Rewriting of Regular Path Queries

Diego Calvanese', Giuseppe De Giacomo!, Maurizio Lenzerini', and
Moshe Y. Vardi?

! Dip. di Informatica e Sistemistica
Universita di Roma “La Sapienza”
Via Salaria 113, I-00198 Roma, Italy
lastname @dis.uniromal.it
http://www.dis.uniromal.it/~ lastname

2 Dept. of Computer Science,
Rice University
P.O. Box 1892, Houston, TX 77251-1892, U.S.A
vardi@cs.rice.edu
http://www.rice.edu/ vardi

Abstract. Recent work on semi-structured data has revitalized the in-
terest in path queries, i.e. queries that ask for all pairs of objects in the
database that are connected by a path conforming to a certain spec-
ification, in particular to a regular expression. On the other hand, in
semi-structured data, as well as in data integration, data warehousing,
and query optimization, the problem of query rewriting using views is
receiving much attention: Given a query and a collection of views, gen-
erate a new query which uses the views and provides the answer to the
original one.

In this paper we address the problem of query rewriting using views in
the context of semi-structured data. We present a method for computing
the rewriting of a regular expression E in terms of other regular expres-
sions. The method computes the exact rewriting (the one that defines
the same regular language as E) if it exists, or the rewriting that defines
the maximal language contained in the one defined by E, otherwise.
We present a complexity analysis of both the problem and the method,
showing that the latter is essentially optimal. Finally, we illustrate how
to exploit the method to rewrite regular path queries using views in semi-
structured data. The complexity results established for the rewriting of
regular expressions apply also to the case of regular path queries.

1 Introduction

Database research has often shown strong interest in path queries, i.e. queries
that ask for all pairs of objects in the database that are connected by a specified
path (see for example [13,12]). Recent work on semi-structured data has revi-
talized such interest. Semi-structured data are data whose structure is irregular,
partially known, or subject to frequent changes [1]. They are usually formalized



in terms of labeled graphs, and capture data as found in many application ar-
eas, such as web information systems, digital libraries, and data integration [7,
10,18, 20]. The basic querying mechanism over such graphs is the one that re-
trieves all pairs of nodes connected by a path conforming to a given pattern.
Since a user may ignore the precise structure of the graph, the mechanism for
specifying path patterns should be flexible enough to allow for expressing reg-
ular path queries, i.e. queries that provide the specification of the requested
paths through a regular language [3,8, 15]. For example, the regular path query
(_* - (rome + jerusalem) - _* - restaurant) specifies all the paths having at some
point an edge labeled rome or jerusalem, followed by any number of other edges
and by an edge labeled with a restaurant.

In semi-structured data, as well as in data integration, data warehousing,
and query optimization, the problem of query rewriting using views is receiving
much attention [24,2]: Given a query @) and k queries Q1,..., @} associated to
the symbols g1, ..., qx, respectively, generate a new query @' over the alpha-
bet ¢, ..., q such that, first interpreting each ¢; as the result of @;, and then
evaluating @' on the basis of such interpretation, provides the answer to Q.
Several papers investigate this problem for the case of conjunctive queries (with
or without arithmetic comparisons) [17,21], queries with aggregates [22,11], re-
cursive queries [14], and queries expressed in Description Logics [5]. Rewriting
techniques for query optimization are described, for example, in [9,4, 23], and
in [16, 19] for the case of path queries in semi-structured data.

None of the above papers provides a method for rewriting regular path
queries. Observe that such a method requires a technique for the rewriting of
regular expressions, i.e. the problem that, given a regular expression Ey, and

other k regular expressions F, ..., E}, checks whether we can re-express Ej by
a suitable combination of E1, ..., E,. As noted in [19], such a problem is still
open.

In this paper we present the following contributions:

— We describe a method for computing the rewriting of a regular expression
Ej in terms of other regular expressions. The method computes the exact
rewriting (the one that defines the same regular language as Ep) if it exists,
or the rewriting that defines the maximal language contained in the one
defined by Ey, otherwise.

— We provide a complexity analysis of the problem of rewriting regular expres-
sions. We show that our method computes the rewriting in 2EXPTIME, and
is able to check whether the computed rewriting is exact in 2EXPSPACE. We
also show that the problem of checking whether there is a nonempty rewriting
is EXPSPACE-complete, and demonstrate that our method for computing
the rewriting is essentially optimal. Finally, we show that the problem of
verifying the existence of an exact rewriting is 2EXPSPACE-complete.

— We illustrate how to exploit the above mentioned method in order to devise
an algorithm for the rewriting of regular path queries for semi-structured
databases. The complexity results established for the rewriting of regular
expressions apply to the new algorithm as well. Also, we show how to adapt



the method in order to compute rewritings with specific properties. In par-
ticular, we consider partial rewritings (which are rewritings that, besides
E,...,E, may use also symbols in Ep), in the case where an exact one
does not exist,.

The paper is organized as follows. Section 2 presents the method for rewrit-
ing regular expressions. Section 3 describes the complexity analysis of both the
method and the problem. Section 4 illustrates the use of the technique to rewrite
path queries for semi-structured databases. Finally, Section 5 describes possible
developments of our research. For the sake of brevity, the proofs of the theorems
are only sketched, and appear in the Appendix.

2 Rewriting of regular expressions

In this section, we present a technique for the following problem: Given a regular
expression Ey and a (finite) set £ = {Ey, ..., E;} of regular expressions over an
alphabet X, re-express, if possible, Ey by a suitable combination of Ey, ..., Ey.

We assume that associated to £ we always have an alphabet Y¢ containing
exactly one symbol for each regular expression in £, and we denote the regular
expression associated to the symbol e € X¢ with re(e). Given any language ¢
over X¢, we denote by expand y,({) the language over X' defined as follows

expand 5, (£) = U {wy -+~ wp | w; € L(re(e;))}
e en €l

where L(e) is the language defined by the regular expression e.

Definition 1. Let R be any formalism for defining a language L(R) over X¢.
We say that R is a rewriting of Eo wrt £ if expand 5, (L(R)) C L(Eyp).

We are interested in maximal rewritings, i.e. rewritings that capture in the
best possible way the language defined by the original regular expression Ej.

Definition 2. A rewriting R of Ey wrt £ is Y-maximal if for each rewriting
R’ of Ey wrt £ we have that ezpand 5 (L(R')) C expand 5 (L(R)). A rewriting R
of By wrt £ is Ye-maximal if for each rewriting R' of Ey wrt £ we have that
L(R") C L(R).

Intuitively, when considering Y'-maximal rewritings we look at the languages
obtained after substituting each symbol in the rewriting by the corresponding
regular expression over X, whereas when considering Yg-maximal rewritings
we look at the languages over Xg¢. Observe that by definition all Y-maximal
rewritings define the same language (similarly for Y¢-maximal rewritings), and
that not all Y-maximal rewritings are Y¢-maximal, as shown by the following
example.

Ezample 1. Let Ey = a*, £ = {a*}, and Y¢ = {e}, where re(e) = a*. Then
both R; = e* and R; = e are Y-maximal rewritings of Ey wrt £, but R; is also
Ye-maximal while Rs is not.



However, it turns out that Ye-maximality is a sufficient condition for X-
maximality.

Theorem 1. Let R be a rewriting of Ey wrt £. If R is X¢-mazimal then it is
also X -mazximal.

Given Ey and &£, we are interested in deriving a Y-maximal rewriting of Fy
wrt £. We show that such maximal rewriting always exists. In fact, we provide
a method that, given Fy and &, constructs a Yg-maximal rewriting of Ey wrt
€. By Theorem 1 the constructed rewriting is also X-maximal.

The construction takes Eyp and £ as input, and returns an automaton Rg g,
built as follows:

1. Construct a deterministic automaton A; = (X,S,so,p,F) such that
L(Aq) = L(Ey).

2. Define the automaton A' = (X¢, S, s0,p, S — F), where s; € p'(s;,e) iff
Jw € L(re(e)) such that s; € p*(s;, w).

3. Re g, = A, i.e. the complement of A'.

Observe that, if A’ accepts a Ye-word e ---e,, then there exist n XY-words
wi,...,w, such that w; € L(re(e;)) for i = 1,...,n and such that the X-word
wy - - - wy, is rejected by Ay. On the other hand if there exists a X-word wy - - - wy,
that is rejected by Ag such that w; € L(re(e;)) for i = 1,...,n, then the X¢-
word e -« - e, is accepted by A’. That is A’ accepts a Xg-word e; - - - e, iff there
is a Y-word in ezpand 5 ({e1 - - - en}) that is rejected by A4. Hence, Re g,, being
the complement of A’, accepts a Ye-word ey - - - e, iff all X¥-words w = w; - --w,
such that w; € L(re(e;)) for i = 1,...,n, are accepted by A,;. Hence we can
state the following theorem.

Theorem 2. The automaton Rg g, is a Xe-mazimal rewriting of Ey wrt €.

Notably, although Definition 1 does not constrain in any way the form of
the rewritings, Theorem 2 shows that the language over X¢ (and therefore also
the language over X) defined by the Y¢-maximal rewritings is in fact regular
(indeed, A’ is a finite automaton).

We illustrate the algorithm that computes a Y¢-maximal rewriting by means
of the following example.

Ezample 2. Let Ey = a-(b-a + ¢)*, and let £ and X¢ be such that re(e;) = a,
re(ez) = a-c*-b, and re(es) = ¢. The deterministic automaton Ay shown in
Figure 1 accepts L(Ep), while A’ is the corresponding automaton constructed in
Step 2 of the rewriting algorithm. Since A’ is deterministic, by simply exchanging
final and nonfinal states we obtain its complement A’, which is the rewriting
Re B, .

Next we address the problem of verifying whether the rewriting Re¢ g, cap-
tures exactly the language defined by Ej.

Definition 3. A rewriting R of Ey wrt £ is exact if expand 5,(L(R)) = L(Ey).



c

Ay A’ A" = Re¢ g,

Fig. 1. Construction of the rewriting of a-(b-a + ¢)* wrt {a, a-c*-b, c}

To verify whether R¢ g, is an exact rewriting of Ep wrt £ we proceed as
follows:

1. We construct an automaton B = (X,Sg,sBg,pB,FB) that accepts
ezpand 5. (L(Re i,)), by replacing each edge labeled by e; in Rg g, by an
automaton A; such that L(A;) = L(re(e;)) for i = 1,...,k. (Each edge
labeled by e; is replaced by a fresh copy of A;. We assume, without loss
of generality, that A; has unique start state and accepting state, which are
identified with the source and target of the edge, respectively.) Observe that,
since Rg g, is a rewriting of Ey, L(B) C L(Ay).

2. We check whether L(A4) C L(B), that is, we check whether L(4;N B) = {).

Theorem 3. The automaton Re g, is an exact rewriting of Eo wrt £ iff L(AgN

B) = 0.
Corollary 1. An exact rewriting of Ey wrt & exists iff L(AqN B) = 0.

Example 2 (cont.) One can easily verify that Re g, = e5-e;-e} is exact. Ob-
serve that, if £ did not include ¢, the rewriting algorithm would give us e}-e; as
the Yg-maximal rewriting of Ey wrt {a, a-c*-b}, which however is not exact.

3 Complexity analysis

In this section we analyze the computational complexity of both the problem of
rewriting regular expressions, and the method described in Section 2.

3.1 Upper bounds

Let us analyze the complexity of the algorithms presented above for computing
the maximal rewriting of a regular expression. By considering the cost of the
various steps in computing R¢ g,, we immediately derive the following theorem.



Theorem 4. The problem of generating the X¢-mazimal rewriting of a regular
expression Ey wrt a set £ of reqular expressions is in 2EXPTIME.

With regard to the cost of verifying the existence of an exact rewriting,
Corollary 1 ensures us that we can solve the problem by checking L(A4NB) = §.
Observe that, if we construct L(Aq N B), we get a cost of SEXPTIME, since B
is of triply exponential size with respect to the size of the input. However, we
can construct B “on-the-fly”; whenever the nonemptiness algorithm wants to
move from a state s; of the intersection of A; and B to a state s, the algorithm
guesses s and checks that it is directly connected to s;. Once this has been
verified, the algorithm can discard s;. Thus, at each step the algorithm needs to
keep in memory at most two states and there is no need to generate all of B at
any single step of the algorithm.

Theorem 5. The problem of verifying the existence of an exact rewriting of a
reqular expression Ey wrt a set £ of reqular expressions is in 2EXPSPACE.

3.2 Lower bounds

We show that the bounds established in Section 3.1 are essentially optimal.
We say that a rewriting R is Xg-empty if L(R) = (). We say that it is X-
empty if expandy,(L(R)) = 0. Clearly YX¢-emptiness implies Y-emptiness. The
converse also holds except for the non-interesting case where £ contains one
or more expressions E such that L(E) = (). Therefore, we will talk about the
emptiness of a rewriting R without distinguishing between the two definitions.

Theorem 6. The problem of verifying the existence of a nonempty rewriting
of a regular expression Eqo wrt a set £ of reqular expressions is EXPSPACE-
complete.

Note that Theorem 6 implies that the upper bound established in Theorem 4
is essentially optimal. If we can generate maximal rewritings in, say, EXPTIME,
then we could test emptiness in PSPACE, which is impossible by Theorem 6.
We can get, however, an even sharper lower bound on the size of rewritings.

Theorem 7. For each n > 0 there is a regqular expression Ef and a set E™ of
reqular expressions such that the combined size of Eg and £™ is polynomial in
n, but the shortest nonempty rewriting (expressed either as a regular expression
or as an automaton) of B wrt E" is of length 22" .

The technique used in Theorem 6 turns out to be an important building
block in the proof that Theorem 5 is also tight.

Theorem 8. The problem of verifying the existence of an exact rewriting of
a regqular expression Ey wrt a set £ of reqular expressions is 2EXPSPACE-
complete.



4 Query rewriting in semi-structured data

In this section we show how to apply the results presented above to query rewrit-
ing in semi-structured data.

4.1 Semi-structured data models and queries

All semi-structured data models share the characteristic that data are organized
in a labeled graph, where the nodes represent objects, and the edges represent
links between objects [7, 6, 1, 20]. From a formal point of view we can consider a
(semi-structured) database as a graph DB whose edges are labeled by elements
from a given domain D which we assume finite. We denote an edge from node x to
node y labeled by a with z = y. Typically, a database will be a rooted connected
graph, however in this paper we do not need to make this assumption.

In order to define queries over a semi-structured database we start from a
decidable, complete! first-order theory 7 over the domain D. We assume that
the language of 7 includes one distinct constant for each element of D (in the
following we do not distinguish between constants and elements of D). We further
assume that among the predicates of 7 we have one unary predicate of the form
Az.z = a, for each constant a in D. We use simply a as an abbreviation for such
predicate. Finally, we follow [7] and consider both the size of T, and the time
needed to check validity of any formula in 7 to be constant.

In this paper we consider regular path queries (which we call simply queries)
i.e., queries that denote all the paths corresponding to words of a specified regular
language. The regular language is defined over a (finite) set F of formulae of 7
with one free variable. Such formulae are used to describe properties that the
labels of the edges of the database must satisfy. Regular path queries are the basic
constituents of queries in semi-structured data, and are typically expressed by
means of regular expressions [8, 1,16, 19]. Another possibility to express regular
path queries is to use finite automata.

When evaluated over a database, a query @ returns the set of pairs of nodes
connected by a path that conforms to the regular language L((Q)) defined by @,
according to the following definitions.

Definition 4. Given an F-word o1 -+ ¢y, a D-word a; - - - ay matches @1 - - -y,

(wrt T ) iff T |E vi(a;), fori=1,...,n.

We denote the set of D-words that match an F-word w by match(w), and given
a language ¢ over F, we denote | J,, ., match(w) by match(().

Definition 5. The answer to a query () over a database DB is the set
answer(L(Q), DB), where for a language £ over F

answer (¢, DB) = {(z,y) | there is a path 3 z; %3 --- %3 y in DB
such that ay - - - a,, € match(f)}

! The theory is complete in the sense that for every closed formula ¢, either 7 entails
¢, or T entails -y [7].



4.2 Rewriting regular path queries

In order to apply the results on rewriting of regular expressions to query rewriting
in semi-structured data we need to take into account that the alphabet over
which queries (the one we want to rewrite and the views to use in the rewriting)
are expressed, is the set F of formulae of the underlying theory 7, and not the
set of constants that appear as edge labels in graph databases.

Let Qo be a regular path query and @ = {Q1,...,Q} be a finite set of views,
also expressed as regular path queries, in terms of which we want to rewrite Q.
Let F be the set of formulae of 7 appearing in Qq, @1, ..., Qk, and let Q have
an associated alphabet Y ¢ containing exactly one symbol for each view in Q.
We denote the view associated to the symbol ¢ € Yo with rpg(q).

Given any language £ over X g, we denote by expand »(¢) the language over
F defined as follows

expand 5 (£) = U {wy -~ wy, | w; € L(rpg(g:))}
g1 qn €l

Definition 6. Let R be any formalism for defining a language L(R)
over Ygo. R is a rewriting of Qo wrt Q if for every database DB,
answer(expand r(L(R)), DB) C answer(L(Qo),DB), and is said to be
(i) maximal if for each rewriting R’ of Qo wrt Q we have that
answer(expand r(L(R')), DB) C answer(expand »(L(R)),DB), (ii) exact if
answer(expand (L(R)), DB) = answer(L(Qo), DB).

Theorem 9. R is a rewriting of Qo wrt Q iff match(expand z(L(R))) C
match(L(Qo)). Moreover, it is maximal iff for each rewriting R’ of Qo wrt Q we
have that match(ezpand (L(R'))) C match(expand r(L(R))), and it is exact iff
match(expand (L(R))) = match(L(Qo)).

We say that R is XY g-mazimal if for each rewriting R’ of Q)9 wrt Q we have
that L(R') C L(R). By arguing as in Theorem 1, and exploiting Theorem 9, it
is easy to show that a Yg-maximal rewriting is also maximal.

Next we show how to compute a Y'g-maximal rewriting, by exploiting the
construction presented in Section 2. Applying the construction literally, consid-
ering F as the base alphabet X', we would not take into account the theory 7,
and hence the construction would not give us the maximal rewriting in general.
As an example, suppose that 7 = Vz.A(z) D B(z), Qo = B, and Q = {A4}.
Then the maximal rewriting of Qg wrt Q is A, but the algorithm would give us
the empty language.

In order to take the theory into account, we can proceed as follows: For each
query @ € {Qo} U Q we construct the automaton Q9 accepting the language
match(L(Q)). This can be done by viewing the query @ as a (possibly nondeter-
ministic) automaton @ = (F, S, s, p, F') and construct Q¢ as (D, S, so, p?, F),
where s; € p9(s;,a) iff s; € p(si, ) and T |= ¢(a). Observe that the set of states
of @ and QY is the same. We denote {Q7,...,Q%} with Q9. Then we proceed as
before:



1. Construct a deterministic automaton Aq = (D, Sq, so,p, Fa) such that
L(44) = L(QF).

2. Define the automaton A" = (X g, S4, s0, ', Sa — Fa), where s; € p'(s;,q) iff
Jw € match(L(rpq(q))) such that s; € p%"(si, w).

3. Return Ro,, = Rgs g3 = A’

Theorem 10. The automaton Rg g, is o Xg-mazimal rewriting of Qo wrt Q.

To check that Rg g, is an exact rewriting of Qo wrt Q we can proceed as in
Section 2, by constructing an automaton B that accepts ezpandp(L(Rgs gs)),

and checking for the emptiness of L(A44 N B).

Observe that both the size of Q) and Q9 and the time needed to construct
them from @)y and Q are linearly related to the size of Q)¢ and Q. It follows that
the same upper bounds as established in Section 3.1 hold for the case of regular
path queries.

In fact, the construction of QY can be avoided in building Rg g,, since we
can verify whether there exists a D-word w € match(L(rpg(g))) such that s; €
p%" (i, w) (required in Step 2 of the algorithm above) as follows. We consider
directly the automaton @ = rpg(q) (which is over the alphabet F) and the
automaton Ay’ = (D, Sy, i, pj), {s;}) obtained from Ay by suitably changing
the initial and final states. Then we construct from @ and A}’ the product
automaton K, with the proviso that K has a transition from (s1, s2) to (s}, s5)
(whose label is irrelevant) iff (i) there is a transition from s; to s{ labeled a in
Qi,j, (ii) there is a transition from s, to s labeled ¢ in @, and (iii) 7 = ¢(a).
Finally, we check whether K accepts a non-empty language. This allows us to
instantiate the formulae in Q only to those constants that are actually necessary
to generate the transition function of A'.

On the other hand, the construction of @ seems unavoidable, since formu-
lae that satisfy more that one constant in 7 and that appear as labels of the
transitions of g, may hide a nondeterminism that is instead revealed when we
consider Qf.

4.3 Properties of rewritings

In the case where the rewriting Rg g, is not exact, the only thing we know is
that such rewriting is the best one we can obtain by using only the views in Q.
However, one may want to know how to get an exact rewriting by adding to Q
suitable views.

Ezample 3. Let Qo = a-(b+¢), Q = {a,b}, and g = {q1, g2}, where rpq(q1) =
a, and rpg(g2) = b. Then Rg g, = ¢1 - g2, which is not exact. On the other hand,
by adding ¢ to Q and ¢3 to X g, with rpg(gs) = ¢, we obtain ¢q; - (¢2 + ¢3) as an
exact rewriting of Qg.

Here we consider the case where the views added to Q are atomic, i.e., have
the form Az.P(z), where P is a predicate of 7. Notice that atomic views include



views of the form A\z.z = a, (abbreviated by a), which we call elementary. The
intuitive idea is to choose a subset P’ of the set P of predicates of 7, and to
construct an exact rewriting of Qo wrt Q, where Q4 is obtained by adding to
@ an atomic view for each symbol in P’. An exact rewriting R of Qg wrt Q is
called a partial rewriting of Qo wrt Q, provided that Q # Q.

The method we have presented can be easily adapted to compute partial
rewritings. Indeed, if we compute Rg, ¢,, we obtain a partial rewriting of Qo
wrt Q, provided that Rg4 g, is an exact rewriting of Q)o wrt Q. Observe that
it is always possible to choose a subset P’ of P in such a way that Ro, q, is
exact (e.g., by choosing the set of all elementary views).

Typically, one is interested in using as few symbols of P as possible to form
Q. and this corresponds to choose the minimal subsets P’ such that Ro, q, is
exact. More generally, one can establish various preference criteria for choosing
rewritings. For instance, we may say that a (partial) rewriting R is preferable to
a (partial) rewriting R’ if one of the following holds:

1. match(ezpand r(L(R'))) C match(ezpand »(L(R))),

2. match(L(R)) = match(L(R')) and R uses less additional elementary views
than R/,

3. match(L(R)) = match(L(R')), R uses the same number of additional ele-
mentary views as R', and less additional atomic nonelementary views.

4. match(L(R)) = match(L(R')), R uses the same number of additional atomic
views as R', and less views than R'.

Under this definition an exact rewriting is preferable to a nonexact one.
Moreover, the definition reflects the fact that the cost of materializing additional
atomic views (in particular the elementary ones) is higher than the cost of using
the available ones. Finally, since a certain cost is associated to the use of each
view, when comparing two rewritings defining the same language and using (if
any) the same number of additional atomic views, then the one that uses less
views is preferable.

The rewriting algorithm presented above can be immediately exploited to
compute the most preferable rewritings according to the above criteria. It easy
to see that the problem of computing the most preferable rewritings remains in
the same complexity class.

5 Conclusions

We envision several directions for future work. First, we want to extend our
rewriting techniques to the case of generalized path queries, i.e. queries of the
form x1Qiz2 - xp—1Qn_1T,, where each @; is a regular path query. Such
queries ask for all n-tuples ay,...,a, of nodes such that, for each i, there is a
path from a; to a;;; that matches @;. Second, we aim at investigating possible
interesting subcases where the rewriting of regular (and generalized) path queries
can be done more efficiently. Finally, we aim at defining cost models for path
queries, refining the preference criteria to take into account such cost models,



and developing techniques for choosing the best rewriting with respect to the
new criteria.

References

10.

11.

12.

13.

14.

15.

. Serge Abiteboul. Querying semi-structured data. In Proc. of the 6th Int. Conf. on

Database Theory (ICDT’97), pages 1-18, 1997.

Serge Abiteboul and Oliver Duschka. Complexity of answering queries using ma-
terialized views. In Proc. of the 17th ACM SIGACT SIGMOD SIGART Sym. on
Principles of Database Systems (PODS’98), pages 254-265, 1998.

Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, and Janet L.
Wiener. The Lorel query language for semistructured data. Int. J. on Digital
Libraries, 1(1):68-88, 1997.

S. Adali, K. S. Candan, Y. Papakonstantinou, and V. S. Subrahmanian. Query
caching and optimization in distributed mediator systems. In Proc. of the ACM
SIGMOD Int. Conf. on Management of Data, pages 137-148, 1996.

Catriel Beeri, Alon Y. Levy, and Marie-Christine Rousset. Rewriting queries using
views in description logics. In Proc. of the 16th ACM SIGACT SIGMOD SIGART
Sym. on Principles of Database Systems (PODS’97), pages 99-108, 1997.

Peter Buneman. Semistructured data. In Proc. of the 16th ACM SIGACT SIG-
MOD SIGART Sym. on Principles of Database Systems (PODS’97), pages 117-
121, 1997.

Peter Buneman, Susan Davidson, Mary Fernandez, and Dan Suciu. Adding struc-
ture to unstructured data. In Proc. of the 6th Int. Conf. on Database Theory
(ICDT’97), pages 336-350, 1997.

Peter Buneman, Susan Davidson, Gerd Hillebrand, and Dan Suciu. A query lan-
guage and optimization technique for unstructured data. In Proc. of the ACM
SIGMOD Int. Conf. on Management of Data, pages 505-516, 1996.

S. Chaudhuri, S. Krishnamurthy, S. Potarnianos, and K. Shim. Optimizing queries
with materialized views. In Proc. of the 11th IEEE Int. Conf. on Data Engineering
(ICDE’95), Taipei, Taiwan, 1995.

V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From structured doc-
uments to novel query facilities. In R. T. Snodgrass and M. Winslett, editors,
Proc. of the ACM SIGMOD Int. Conf. on Management of Data, pages 313-324,
Minneapolis (Minnesota, USA), 1994.

Sara Cohen, Werner Nutt, and Alexander Serebrenik. Rewriting aggregate queries
using views. In Proc. of the 18th ACM SIGACT SIGMOD SIGART Sym. on
Principles of Database Systems (PODS’99), 1999.

M. P. Consens and A. O. Mendelzon. Graphlog: a visual formalism for real life
recursion. In Proc. of the 9th ACM SIGACT SIGMOD SIGART Sym. on Principles
of Database Systems (PODS’90), pages 404-416, Atlantic City (NJ, USA), 1990.
I. F. Cruz, A. O. Mendelzon, and P. T. Wood. A graphical query language sup-
porting recursion. In Proc. of the ACM SIGMOD Int. Conf. on Management of
Data, pages 323-330, San Francisco (CA, USA), 1987.

Oliver M. Duschka and Michael R. Genesereth. Answering recursive queries using
views. In Proc. of the 16th ACM SIGACT SIGMOD SIGART Sym. on Principles
of Database Systems (PODS’97), pages 109-116, 1997.

Mary F. Fernandez, Daniela Florescu, Jaewoo Kang, Alon Y. Levy, and Dan Suciu.
Catching the boat with strudel: Experiences with a web-site management system.



16.

17.

18.

19.

20.

21.

22.

23.

24.

In Proc. of the ACM SIGMOD Int. Conf. on Management of Data, pages 414-425,
1998.

Mary F. Fernandez and Dan Suciu. Optimizing regular path expressions us-
ing graph schemas. In Proc. of the 14th IEEE Int. Conf. on Data Engineering
(ICDE’98), pages 14-23, 1998.

Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava.
Answering queries using views. In Proc. of the 14th ACM SIGACT SIGMOD
SIGART Sym. on Principles of Database Systems (PODS’95), pages 95-104, 1995.
Alberto Mendelzon, George A. Mihaila, and Tova Milo. Querying the World Wide
Web. Int. J. on Digital Libraries, 1(1):54-67, 1997.

Tova Milo and Dan Suciu. Index structures for path expressions. In Proc. of the
7th Int. Conf. on Database Theory (ICDT’99), volume 1540 of Lecture Notes in
Computer Science, pages 277-295. Springer-Verlag, 1999.

D. Quass, A. Rajaraman, I. Sagiv, J. Ullman, and J. Widom. Querying semistruc-
tured heterogeneous information. In Proc. of the 4th Int. Conf. on Deductive and
Object-Oriented Databases (DOOD’95), pages 319-344. Springer-Verlag, 1995.
Anand Rajaraman, Yehoshua Sagiv, and Jeffrey D. Ullman. Answering queries us-
ing templates with binding patterns. In Proc. of the 14th ACM SIGACT SIGMOD
SIGART Sym. on Principles of Database Systems (PODS’95), 1995.

D. Srivastava, S. Dar, H. V. Jagadish, and A. Levy. Answering queries with ag-
gregation using views. In Proc. of the 22nd Int. Conf. on Very Large Data Bases
(VLDB’96), pages 318-329, 1996.

0. G. Tsatalos, M. H. Solomon, and Y. E. Ioannidis. The GMAP: A versatile tool
for phyisical data independence. Very Large Database J., 5(2):101-118, 1996.
Jeffrey D. Ullman. Information integration using logical views. In Proc. of the
6th Int. Conf. on Database Theory (ICDT’97), volume 1186 of Lecture Notes in
Computer Science, pages 19-40. Springer-Verlag, 1997.



