly any process. In these cases, the following
process is, in fact, implicitly assumed (note that it has exactly the form of the one above):

P= Z(qb,» — a;).P

where ¢, are the actions and ¢; are their preconditions.

Once we have specified the process and how actions change the global store, for every
initial global store, it is possible to compute all possible evolutions of the system. For
example, let the initial configuration be described by (pini, Gini) With pini; = P and
Oinir = {Alive, —Loaded}. From (pjni;, Oinit), using the structural rules in Table 1, we
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Fig. 1. Transition system for the Russian Turkey Shoot.

generate the transition system 7 in Fig. 1, which summarizes in a graph all possible
evolutions of the configurations of the system. For example, a possible evolution is:

load i

(P, (Alive, ﬁLoaded})—O?—) (P.{Alive, Loaded}) wait, (P, {Alive, Loaded})
—s—ho—o—t> (P, {—alive, ~Loaded})

that results in having killed the turkey. Another example is:

(P, {Alive, —\Loaded})ﬂi(P {alive, Loaded})—s—p—li(P, {Alive, "Loaded})

ihg_q_t_) (P, {alive, ~Loaded})
that results in not having killed the turkey. Another one is:

(P, {Alive, —vLoaded})ﬂ(P {alive, Loaded})——g(P {Alive, Loaded})

~S£Oit—> (P, {—Alive, "Loaded})
that results in having killed the turkey.

What about if we do not have complete information on the initial situation? A straight-
forward technique to deal with this is to trade the lack of information with nondeterminism.
For example, we may prefix the actual process with a sequence of dummy atomic actions
that nondeterministically lead to several global stores according to incomplete informa-
tion on the initial situation. In the above scenario, we may introduce two dummy actions
initAlive and initLoaded. Assuming that initially it is known that the turkey is
alive but it is not known whether the gun is loaded:

— we specify

effct(initAlive) = {(rr, {Alive})}
effct{(initLoaded) = {(#t, {Loaded}), (¢t, {—Loaded})}

— we prefix the above process P by an initialization sequence (the order of the dummy
actions can be arbitrary) getting the new process

= (#t— initAlive).(#t - initLoaded).P

— we arbitrarily set the initial global store 6, = {—Alive, —=Loaded}.
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Observe that the new initial configuration (Q, o) is forced to evolve by first executing the
initialization sequence, and then evolve according to the original process P. After executing
the initialization sequence, our partial knowledge on the initial situation will be correctly
taken into account.

3.2. Lifting a table

In this example, we illustrate a process denoting the concurrent activities of more
agents, showing parallel execution of processes (interpreted by interleaving semantics) and
synchronization of atomic actions. Interrupts are also briefly discussed.

The scenario is the following. A vase is on top of a table. If just one side of the
table is lifted then the vase falls onto the floor. While if both sides of the table are lifted
simultaneously, the vase does not fall.

We formalize the scenario by introducing the following primitive propositions and
atomic actions:

Prop = {VaseOnTable, DownLeftSide, DownRightSide}
Act = {vaseFalls,downLeft, downRight, upLeft, upRight}
The effects of the atomic actions are the obvious ones:

effct(vaseFalls) = {(¢, {~VaseOnTable})}

effct(downLeft) = {(—=DownLeftSide, {DownLeftside})}
effct(downRight) = {(—DownRightSide, {DownRightSide})}
effct(upLeft) = {(DownLeftSide, {(—~DownLeftSide})}
effct(upRight) = {(DownRightSide, {—-DownRightSide})}

where ¢ = ((DownLeftSide A —DownRightSide) VvV (—DownLeftSide A
DownRightSide)) A VaseOnTable.

In this scenario, we have three processes going on concurrently: agent A; who may
either raise or put down the left side of the table; agent A who is in control of right side of
the table; the environment Env that makes the vase fall off the table as soon as one of the
sides of the table is risen while the other side is not. We model these concurrent activities
by a process LT defined as follows:

Aj] = (—-DownLeftSide — downLeft).A;
+ (DownLeftSide — uplLeft).A;

A, = (—DownRightSide — downRight).A,
+ (DownRightSide — upRight).A,

Env = (¢ — vaseFalls).Env
LT = (&1 || A¢ || Env)\{¢p — vaseFalls A —others}

where others denotes the disjunction of all atomic actions other than vaseFalls.
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(L1, {v,L,-R}) (LT, {~¥,L,~R}) @r1,{~V,L,R})

(LT, {V,L,R})

(LT, {V, -L,R}) (LT, {—V,-L,R}) (LT, {-V, =L, —R})

Fig. 2. Transition system for the Lifting a Table.

Observe that the vase can fall only when the precondition ¢ is satisfied. Furthermore,
because of the restriction -\{¢ — vaseFalls A —others} in LT, whenever the vase has
the possibility to fall, it is forced to do so, while all other atomic actions are blocked. !

Let the initial configuration be: !

(Pinits Oinit) = (LT, {VaseOnTable, DownLeftSide, DownRightSide}).

By making use of the structural rules in Table 1, it is possible to build the corresponding
transition system, as shown in Fig. 2. The figure uses obvious abbreviations to denote
propositions and actions: propositions VaseOnTable, DownLeftSide, DownRight
Side are denoted by V, L, R, respectively, and actions vaseFalls,downLeft,
downRight, upLeft, upRight are denoted by v£, dl, dr, ul, ur, respectively. The
initial configuration (pin;;, 0inir) 1s denoted by the node labeled by (LT, {V, L, R}).

It is possible to check that the behavior of the system is the expected one. For instance,
in (Pinir, Oinit), the subprocess Env cannot execute since o (¢) =ff. Instead both A; and A,
can proceed performing upLeft and upRight, respectively. However, unless upLeft
and upRight synchronize, the condition ¢ will be true in the successive configuration
and hence the vase will be forced to fall. If the synchronized action {upRight, upLeft}
is performed, then ¢ will not be true and hence the vase won’t fall.

Note that, the process Env in LT can be seen as a process which, when certain conditions
are met (¢), performs an interrupt (the action vaseFalls) and allows for the further
execution of the other concurrent processes (A; and A,) only when the interrupt is
completed (the action vaseFalls terminates). More generally, an interrupt will set the
truth-value of certain flags that are in the preconditions of other actions, thus disallowing
their executions. In this way, we can build interrupting processes that block the execution of
the other processes, execute without interferences from them, and reset the flags only when
the interrupt has been fully handled allowing for the other processes to be resumed and

12 Note that, if we weaken the restriction in LT to be \{¢ - vaseFalls},then we will still force vaseFalls
to be executed whenever ¢ is true, but the action to make the vase fall will be allowed to synchronize with other
actions.

13 Note that LT behaves correctly under any other initial global store. And it is easy to verify that it generates
the same transition system from every initial global stores (obviously modulo the initial configuration).
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continue. Similarly, we can also build processes that block the execution of other processes,
without ever allowing them to regain the control. 14

3.3. Relay race

In this example, we show a more complex process constituted by various subprocesses in
which synchronization plays a key role. The example also illustrates a simple but effective
technique to deal with actions that are not instantaneous, but have a duration (see [48,50,
59]). Namely, an action that has a duration of “running” is modeled by:

(1) an (instantaneous) atomic action startRun denoting the initiation of the action;

(2) aproposition Running in the global store denoting that the action has started but

not yet completed;

(3) an (instantaneous) atomic action endRun denoting the termination of the action.

The scenario is a “relay race” with two competing teams, each composed of two runners.
The rules of the race are the following:

(1) when the “go” signal is given, the first runner of each team may start running;

(2) when the first runner reaches the “100 meters line”, the second runner may start

running;

(3) when the two runners of the same team are both running, the first runner may pass

the baton along to the second runner;

(4) the team, whose second runner arrives first to the “finish line” with the baton, wins.

We formalize the scenario by introducing the following primitive propositions and
atomic actions (i = 1, 2 denotes the team, j = 1, 2 denotes the runner):

Prop = {Running; ;, 100mLinePassed; , Baton,,,
FinishlinePassed;s,Won; |i, j=1,2}
Act = {startRun;;, endRun; ;, passl00mLine;;, passFinishLine;,
giveBaton; |,getBaton;», wins;,go |i,j=1,2}
The effects of the atomic actions are the obvious ones:
effct(startRun; j)) = {(—Running; ;, {Running; ;}}}
effct(endRun; ;)) = {(Running; ,, {—~Running; ;}}
effct(pass100mLine; ) = {(—100mLinePassed; |,
{100mLinePassed; 1})}
effct(passFinishline; ) = {(—-FinishLinePassed;,
{FinishLinePassed; 2}}}
effct(giveBaton; |) = {(Baton; i, {—~Baton; 1})}
effct(getBaton; ;) = {(—Baton; 2, {Baton; 2})}

14 prigrities among processes can also be easily modeled, by inserting suitable flags in the preconditions of their
actions.
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effct(wins;) = {(—(Won; VvV Wony), {Won; })}
effct(go) = {}

The various activities involved in the scenario are described by the following processes
(we abbreviate (#f — a).p by a.p and ##t — ¢ by ¢):

Runner;; = startRun; ;.pass100mLine; ;.giveBaton; |.endRurny 1.nil
Runner;» = (100mLinePassed; | — startRun;;).getBaton; ;.
passFinishLine;;.endRun, ».nil
Team; = (Runner; | || Runner; »)\{(giveBaton; | = getBaton; )}
CheckWinner =wins.nil+winss.nil
RR = (Ready — go).(Team, || Team || CheckWinner)\
{(passFinishLine| s =winsi) A (passFinishLine) ; =winsy))
where
Ready = Aj(Aj—Running; ; A ~100mLinePassed;| A
—FinishLinePassed;; ABaton; A #Baton;» A ~Worn;).

Let us explain the above processes. The process Runner; | describes the activities of
the first runner of the team i: the first runner starts running, passes the 100 meters line,
passes the baton along to the second runner, and ends running.

The process Runner; ;> describes the activities of the second runner of the team i: the
second runner starts running provided that the first process has already reached the 100
meters line, gets the baton from the first runner, passes the Finish line, and ends running.

The process Team; describes the activities of the team i. It consists of the concurrent
composition of the two processes Runner; | and Runner; ; with the restriction that the
actions giveBaton,; | and getBaton; > must be performed synchronously.

The process CheckWinner describes the activity that establishes if the first or the
second team wins.

The process RR describes all the activities of the system. It consists of the concur-
rent composition of the three processes Team|, Team; and CheckWinner prefixed
by the action go that starts the race under suitable preconditions, and with the restric-
tion that the actions passFinishline), and wins;, and, respectively, the actions
passFinishLine;; and winsj, must be executed synchronously, thus forcing the ac-
tivity described by CheckWinner to declare the true winner.

As in the previous examples, by using the structural rules in Table 1, it is possible to
build the transition system generated by the given initial configuration to make explicit all
possible evolutions of the scenario.

3.4. Translating While programs

As the last example, we show that the process description formalism presented here
can easily represent traditional programming constructs like “while” and “if-then-else”. In
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particular, we show how programs of a simple sequential programming language, called
While, can be translated into processes. While programs have the following syntax:

Su=alé;;6|if ¢ then § elsedy|while ¢pdod

where a is a generic atomic action whose effects are specified by the effect function
as before, and the other constructs are sequential composition, if-then-else, and while,
respectively.

To define the translation, we first introduce function tr defined inductively on the
structure of While programs. For every process p:

tria, p)=(t—a).p
1r(81; 82, p) = tr(éy, tr(d2, p))
tr(1f ¢ then 8; else éy, p) = (¢ — nop).tr(é1, p) + (—¢ — nop).tr(éz, p)
triwhile ¢ do &, p) = Q where @ is a new process name defined as:
Q = (¢ — nop).tr(8, Q) + (—¢ — nop).p

where nop is a special atomic action which has no effects on the global store. It is used to
reflect the fact that tests are assumed to make a transition. !> Then, we define the translation
of awhile program § as the process (3, nil).

Observe that the intuitive meaning of the constructs is correctly captured by the resulting
process. For example, while-loops are translated into processes that behave as follows:
first, the entering condition of the while is tested; if such condition is true then the process
behaves as the body of the while followed by the whole while-loop again; if the condition
is false then it exits the loop. 16

For example, the following fragment of control code of an elevator:

§ =while —~GroundFloor do goDownOneFloor;, openDoor

is translated into:

Q = (=~GroundFloor — nop).(tt — goDownOneFloor).Q +

(GroundFloor — nop).(tt — openDoor).nil

4. Reasoning formalism: the logic M,

Once we have had a representation of a dynamic system, we can use such a
representation to infer properties of the system, like the possibility to reach a configuration
where a certain property holds (i.e., where a certain “goal” is satisfied), or the invariance
of certain statements, etc.

15 1f such assumption is not made, the translation can be modified accordingly.

16 One could define derived structural rules for the various constructs of While on the basis of the associated
processes, and verify that such rules correspond to those usually associated to such constructs (see, e.g., [26]).
A thorough discussion on this is out of the scope of the paper.
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Among the various temporal and modal logics that have been proposed in the process
algebra literature for verifying properties of concurrent systems [17,28.43], we focus on
one of the most powerful logics of programs which is called modal mu-calculus ([19,32,
33,56,57]). Modal mu-calculus is a logic of programs, which is strictly more expressive
than logics like PDL, APDL, CTL and CTL*. It has been proposed as a logic for expressing
“temporal” properties of reactive and parallel processes in [9,12,36,54,55,62]. We refer to
the excellent tutorial article [55] for a thorough introduction on modal mu-calculus and its
use in the context of concurrent processes.

In this paper, we introduce an extension of standard modal mu-calculus, called M,
which allows for boolean combinations of atomic actions in the modalities, and thus, it is
suitable to verify properties of systems specified in our representation formalism.

4.1. The logic M,

The logic M, is basically constituted by three kinds of components:

— Propositions to denote properties of the global store in a given configuration.

— Modalities to denote the capability of performing certain actions in a given
configuration.

— Least and greatest fixpoint constructs to denote “temporal” properties of the system,
typically defined by induction and coinduction.

The formulae of M, are defined on the base of action formulae generated by the

following abstract syntax:

ou=alany |none|—g|o1Ao2l01 Vo2

where a € A for some fixed set A of atomic actions, any is a special atomic action denoting
the union of all actions in .4, and none is a special atomic action denoting the empty
(nonexecutable) action.

The meaning of a generic action formula is given by the satisfaction relation below,
where o is a set of atomic actions (denoting a synchronized action in general):

akEa iffaea

o &= any (always)

o« = none (never)

o =-o iff not @ =
alFoirne ffakFeandal=0
akFover iffaEpiorakE=oe

Note that not all constructs in action formulae are independent. In particular, we have:
none = a A —a, any = —none, 9 vV 02 = —~(—g| A —02).

Formulae of A1, are formed inductively from action formulae, primitive propositions in
some fixed set P, and variable symbols in some fixed set Var, according to the following
abstract syntax:

Di=Alt|ff| =P | D AP | DIV D2 (0P |[0]® | uX.P | vX.P | X
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where A is a primitive proposition in P, X is a variable symbol in Var, and g is an action
formula over A.

The symbols u and v can be considered as quantifiers, and in the sequel, we make
use of notions of scope, bound and free occurrences of variables, closed formulas, etc.
The definitions of these notions are the same as in first-order logic, treating 4 and v as
quantifiers.

As usual in mu-calculus, for formulae of the form uX.®@ and vX.®, we require the
syntactic monotonicity of @ with respect to X: every occurrence of the variable X in @
must be within the scope of an even number of negation signs. This requirement guarantees
the existence of the least and the greatest fixpoints associated with @ (see below).

The semantics of M, is based on the notions of transition system and valuation. Given
a transition system 7, a valuation V on T is a mapping from variables in Var to subsets of
the states in 7,

Given a valuation V, we denote by V[X/£], the valuation identical to V except for
VIX/EI(X)=¢&, ie., for every variable Y,

& ifY =X,

VIX/ENT) = { V(Y) ifY #X.

Let T = (S, {Rqy | @ € 24}, IT) be a transition system with fT mapping propositions
in P to subsets of S, and V' a valuation on 7. We assign meaning to M, formulae by
associating to 7 and V an extension function (~)\7;, which maps M,, formulae to subsets
of S. The extension function (-)g is defined inductively as follows:

(A, =m@4cs
wl=s
5 =0
(—®), =8 —(®)],
(@1 A PDT = (@] N ()]
(@1 v &), = (@] U (@]
(@)®)] ={s €S |35 @ Foand (s,5") € Ry and s’ € ()]}
([Q]¢>)‘7; ={s€S|Va, s al=pand (s,5") € Ry implies s’ ((D)g}
wX.®), =({ESS1(@Fy/e €}
wx.0)) = J{ESS1E S @)y e}
(X)}, =V(X)S 8
Intuitively, the extension function (-)g assigns to the various constructs of M, the

following meanings:
~ The boolean connectives have the expected meaning.
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— The extension of {g)@ includes the states s € § such that starting from s, there is an
execution of some action satisfying g that leads to a successive state s’ included in the
extension of @.

— The extension of [p]® includes the states s such that starting from s, each execution
of an action satisfying ¢ leads to some successive state s’ included in the extension
of @,

— The extension of (£ X.® is the smallest subset £, of S such that, assigning to X the
extension &, , the resulting extension of @ is contained in £,,. That is, the extension of
wuX.P is the least fixpoint of the operator AE .(4")]7;[ X/E) The syntactic monotonicity
of @ with respect to X guarantees the monotonicity of such operator and hence, by
the Tarski—Knaster Theorem [58], the unique existence of the least fixpoint.

— Similarly, the extension of vX .9 is the greatest subset £, of S such that, assigning
to X the extension &,, the resulting extension of @ contains £,. That is, the
extension of vX. @ is the greatest fixpoint of the operator AE.(P )'5[ X/ET The syntactic
monotonicity of @ with respect to X guarantees the monotonicity of such operator
and hence, by the Tarski-Knaster Theorem [58], the unique existence of the greatest
fixpoint.

Note that not all the M, constructs are independent. In particular, we have: ff =
ANDA tt=—ff; 1V P2 = (=P A D) [0]® = —{o)=P; and vX.P =
—uX.~P[X/-X], where ®[X/—~X] is the formula obtained by substituting all free
occurrences of X by the formula —X. We also use @ => &, as an abbreviation for
- v Dy,

Let us consider some interesting examples of M, formulae (we assume that the scope
of u and v extends to the right as much as possible):

(1) (o)1t expresses the capability of executing some action satisfying g.

(2) [o]ff states the inability of executing any action satisfying .

(3) (amy)#z A [—o]ff indicates the inevitability/necessity of executing some action

satisfying o.

(4) uX.® v (any)X expresses that there exists an evolution of the system such that ¢
eventually holds. Indeed, its extension £, is the smallest set that includes (1) the
states in the extension of @; and (2) the states that can execute an action leading
to a successive state that is in £,. In other words, the extension £, includes each
state s such that there exists a run from s leading eventually (i.e., in a finite number
of steps) to a state in the extension of @. Note the inductive nature of this property
which is typical of properties defined by least fixpoint.

(5) vX.® Alany]X—i.e., ~(uX.—P Vv {any) X)—expresses the invariance of @ under
all of the evolutions of the system. Indeed, its extension £, is the largest set of states
in the extension of @ from which every executable action leads to a successive state
which is still in £,,. In other words, the extension £, includes each state s such that
every state along every run from s is in the extension of ¢. Note the coinductive
nature of this property which is typical of properties defined by greatest fixpoint.

(6) uX.@ v ((any)tr A [any]X) expresses that for all evolutions of the system, @
eventually holds. Indeed, its extension £, is the smallest set that includes (1) the
states in the extension of @; and (2) the states that can execute an action and such
that every executable action leads to a state in £,,. In other words, the extension £,
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includes each state s such that every run from s leads eventually (i.e., in a finite
number of steps) to a state in the extension of @.
In general, M,, allows for expressing very sophisticated properties of dynamic systems,
such as forms of liveness, safety, and also fairness [55]. For example, the formula
vX.uY.[al(({b)tt A X) vV Y) expresses a fairness constraint: b is possible infinitely often
throughout any infinite length run consisting wholly of a actions.

Finally, note that if @& is closed (no free variables are present in @), as in the examples
above, then the extension of (GD)]{ is in fact independent of the valuation V. It is usual to
say that a closed @ is true in a state s of the transition system T iff s € (q))g for any
valuation V (the extension of @ is in fact independent of V with & closed).

4.2. Model checking

In the setting proposed in this paper, the reasoning problem of interest is model checking:
given a transition system and one of its states, verify whether a certain closed formula is
true in such a state. The formal definition of model checking in our setting is then the
following one.

Definition 4.1. Let 7 = (S5, {Ry | € 2“4}, IT) be a transition system with 77 mapping
propositions in P to subsets of S, let s € S be one of its states, and let @ be a closed (no
free variables are present) M, formula. The related model checking problem is to verify
whether

se@®

where V is any valuation, since @ is closed.

In the following we abbreviate s € (45)17; by 7,s = @ orsimply by s |= @ referring
to 7 only implicitly.

5. Reasoning ahout actions

Having presented both the representation formalism and the reasoning formalism, we
can discuss how reasoning about actions is done in this setting. The basic idea is to use
model checking.

Specifically, given an initial configuration (pipir, Oinir) and a M, formulae @, we verify:

(Pinit, Tinit) o

where the transition system we are implicitly referring to is the (piy;r, Oinir)-generated
transition system.

Let us consider some examples. First, consider the Russian Turkey scenario in Section 3
with pjn;; = P and g,y = {Alive, —Loaded}. We can verify that:

(Pinir> Oiniz) = ({1oad)(wait){shoot}tt) A ([load]lwait][shoot]—Alive)

that is, the sequence of actions load, wait, shoot can be performed and (necessarily)
results in having killed the turkey. Observe that, this is a typical instance of the so called
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projection problem: given an initial configuration and a sequence of actions, determine the
truth-value of a certain fact in the resulting configuration.
The nondeterminism of the action spin is reflected in the following property:

(Pinit» Oinir) = ({Load)(spinj)(shoot)Alive) A
({load)(spin}){shoot)—-Alive)

that is, the sequence of actions load, spin, shoot may result either in having killed the
turkey or not. However it (necessarily) results in having unloaded the gun, since

(Pinit, Oinit) = ({Load}{spin){shoot)fr) A ((Load][spin][shoot]-Loaded).
Consider now the following instance of model checking:

(Pinit, Oinit) = 1 X .¢pg v (any) X.

It expresses the existence of a (not yet determined) sequence of actions that, starting from
the initial configuration, can reach a configuration where ¢, is true.

If only deterministic atomic actions are allowed, then the one above is a formalization
of the planning problem: it asks for a sequence of actions—a plan—to reach the goal ¢,
starting from the initial configuration. Thus, we may do planning by using model checking
techniques.

If nondeterministic atomic actions are allowed, the above formalization of planning is
too weak since it expresses only the possibility that a certain sequence of actions achieves
the goal. For example, in the Russian Turkey scenario

(Pinits Oinit) = uX.—Alive V (any)X

is verified by the sequence of actions load, spin,shoot, yet the execution of
load, spin, shoot does not necessarily achieves the goal of having killed the turkey,
as shown in Section 3.1.

However, we can still formalize the planning problem as follows:

(Pinit. Oinir) = nX g v \/ (@)t AlalX

acAct

which expresses the existence of a (not yet determined) sequence of actions that, starting
from the initial configuration, necessarily reaches a configuration where ¢, is true. For
example, in the Russian Turkey scenario

(Pini: Onit) = pX.—~BLive v \/ (@)t A la]X

acAct

is verified by the sequence of actions load,wait, shoot, but not by load.spin,
17
shoot.

17 1f concurrency is taken into account, the planning problem become more involved, since issues such as which
agent is in control of a given atomic action, which agent is supposed to execute a given plan (or part of a plan),
etc., become relevant. Moreover, other forms of planning, which are closer to the synthesis of a control process
than to the generation of a sequence of actions, may be more appropriate in this context. Although some of these
issues can be tackled within the proposed setting. we do not discuss them further here.
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Next, consider the case discussed at the end of Section 3.1 where we have incomplete
information on the initial situation (in particular, we do not know whether the gun is
loaded). Checking whether a property @ holds in the initial situation is reduced to checking
whether

(Q,84) E=[initAlivel{initLoaded]®

that is, checking whether @ is true in every configuration right after the initialization
sequence. '8 For example, even if we do not know whether the gun is loaded, we can
verify that there exists a plan to kill the turkey:

(Q,54) E=[initAlive][initLoaded] (uX.—-Al ivev \/ {a)it A [a]X)
acAct

It is easy to see that a possible plan is: 1oad followed by shoot.
Let us now consider the Lifting a Table scenario as formalized in Section 3. Let the
initial configuration be (pinjs, Oinir) With:

Pinit = LT and oy,;; = {VaseOnTable, DownLeftSide, DownRightSide}.

We can verify that if agents A; and A, raise the table synchronously, then the vase won’t
fall on the floor.

(Pinit> Oinit) = [upLeft AupRight][vaseFalls]ff.
Instead, if they do not synchronize, the vase falls off the table:

(Pinits Oini) = [(upLeft A —~upRight) V (—upLeft A upRight)]

[any]—VaseOnTable.

We can also prove that whenever the vase can fall, it does fall: 1

(Pinit> Oinir) = vX.((vaseFalls)tt = (any)it A [-vaseFalls]ff) A [any]X.

Finally, consider the Relay Race scenario as formalized in Section 3. Let the initial
configuration be (pjnir, Oinir) With piir = RR and oyy;; such that Ready is true. We can
verify that at the beginning, the action go must be executed:

(Pinit» Oinir) b= {go)tt A[—~gol ff

That is, in the initial configuration go is executable, and (synchronized) actions not
including go are not executable. In fact, it is easy to verify that no other atomic action
is executable.

We can also verify that both teams may win:

(Pinits Gini) = (X Wony V (any) X) A (uX.Won V (any) X)

That is, from the initial configuration, there exists an execution where team 1 wins and
there exists an execution where team 2 wins. Moreover, for all executions, either team 1 or
team 2 wins:

(Pinits Oinit) = 1 X.(Wony VvV Wony) Vv [any} X

18 Note that, it is always possible to execute the initialization sequence.
19 Even when we weaken the restriction in LT to be \{¢ - vaseFalls}.
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Furthermore, it is impossible that both teams win. Indeed, we can verify that as soon as
one of the team wins, the other cannot win anymore.

(Pinit> Ginir) = vX.((Wony = vY.—Wony A [any]Y) A
(Wonj =» vY.—Won; A [any]Y)) A [any]X

That is, in every configuration, if Won| (Wongy) is true, then Won; (Wony) is false from
then on along all possible configuration’s evolutions.

6. Reasoning techniques

In this section, we derive a technique to perform model checking within the proposed
setting. We do so, by devising two transformation functions:

— A transformation F from transition systems whose arcs represent sets of atomic
actions (synchronized actions) to transition systems whose arcs represent single
atomic actions.

— A transformation H from M, formulae, which allow for boolean combinations of
atomic actions in the modalities, to standard modal mu-calculus formulae, which
allow only for single atomic actions in the modalities.

The setting resulting from applying such transformations is a standard one for which
various model checking techniques have been developed (see, e.g., [19,55]). Hence, by
means of the transformations F and H, we can make use of such model checking
techniques.

The idea at the base of the transformations F and H is to reify transitions, 1.e., to
introduce a new state for each transition, so that the action formula is transformed into
a formula on the new state. Fig. 3 illustrates the reification:

— Fig. 3(a) illustrates the original transition from the state s to the state {. We have

that (s,7) € Ry and oy (o) is the propositional interpretation associated with s
(¢). It assigns to each primitive proposition A € P the truth-value 1 iff s € [T(A)
(r € [I(A)).

— Fig. 3(b) illustrates the resulting reified transition constituted by the transition from
the state s to a newly introduced state, denoted by (s, &, 1), and the transition from
(s, @, 1) to the state . We require that (1) (s, (s, &, 1)) € Ry, and ((s, @, 1), ) € Ru,;
(2) o5 and o; be the propositional interpretations associated with s and ¢, respectively
(the same as in the original transition); (3) o, be the propositional interpretation
associated with (s, «, t), which assigns to each atomic action a € A the truth-value

niffaca.
Os Ot Os T Tt
o wh wa
s t s (s,e,t) t
(a) (b)

Fig. 3. Transition reification: (a) the original one; (b) the transformed one.
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Definition 6.1. Let A be a set of actions and P a set of propositions. Given transition
system T = (S, {Ry | @ € 24}, IT) with [T mapping propositions in P to subsets of S, we
define:

F(Ty=(S" {RL,.RE ). ITF)

Wi
where

SF=SU{s,a,0) |a T A, (5,1) € Ra)

RE, =16 (s,0.0) [@ S A, (s.1) € Ra}

RE, ={(s.0.1),) | S A, (5,1) € Rq}

I (p)={s|sel(p)} foreachpeP

17F(a)= ((s,0,8) | (5,5 e Ry, aca} foreachae A.

In addition, given a valuation V on 7, we define:

FOYX)={s|seV(X)} foreach X € Var.

Observe that, arcs in the transition system F(7') can only be labeled by either w; or w».

Definition 6.2. Given a M, formula @, we define H (&) inductively as follows:

H(A)=A H{(0)P) = (w1)(o A (w2) H(P))
H(m) =u H([o]®) = [wil(e = [w2]H (D))
H({) =ff H(uX.®)=uX.H(P)

H(~®) =—H(®) HWX.®)=vX.H(P)

H(®1 A Py) = H(P)) A H(P2) HX)=X

H(@® v ®))=H(P))Vv H(Py)

Observe that, H(®) is a standard modal mu-calculus formula, since only single actions
(w1 or wy) may appear in the modalities.

Theorem 6.3. Let transition system T = (S,{Ry | a € 2AY, ). The size of F(T) is
linearly bounded by the size of T .

Proof. For any transition system 7, let state_no.(7) and edge_no.(7T) denote the number
of the states in 7 and the number of the edges in 7, respectively. By the definition of
F, we have that state_no.(F(T)) = state_no.(T) + edge_no.(T), and edge_no.(F(T)) =
2 % edge_no(T). O

Theorem 6.4. Let @ be a M, formula. The size of H(®) is linearly bounded by the size
of d.
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Proof. Let size(®) denote the size of formula @. It is easy to verify by induction on the
structure of the formula @, that size( H(®)) < ¢ - size(P). O

Theorem 6.5, Let transition system T = (S, {Ry | € 2’4}. I1) and @ a M,, formula.
Then for every valuation V on T and for every s € S, we have:

se@y iff seH@)HEL-

Proof. First, we show by induction on the structure of ¢ that:
((s.5)YeRaanda =0) iff (s,0r,5") € (@)ﬁg}

Indeed, for ¢ = a: if (s, s') € Ry and « = a—i.e., a € a—then, by definition of F(7), we
have (s, @, s") € IT¥ (a); on the converse, if (s, «, s') € 17 (a) then, again by definition of
F(T), we have (s,5') € Ry and a € «a, i.e., o = a. For the other cases, the result follows
immediately by the induction hypothesis.

Now, we are ready to prove the thesis of the theorem. Without loss of generality, we
restrict our attention to formulae @ of the form:

Di=A|=D | DI AD| (0)P | uX.D | X.

The proof is given by the induction on the number of nested fixpoints constructs u X.®.
Base case. If no fixpoint constructs are present in ¢, then we can verify that the thesis
holds by the induction of the structure of @. All cases are immediate except the case:

. F(T
se (W)l iff se(wion (w)HW)) o,
that we prove below.

(==) By definition of g, s € ((Q)'I/);I; implies that there exist « and s’ such that
(s,5) € Ry, a =g, and s’ € 'IJVT. By induction hypothesis, we have s’ € lI/vT iff
s’ e (H(llf))lig)). By the definition of F(7"), we have ((s,a,s),5") € Riz, 80 we have
(s,a,5") € ((wg)H(lII))ig)). Moreover since (s, 5') € Ry and o = p, we have (s, a, s7) =
(g)ig)). Finally, by definition of F(7), we have (s, (s,«a,s’)) € Ril. Hence, we can
conclude s € ((w)(0 A <w2>H(w)))§g;.

(=) By definition of I{Tg)) s € ((wi)o A (w) HW))ED) implies that there exist

F(V)
o and 5" such that (s, (s, o, 5')) € RE | ((s,a,5"),s) e RE . (s,0,8") € (Q)igg)) and 5’ €

wy? wy?
(H (W))I':g)) . By induction hypothesis, we have s € Wg iff s" € (H (lll))}ig)) . Moreover,

since (s,a,s) &= (Q)?E;J;)), we have (s,s") € Ry and o &= . Hence, we can conclude

T
s € (@) hiy)-

Inductive case. Let us assume that the thesis holds for the formula ¥ with & nested
fixpoint constructs. We prove it for & = uX.¥ with k£ + 1. We recall that, by the Tarski-
Knaster Theorem on fixpoints [58], s € (uX .11/)% iff there exists an ordinal & such that

s€(ueX .'P)g, where (g X .11/)]7; is defined by transfinite induction as:
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- (noX.¥)f =0.

_ T _ T
(/1«5+1X~W)V ‘pV[X/(,ng.‘I/)g]'

— (X )E =g o (e X.¥) T, if A is a limit ordinal.
We proceed by transfinite induction on ordinals &.
Base case of the transfinite induction. (1o X.¥ is defined as ff, thus trivially we have

s € (uoX. W)y iff s € (uoX.-HW) L.

Successor case of the transfinite induction. We want to show that s € (g4 X .lI/)g iff
s € (M§+1X.H(W))£Eg)), which, by definition, reduces to:
F(T)

if s e (W) .
FOV)IX/(ue X HW)E

)y (1)

se(¥) T
V[X/(;LgX.ll’)v] )

Since ¥ contains k& fixpoint constructs, by inductive hypothesis on &, we have:

F(T)

iff s € (HW) popx e x.on Ty

T
€Nk /e )7
So it remains to prove that:

F(T)
FOIX/ (g X3

itt s e (Hw) " Fr)

H{W ’
s € (HW)) X/ (ue X H) E D)

2
Notice that the two valuations above may ditfer only on the value of X. If it holds that:

F(T) ; F(T)
X f :
s & )F([X/(uex-w)gl) it se (X)F(V)[X/(MEX.H(W))QQ] )

then by straightforward induction on the formation of H (%), we have that (2) holds as
well. Let us prove (3), which can be written as:

se FV[X/(ue X TN O iff s € FO)[X/ (e X HW) o) ] (X).

By definition of F on valuations, this reduces to:
F(T)
FOV)
which indeed holds by transfinite inductive hypothesis.
Hence, considering (1) and (2), we can conclude that s € (;LH]X.lI/)g iff s €
T
(et XHW) ).
Limit case of the transfinite induction. Let X be a limit ordinal, then s € (3 X .11/)%r iff
there exists an ordinal £ < A such that s € (ug X .11/);‘;. By transfinite induction hypothesis,

it holds that s € (ug X.9) 7 iff s € (ugx.H(zp))ﬁg}, and thus

F(T)
FWy:

This completes the transfinite induction. So for all ordinals £ it holds that

F(T)

FOV)*

The induction on the nesting of fixpoint constructs is completed as well, hence we have
proven the theorem. [0

s€ue XY, iff se(ueX.HW))

se(u X)) iff se(uX.HW))

seueX W)L iff se(ueX.HW))
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Theorem 6.5 gives us a sound and complete technique to do model checking in the
setting proposed in this paper. To check if

T,sE=®
check if
F(T),s = H(®P).

Theorems 6.3 and 6.4 which state that F(7) and H (@) are linearly related to 7 and &,
respectively, allow us to conclude that such a technique is, in fact, quite efficient.

The problem of model checking a standard mu-calculus formula in a finite transition
system is known to be in NP N coNP [21]. Model checking algorithms are known that run
in (|7 - |@])°® [22], where |7 is the size of the transition system 7, |®| is the size
of the formula @, and k is the number of “alternating” least and greatest fixpoints whose
variables are one within the scope of the other (see [19]). Moreover, the properties that
are typically of interest can be expressed with a very small number of alternating fixpoints
(one or two), and hence typically model checking can be performed within a low order
polynomial time. By Theorems 6.3 and 6.4, such results can be applied immediately to our
setting. 2°

We conclude the section by observing that, from a practical point of view, the above
transformations allow us to use the software tools such as the Edinburgh Concurrency
Workbench [10]2! or the Concurrency Workbench of North Carolina [11],%? that have
been implemented for the automated model checking of standard modal mu-calculus
formulae.

7. Further issues on reasoning about dynamic systems

In this section, we discuss two important issues related to the representation of and
reasoning on dynamic systems.

First, we relate model checking in our setting to logical implication, showing that the
former is a special case of the latter. We get this special case when we have enough
information to isolate a single model, hence reducing logical implication to the simple
verification of the truth-value of a formula.

Second, we discuss the issue of equivalent descriptions. In the context of process
algebras, the equivalence of two descriptions of the same system has been well investigated
and various tools have been implemented for verifying the equivalences. Here we show
that the equivalence relation deduced by M, coincides with a natural extension of
the well-known bisimulation equivalence which has been proved of an experimental
mmpact.

20 Note that the transformation H does not change the number of alternating fixpoints.
21 Available atht tp://www.cs.bris.ac.uk/"neil/Externallinks/comms94/cwb/cwb.html.
22 Available at http://www.csc.ncsu.edu/eos/users/r/rance/WWW/cwb-nc.html.
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7.1. Relating model checking to logical implication

In this subsection, we relate model checking to logical implication, following the line of
reasoning in [25,27,52,53]. Given a finite transition system 7, it is not difficult to build a
set of formulae D7 that encode 7.

Let 7T = (S, (Ro | € 2'4}, IT) be a transition system, the set of formulae Dt is
obtained by including, for each s € S, a formula of the form:

6, = /\ AA

selT(A)

/\ —AA

s¢IT(A)

N @by A

(s,5VeRy

/\ (] \/ By A

.(5,5€Ry (5.51€R,

N g

-3As7.(5,5VERy

The set of formulae D7 encodes the transition system 7, in the sense given by the
following proposition.

Proposition 7.1. Given finite transition system T = (S, {Rq | @ € 2A}, IT), for every
s € S and every M, formulae @, we have:

T,sk=® iff Drk6, = .

This proposition follows directly from the work on characteristic formulae in [25,52,
53], by applying the transformations F and H defined in the previous section.

The above result shows that model checking can be seen as a special case of logical
implication. The set of formulae D7 can be seen as providing enocugh information to
essentially single out a unique model, and thus logical implication is reduced to the
verification of the truth-value of a formula in such a model, i.e., it is reduced to model
checking.

Note that, from the practical point of view, using a generic theorem prover for M, to
do logical implication in D7 instead of model checking in 7, although possible, is highly
inefficient. Indeed D7 has essentially the same size as 7', and logical implication for M,
is EXPTIME-complete, according to the linearity of transformation H and the EXPTIME-
completeness of standard mu-calculus {19,20].

7.2. Equivalent descriptions
A question that naturally arises is when two descriptions of a dynamic system can be

considered equivalent. Observe that in this case we are asking about a property of the
descriptions which is not necessarily related to properties of the modeled dynamic system.
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Adopting an algebraic approach for such descriptions allows us to benefit from the
study of equivalence classes on processes, to identify equivalent descriptions.?? Two
main notions of equivalences have been proposed in the process algebra literature: trace
equivalence [30], and bisimulation equivalence [45]. Trace equivalence identifies systems
that have the same set of possible runs (traces). Bisimulation equivalence, on the other
hand, identifies two systems if during every run whenever one system can perform a certain
action, then the other system can perform the same action matching such a move.

Here we focus on bisimulation equivalence, since we are interested in identifying two
systems not only on the base of their “traces” (trace equivalence) but also on the base of
their “branching behaviors”.

We introduce a natural extension of the bisimulation equivalence studied in [45] to our
representation formalism. We say state s of the transition system 7 is equivalent to 52
of T3, if the truth-value of each primitive proposition is the same in both s; and s, and
whenever s) can evolve into s; by a (synchronized) action «, s2 can also do the action «
arriving at a state s, which is equivalent to 57, and vice versa. Formally:

Definition 7.2. Let 7 = (S, {Ry | € 24}, IT) and T’ = (S', (R}, | @ € 24}, IT") be two
transition systems.
(1) R C 8 x & is abisimulation if for all (r,r') e M, a € A,
@ {AlreT(A)}={A|r' eIT'(A)};
(b) (r,t) € Ry implies 3" : (+',1') € R), and (r,1') € R; and
(c) (*',t)e R, implies It : (r,1) e Ry and (z,1') e K.
(2) for s €S, s’ €8, s and s’ are equivalent, written s =, ', if there exists a
bisimulation % such that (s, s') € R.

The bisimulation equivalence & can be expressed as a simple formula of first-order
logic with fixpoints (first-order mu-calculus) [46,47]. As a consequence, the verification of
bisimulation equivalence *, on finite transition systems can be performed in polynomial
time with respect to the size of the systems (see, e.g., [1]).

We also remark that some investigations have been done to check bisimulation equiva-
lence directly on process descriptions. In particuiar, algorithms that run in polynomial time
with respect to the size of process descriptions have been devised for some typical forms
of processes [29].

An alternative way to define equivalence of descriptions is to make use of logic: two
systems are considered as the same iff no logical formula can distinguish them (see [28]).

Definition 7.3. Let 7 = (S, {Ry | € 24}, ) and T' = (S, (R, |« € 24}, IT') be two
transition systems. For s € S, s’ € &, s and 5’ are equivalent with respect to M, written
5 R M, s’ iff

(@eM,|T,sEP)={@ecM,|T 5 =)

In fact, the two forms of equivalence =~ and ~ a4, coincide under the very loose
condition of image finiteness. A configuration (p, o) is image finite, if Va € A. {(p’,07) |

23 Good comparisons of various notions of systems equivalences can be found in [16,60,61].
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((p,o), (p'.o")) € Ry} is finite. A system is image finite if all its reachable configurations
are image finite.

Proposition 7.4. Let T = (S, {Ry | @ € 24}, IT) and T' = (S',{R), | a € 22}, IT') be
two image finite transition systems, ands € S, s’ € §'.

12 .
s, s dff S%Musl.

This proposition follows from the analogous theorem >* (see, e.g., [55]) on bisimulation
equivalence [45] and standard mu-calculus, by applying the transformations F and H
defined in the previous section.

We remark that Proposition 7.4 implies that M, is well dimensioned for verifying
properties of our descriptions, in the sense that, A, distinguishes two transition systems
if and only if they are not equivalent according to the bisimulation equivalence ~. Or, in
other words, it implies that the bisimulation equivalence ~, captures exactly the notion of
distinguishability with respect to the logic M,,.

8. Conclusion

The research presented in this paper can be regarded as a bridge between the area
of Reasoning about Actions in Artificial Intelligence and the area of Concurrency in
Computer Science.
Specifically, we have presented a model checking based framework for reasoning about
complex actions (processes) that are constituted by several concurrent activities performed
by various interacting agents.
We have shown that this framework, arisen originally in the area of Concurrency
in Computer Science, is well-suited for reasoning about complex actions in Artificial
Intelligence, in the simplified but significant case of having complete information on the
state of the world.
The strong connection with the area of Concurrency in Computer Science has allowed
us to make use of the body of results devised in that area in the last decade, and to address
issues like nonterminating executions, synchronizations, communications and interrupts,
which have been hardly tacked so far in Artificial Intelligence.
Besides the technical results, this work gives some conceptual tools for better
understanding of the issues involved in integrating concurrent processes within Reasoning
about Actions in Artificial Intelligence. In particular, we are referring to:
— The separation of the specification of how atomic actions affect the state of the world
from the specification of the process, as noticed in general for complex actions in [37].

— The possibility of specifying preconditions for actions (i.e., establishing when a given
action can be executed) within the process in order to have them under the control of
the process. This is the choice we have made in our proposal.

— The need to maintain, together with the information about the current state of

the world (the global store, in our case), the information about the current state

24 Such a theorem is in turn an extension of the Hennessy—Milner Thearem [28].
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of the activities that are going on (the part of the process that remains to be
executed).

— Related to the above point, the use of a “single-step” transitions, i.e., transitions that
return together with the new state of the world what remains to be executed of the
process. In general, this allows for a simple and elegant treatment of both concurrency
and nonterminating behaviors (see [14,15] for a use of “‘single-step” transitions within
the situation calculus).

Further technical extensions of the present work are possible along several directions.

We outline some of them below.

The first extension concerns the form of the update on the global store. In Section 2,
we have introduced a very simple form of the update to compute the set o/{ay, ..., a,}
of the possible global store resulting by performing the action {aj,...,a,} on o (see
Definitions 2.1 and 2.2). However, the only essential point to retain precisely the
proposed setting is to have some function returning the set o/{ay, ..., a,} from the inputs
{ay,...,a,} and o. It follows that we may adopt a more complex form of update, based,
for example, on some notion of distance among global stores, and specify effects of actions
as general formulae over Prop instead of literals. Moreover in this case, we can also
address indirect effects by specifying domain constrains that must hold in each global
store. Observe that the update we are interested in applies to interpretations, and thus is
much simpler than update of theories discussed, e.g., in [31]. Research on A-family action
languages, whose semantics is based on defining a transition function (which is essentially
a successor-state function in our terms), e.g., [2,5,23,39], is relevant.

Another possible extension concerns the form of the global store. In the present work,
we describe the state of the world at a given point by a set of atomic propositions in the
global store. That is, the global store can be thought of as a set of boolean variables,
one for each atomic proposition. A possible extension is to consider the global store as
a set of multi-valued variables, or even as a first-order interpretation over some fixed
domain. Such an extension can be easily accommodated in our setting. Indeed, the
way transition systems are built remains essentially the same, while the logic used for
verification needs to be extended in order to take into account the new kind of properties
expressed in the global store. Research in Databases on query languages based on first-
order logic plus fixpoints (see, e.g., [1]) and that on complex transactions e.g., [4], are
relevant.

Finally, let us consider again the levels of abstractions introduced in Section 1. We
believe that it is of great interest mixing representations at level 2 and at level 3, by mixing
the process algebra approach presented here with the usual logical approach. This would
allow us to introduce incomplete information in a better controlled way. For example, we
could specify agents whose behavior is completely known by means of process description
presented here, and agents whose behavior is only partially known (as happens typically
for the environment) by logical axioms. To this end, the research on “loose specification”
in process algebras [7,35], as well as research in knowledge representation on description
logics that include assertions about “individuals” (which can be interpreted as a partial
description of a transition system) [13], is relevant.
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