UNIVERSITA DEGLI STUDI DI ROMA
“LA SAPIENZA”

Queries and Constraints on
Semi-Structured Data

D. Calvanese — G. De Giacomo — M. Lenzerini

Technical Report 13-98

October 1998

DIPARTIMENTO
DI
INFORMATICA E SISTEMISTICA

Queries and Constraints on Semi-Structured Data

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini
Dipartimento di Informatica e Sistemistica
Universita di Roma “La Sapienza”

Via Salaria 113, 00198 Roma, Italy
{calvanese ,degiacomo, 1enzerini}@dis .uniromal.it

Abstract

We extend the model for semi-structured data proposed in [5], where both databases and
schemas are represented as graphs, with the possibility of expressing different types of con-
straints on the nodes of the graphs. We discuss how the expressive power of the constraint
language may influence the complexity of checking subsumption between schemas, and devise
a polynomial algorithm for an interesting class of constraints. We then set up a framework
for defining queries which are used to select graphs from a database. The proposed query
language allows for expressing sophisticated fixpoint properties of graphs and can be regarded
as a basic building block of full-featured languages. We show that reasoning tasks at the
basis of query optimization, such as query-schema comparison, query containment, and query
satisfiability, are decidable.

1 Introduction

The ability to represent data whose structure is less rigid and strict than in conventional databases
is considered a crucial aspect in modern approaches to data modeling, and is important in many
application areas, such as biological databases, digital libraries, and data integration [16, 1, 5, 15,
11]. OEM (Object Exchange Model) [4], BDFS (Basic Data model For Semi-structured data) [5],
and Strudel [11] are recent proposals of models for semi-structured data. They represent data as
graphs with labeled edges, where information on both the values and the schema of data are kept.
In particular, BDFS is an elegant graph-based data model, where graphs are used to represent both
portions of a database (called ground graphs) and schemas, the former with edges labeled by data,
and the latter with edges labeled by formulae of a suitable logical theory. The notion of a ground
graph g conforming to a schema S is given in terms of a special relation, called simulation, between
the two graphs. Roughly speaking, a simulation is a correspondence between the edges of g and
those of S such that, whenever there is an edge labeled a in g, there is a corresponding edge in S
labeled with a formula satisfied by a. The notion of simulation is less rigid than the usual notion
of satisfaction, and suitably reflects the need of dealing with less strict structures of data.

Example 1 In Figure 1, we show a BDFS schema and a ground graph that conforms to it. The
schema models documents representing papers with a title, a sequence of sections, each with an
associated text, and a final section of references to other papers. We assume that in the theory
specifying the labels of graphs titles, sections, texts, and references are mutually disjoint. [

For several tasks related to data management, it is important to be able to check subsumption
between two schemas, i.e. to check whether every ground graph conforming to one schema always
conforms to another schema. In [5] an algorithm for checking subsumption in BDFS is presented
and its complexity is analyzed. Additionally, in [5] the issue of extending the model with different
types of constraints is raised. Indeed, in BDFS all the properties of the schema are expressed in
terms of the structure of the graph, and the possibility of specifying additional constraints, such
as existence of edges, is precluded.

In this paper we extend the framework of [5] presenting the following contributions:

Ref

Section

sll
us s }
d

Figure 1: Schema for papers divided in ordered sections and a conforming ground graph

¢ We extend BDFS schemas with constraints. The basic idea is to express constraints in terms
of formulae associated to nodes of the schema. A formula on a node u imposes a condition
that, for every ground graph g conforming to S, must be satisfied by every node of g sim-
ulating u (see Example 2). We consider different types of constraints, and we discuss how
the expressive power of the constraint language influences the complexity of subsumption
checking. In particular, we show that by adding edge-existence and functionality constraints
the complexity of subsumption remains polynomial.

e We introduce a basic form of queries, called graph selection queries, which are used to select
graphs from a database (see Example 3). The query language presented here represents a
basic building block of a full-featured query language and has been designed on one hand
to express sophisticated fixpoint properties of graphs, and on the other hand to keep several
interesting reasoning tasks decidable. These reasoning tasks, such as comparing queries and
schemas or checking containment between queries, are at the basis of query optimization
techniques applicable to a more expressive query language.

Example 2 The schema in Figure 1 presents several modeling problems, which are demonstrated
by the sample ground graph. Although in principle we would like that each section has exactly
one text associated to it, the schema allows for sections with more that one text or no text at all.
Similarly, to correctly represent the order of sections it is essential to impose that each section is
followed by at most one other section, and that a final section of references, if present, contains at
least one reference. This calls for adding constraints on nodes u; and w3 to impose restrictions on
the number of outgoing edges, which we specify as C(u;) = 3= edge (Text) A I3'edge (Section)
and C(uz) = Jedge (Ref). "

Example 3 Given a database containing ground graphs conforming to the schema in Figure 1,
Jdpath ((Title o Section™ o Ref)” o (Title A (self = GraphQueries)))to (T)

is a query that selects all papers that reference either directly or indirectly, via other papers, a
paper of title GraphQueries. n

The paper is organized as follows. In Section 2 we describe the BDFS data model which is the basic
formalism in our investigation. In Section 3 we address the problem of adding constraints to BDFS.
In Section 4 we define a language for expressing graph selection queries. In Section 5 we describe
the evaluation of graph selection queries. Finally, Section 6 concludes the paper. Proof sketches
appear in the Appendix.

2 Preliminaries

In this section we describe the basic characteristics of the formalism for modeling semi-structured
data proposed in [5], which we call BDFs.

We consider a decidable, complete' first-order theory 7 over a fixed, finite universe /. The
language of 7 includes one distinct constant for each element of I/ and special unary predicates of
the form (self = a), for each constant a, where (self = a)(a') is true if and only if a = a'.

IThe theory is complete in the sense that for every closed formula f, either 7 entails f, or 7 entails = f [5].

Definition 4 A T-ground graph is a rooted connected graph whose edges are labeled with formulae
of the form (self = a), where a is a constant of T. A T-graph schema is a rooted connected graph
whose edges are labeled with unary formulae of T .

Note that a T -ground graph is a special case of T -graph schema. In what follows, we omit 7, and
simply refer to ground graphs, and graph schemas (or simply schemas), respectively. Also, in the
labels of ground graphs, we abbreviate (self = a) with a, and we use the term graph to denote
either a ground graph or a graph schema. A semi-structured database (or simply database) is a
finite set of graphs. A database constituted only by ground graphs is called ground database.

For any graph G, we denote the root of G by root(G), the set of nodes of G by Nodes(G), and the

set of edges of G by Edges(G). We denote an edge from node u to node v labeled by p with u % v.

Definition 5 Given a ground graph g and a schema S, a simulation from g to S is a binary
relation < from the nodes of g to those of S such that u < u' implies that for each edge u = v in
g, there exists an edge u' 2 v' in S such that T |= p(a), and v <v'.

Definition 6 A ground graph g conforms to a schema S, in notation g < S, if there exists a
simulation from g to S such that root(g) < root(S).

Definition 7 Given two schemas S and S', S’ subsumes S, in notation S T S’, if for every
ground graph g, g < S implies g < S'. S' and S are equivalent if both ST S’ and S'C S.

In [5], an algorithm is presented for checking subsumption (and conformance, being a ground graph
a special case of schema). The algorithm essentially looks for the greatest simulation between the
nodes of the two schemas, and works in time O(m®® . t-(m)), where m is the size of the two
schemas, and t7(x) is the time needed to check whether a formula of size z is valid in 7. In the
setting of [5] it is meaningful not to consider 7 to be part of the input of the subsumption problem.
Therefore, whenever t7(m) may be assumed to be independent of m, t7(m) can be replaced by a
constant.

3 Schemas with Constraints

We address now the problem of extending the BDFS data model in order to express constraints on
a schema. We conceive a constraint for a schema S as a formula associated to a node u of the
schema. The formula is expressed in a certain language £, and its role is to impose a condition
that, for every ground graph g conforming to S, must be satisfied by every node of g simulating .
In other words, constraints are used to impose additional conditions on the schema, with respect
to those already implied by the structure of the graph.

Definition 8 A schema with L-constraints, or simply L-schema, is a schema where each node u
is labeled by a formula C(u) of the constraint language L.

Definition 9 Given a ground graph g and an L-schema S, a simulation from g to S is a binary
relation < from the nodes of g to those of S such that w <u' implies that (1) u satisfies C(u'), and

(2) for each edge u = v in g, there exists an edge u' 5 v' in S such that T |= p(a), and v < v'.

The notions of conformance, subsumption and equivalence remain unchanged, given the new defi-
nition of simulation. We assume that £ contains the formula T, which is satisfied by every node
of every ground graph. Therefore, we can view a ground graph ¢ as an £-schema, where C(u) = T
for every node u of g. Thus, conformance is again a special case of subsumption.

Since constraints may contradict each other, or may even be incompatible with the structure of the
graph, the notion of consistency becomes relevant (notice that a ground graph is always consistent).
Moreover, we can introduce the notion of disjointness between L-schemas.

Definition 10 Given an L-schema S, a node u € Nodes(S) is consistent if there is at least one
ground graph which conforms to S', where S’ is equal to S except that root(S') = u. S is consistent,
if root(S) is consistent. Two L-schemas Sy and S» are disjoint, if there is no ground graph that
conforms to Sy and Ss.

function rin(S: L-schema): L-schema,;
{ S « rnec(S);
repeat if there is a node u in S’ with
C(u) = Jedge (p1) A - -- A Jedge (p,) A I edge (f1) A --- A IS edge (f),
that satisfies one of the following conditions:
(1) w is not connected to root(S’) in S’
(2) r > 1 and u has no outgoing edge in S’
B)r>1,uB v, ..., u vy, with m > 1, are all outgoing edges of u in S’, and
TE -3z er(/\lgigr(pi(mi) A Vlgjgn g (zi)) A
Aicres Nicici<r ((Fr(@i) A fr(z;)) D @i = z;))
then remove from S’ the node u and all edges from and to u;
until r00t(S’) has been removed from S’ or no new node has been removed from S;
return S’

}

Figure 2: Function rin that removes non-existence constraints and inconsistent nodes

We consider now different forms of constraints, and study consistency and subsumption checking.
Being conformance a special case of subsumption, we do not explicitly deal with conformance.

3.1 Local Constraints

We consider a language £; in which only local constraints can be expressed, i.e. only constraints
on the edges directly emanating from a node. Formulae in £; have the following syntax (y, 71 and
v denote constraints, and p denotes a formula of T):

v = T | Jedge(p) | —~Jedge(p) | I='edge(p) | 71 Ao

We use 3='edge (p) as an abbreviation for Jedge (p) A I<'edge (p). Intuitively, a constraint of
the form Jedge (p) on a node u, called edge-ezistence constraint, imposes that u has at least one
outgoing edge u % v such that 7 |= p(a), while a constraint of the form 3<'edge (p), called
functionality-constraint, imposes that u has at most one such outgoing edge. More precisely, let .S
be an £;-schema and g a ground graph. Then a node u of g satisfies a constraint -y, in notation
u |= v, if the following conditions are satisfied:

ulET

u = Jedge (p) iff Ju > v € Edges(g). T | pla)

u = —Jedge (p) iff Yu S v € Edges(g). T = —pla)

u =35 edge(p) iff #{u v e Edges(g) | T Epla)} <1
u =y Ay iff (upEy) A (uE2)

First of all, we show that we do not lose in expressiveness if we omit from £; the possibility of using
constraints of the form —Jedge (p). In fact, given an L£;-schema S, we can obtain an equivalent
L;-schema rnec(S) = S’ not containing constraints of the form —Jedge (p) and with the same set of
nodes as S as follows. For every node w in S with C(u) = Jedge (p1)A- - -AJedge (p,) A—Jedge (n1) A
.- A—Jedge (ns) AI<tedge (fi) A--- AT<tedge (f;) and outgoing edges u 55 vy, ..., u B vy, we set
the label of u in S’ as C(u) = Jedge (p1) A - - - A Jedge (p,) A Itedge (f1) A --- A IStedge (f;), and
fori e {1,...,k} we replace in u % v; the formula ¢; by g =q; A—my A= A .

Lemma 11 If S is an L;-schema, then rnec(S) is equivalent to S and its size is polynomial in |S]|.

Next we present a method for checking consistency, based on the function rin defined in Figure 2.
The role of rin is to first remove the non-existence constraints by calling the function rnec, and
then remove all inconsistent nodes from a schema. Condition (1) ensures that nodes not connected
to the root are removed, while conditions (2) and (3) remove nodes in which a constraint cannot
be satisfied. In particular, condition (2) deals with nodes having no outgoing edges but requiring
the existence of at least one, while condition (3) verifies the existence in 7 of appropriate objects
that can simultaneously satisfy the edge-existence and functionality constraints.

function subs(So, Sp: L-schema): boolean
{ S « rin(So);
S' + rin(Sp);
if S does not contain root(Sp) then return true;
if S’ does not contain root(Sj)) then return false;
R+ {(u,u) | u € Nodes(S),u’ € Nodes(S")};
repeat
if there is (u,u') € R, with u Bovg, o uB v, all outgoing edges of u in S,
C(u) = Jedge (p1) A --- A Jedge (pr) A I='edge (f1) A --- A I=tedge (£s),
C(u') = Jedge (p\) A --- A Jedge (pl.) A I<'edge (f1) A --- A Itedge (f1)),
that satisfies one of the following conditions:
(1) there is ¢ € {1,...,n} such that
T | JzoIzr -+ -z, (i (z0) A Algjgm —|q;- (zo) A
/\ISJST(pj (xj) A vlSkS" qk (:E])) A
Alglgs A0§j<k§r((fl'(mj) A fl'(xk)) Dxj = mk))
where u' 2 v}, j € {1,...,m} are all edges from u' in §' such that (v;,v}) € R
(2) r=0and r' £0, or r # 0 and there is i € {1,...,r'} such that
T ': zy - Ele(AlstT _'pli(xj) A
Algjgr(pj (zj) A Vlgkgn ar(z5)) A
Aicics Nicjcre, (Fe(@) A fr(@r)) D @) = w1))
(3) there is ¢ € {1,..., s} such that
T E 3z Fze e Izr o (Fi(@r1) A filzrs2) A mepn Farge AN o, pi(E5) A
Ni<jcrio Vicken a(i) A
Alglgs /\1§j<k$r+2((fl'(mj) A fl'(xk)) Dxj = mk))
then remove (u,u’) from R;

until no new pair has been removed from R;
return (root(S), root(S')) € R

}

Figure 3: Function subs that verifies subsumption of schemas with local constraints

Theorem 12 An L;-schema S is consistent if and only if rin(S) contains root(S). Moreover,
rin(S) runs in time polynomial in |S|.

We now turn our attention to the method for checking subsumption of schemas with constraints,
which is also a method for checking conformance of ground graphs to schemas. The method is
based on the function subs defined in Figure 3. Note that subs is an extension of the algorithm
in [5]. Its basic idea is to look for a simulation between the two schemas by constructing a relation
R as the Cartesian product of the two sets of nodes, and then removing from R all the pairs
(u,u') for which no relation < satisfying condition (2) of Definition 9 may exist. Intuitively, the
algorithm checks locally for the pair (u,u'), whether it is possible to construct a ground graph g
which can be used as a counterexample to the subsumption, and which consists just of a node d
and the nodes connected to d by means of its outgoing edges. In particular, condition (1) checks
the existence of an object in 7 which can label an edge from d which has a corresponding edge
from u but none from u’. Due to the functionality constraints on u, this test must also take into
account the constraints on u in S. Condition (2) checks whether g could violate the edge-existence
constraints on «' while satisfying the constraints on u, and condition (3) does a similar check for
the functionality constraints on u'.

Theorem 13 If S and Sa are L;-schemas, then S1 C Sy if and only if subs(S1,S2) returns true.
Moreover, subs(S1,S2) runs in time polynomial in |S1| + |Sa|.

The above result, together with Lemma 11, shows that adding conjunctions of local constraints to
BDFS does not increase the complexity of subsumption.

Ref Ref

C(u}) = C(u}) = 3= "edge (Text) A I='edge (Section) C(u}) = 3= edge (Text) A 35'edge (Section)

)
C(ub) = 3%"edge (Section) C(uy) = 3%'edge (Section)

Figure 4: Schemas for papers divided in ordered nested sections

Example 14 Figure 4 shows two extensions to the schema in Figure 1, in which nesting of sections
is considered?. Schema (a) models papers in which sections may contain subsections (i.e. with
nesting of depth two). Schema (b), instead, models papers in which sections may be nested at
arbitrary depth. It is possible to verify, that schema (b) subsumes schema (a), and that both
subsume the schema in Figure 1.

Observe that, if we replace 3~ 'edge (Text) by 3<'edge (Text) in C(u}) (thus modeling draft papers
with possibly empty sections), the function subs eliminates the pair (uf,u}) from R because of
condition (2), and in turn the pair (ug, ug) because of condition (1). Hence, in this case, schema (a)
is not subsumed by schema (b). "

In [5], it is shown that the notion of Least Upper Bound (LUB) of two schemas is useful for
several purposes (e.g. for computing the “canonical fragments” of ground graphs). The LUB of
two schemas S; and Ss, denoted by S; M Ss, is a schema satisfying the following property: the set
of ground graphs that conform to S; MS, is the set of ground graphs that conform to both S; and
S>. We can show that the method mentioned in [5] for computing the LUB of two schemas can be
easily extended in order to compute the LUB of two £;-schemas S; and Ss in time O(|Sy| - |Sa]).
This implies that we also have a method for checking if two £;-schemas are disjoint, based on the
observation that S; and Sy are disjoint if and only if S; .S, is inconsistent.

Theorem 15 Checking the disjointness of two L;-schemas Sy and Sy can be done in time polyno-
mial in |Si]-|Sa|.

3.2 Non-Local Constraints

We consider a simple constraint language £,, in which the constraints are not local, i.e. they can
express conditions on edges that are not directly connected to the node labeled with the constraint.
We show that consistency (and thus subsumption) of schemas with constraints becomes intractable.
The formulae of the constraint language £,, have the following syntax:

v = T | Jedge(p)to(y) | Vedge(p)to(y) | 71 A

where the additional rules for the satisfaction of constraints of £,, in a node u of a ground graph
are:

u = Jedge (p)to(y) iff Ju S v € Edges(g). (T = pla) Av =)

u |= Vedge (p)to(y) iff Vu % v € Edges(g). (T | pa) Dv E7)
Observe that £,, is not local since the constraints imposed on one node may imply other constraints

on adjacent nodes. By exploiting this property and the hardness results in [10], we can show that
consistency checking is coNP-hard.

Theorem 16 Checking the consistency of an L, -schema S is coNP-hard in the size of S, even if
T is empty, i.e. all edges of S are labeled with true.

2Constraints equal to T are not shown in the figures.

Theorem 16 shows that consistency checking remains coNP-hard (and subsumption NP-hard), even
if 7 can be used as an oracle for validity. The complexity of checking consistency in the presence
of non-local constraints lies in the necessity to verify whether a ground graph may exist, whose
topology is determined by the constraints. Since 7 cannot predict anything about the possible
topologies of ground graphs, the validity checker of 7 cannot be used to “hide” a potentially
exponential computation.

4 Graph Selection Queries

In general, query languages on semi-structured data are constituted by two components: one
for selecting graphs, and another one for restructuring the selected graph to produce the actual
answer [6, 4, 12, 2]. Here we introduce a basic form of queries, which we call graph selection
queries (gs-queries), which deal only with the selection part. The language of gs-queries allows
for expressing sophisticated fixpoint properties of graphs, which are not available in the above
mentioned formalisms. Furthermore it has been carefully designed in order to keep several in-
teresting reasoning tasks decidable, such as checking query satisfiability, checking containment or
disjointness between queries, and comparing queries and schemas.

Observe that the unit retrieved by a gs-query is a graph, whereas there is no means to extract
and further manipulate specific data from a retrieved graph (see for example [13]). Therefore our
language cannot be considered a full-featured query language, such as UnQL [6], but should rather
be regarded as providing basic building blocks for querying semi-structured data, to be exploited
in query processing for improving evaluation performance (see Section 5).

In the rest of the paper, we deal only with £;-schemas, which we simply call schemas. The
language for expressing graph selection queries has the following syntax (p denotes a formula of T,
n a positive integer, and X a node variable)

node formulae: N == X | 3Z"dge(E) | =N | Ny ANy | uX.N
edge formulae: E == p | to(N) | =E | E1 A Ey

with the restriction that every free occurrence of X in uX.N is in the scope of an even number
of negations®. We introduce the following abbreviations: a; V az for =(-a; A =az), a1 D as
for ma; Vag, T for aV -a, L for aA-a, IS"edge(E) for ~32"tledge (E), Jedge (E) for
J2'edge (E), and Vedge (E) for —~Jedge (-E).

Let g be a ground graph. A waluation p on g is a mapping from node variables to subsets of
Nodes(g). We denote by p[X/N] the valuation identical to p except for p[X/N](X) = N. For each
node u € Nodes(g), we define when u satisfies a node formula N under a valuation p, in notation
p,u = N, as follows:

pulEX iff we p(X)
pyu = 32%dge (E) iff #{u > v € Edges(g) | p,u S vi=E}>n
pyu =N ifft pulEN
pyu = Ni ANy ift (p,ul=EN1) A (py,u |E N2)
p,u = nX.N iff VA C Nodes(g).
(Vo € Nodes(g)-p[X/N],v b= N 5 pX/N],v | X) D p[X/N],ul= X

where

pyu =5 v = p ifft Tk pla)

p,u v = to(N) iff ppvEN

pyuvE-FE iff puBvlEE

puSsvEEANE iff (puSvEE)A(puSvE E)

Observe that for closed (wrt node variables) node formulae, satisfaction is independent of the
valuation, and we denote it simply by u = N.

3This is the usual syntactic monotonicity constraint typical of fixpoint logics, that guarantees the monotonicity
of the fixpoint operator.

Note that it is possible to specify node formulae which express the existence of paths that are char-
acterized by regular expressions over edge formulae. In particular, we consider Jpath (P)to (),
where P is a regular expression over edge formulae, and N is a node formula, as an abbreviation
for the node formula defined inductively over the structure of P as follows:

Jdpath (E)to(N) = Zedge(E Ato(N))
Jpath (P; U P>) to () Jpath (P;) to (N) V Jpath (P) to (N)
Jpath (P; o Py)to(N) = dpath (P;)to(Ipath (P2)to(NV))
Jpath (P*)to(N) = uX.(NV Jpath(P)to (X))
We use the abbreviation Vpath (P) to (V) for —3path (P) to (~NV).

Definition 17 Given a graph G (either a ground graph or a schema) and a closed node formula
N, we say that G satisfies N, in notation G T N, if for every ground graph g conforming to G,
root(g) = N.

It is easy to see that if g is a ground graph and N is a node formula, then ¢ C N if and only if
root(g) = N.

Definition 18 A graph selection query (gs-query) @ is a closed node formula. The evaluation of
Q over a database DB returns the set Q(DB) of all consistent graphs G € DB such that G C Q.

Example 19 The gs-query
Vedge (Title D to(uX .Vpath (Section U (Text o Section))to(X)))

selects all graphs representing papers with a finite depth of nesting of sections, and such that at
each nesting level, the number of sections is finite. In particular, papers containing a loop between
sections, i.e. sections that are followed either directly or indirectly by themselves are not selected
by the query. n

Definition 20 A gs-query @ is satisfiable if there ewists a database DB such that Q(DB) is
non-empty. Given two gs-queries Q1 and @2, Q1 is contained in Qo if for every database DB,
Q1(DB) C Q2(DB), and Q, is disjoint from Q> if for every database DB, Q(DB) N Q2(DB) = 0.

Theorem 21 Checking a gs-query for satisfiability and checking containment and disjointness
between two gs-queries are EXPTIME-complete problems.

5 Evaluating Graph Selection Queries

We describe now a method for evaluating a gs-query over a graph (either a schema or a ground
graph), and over a database.

5.1 Evaluating Queries over Graphs

Given a ground graph g and a gs-query @, we can verify in polynomial time in the size of g (and
in exponential time in the size of g and @) whether root(g) = @. This follows from the fact that
@ can be easily translated into a formula of first-order logic plus fixpoints [3], and that g can be
transformed into a first-order structure. Thus checking whether g is part of the answer set of
can be reduced to model checking in first-order logic plus fixpoints, which has polynomial data
complexity. Therefore, the method verifies in polynomial time in the size of g whether g C Q.
We now turn our attention to checking whether a schema satisfies a gs-query. To this purpose, we
exploit the fact that each schema S can be transformed into a gs-query Qs that is equivalent to
S, in the sense that the ground graphs conforming to S are exactly those that satisfy Qg. We call
Qs the characteristic query of the schema S.

To define (Qs, we first consider the set of mutual recursive equations:

Xu, = C(ur) AVedge(V, 5 (pAto(Xy)))
Xu, = C(up) /\Vedge(\/uh&v(p/\to(Xv)))
one for each node u; in Nodes(S) = {u1,...,up}

Then we eliminate, one at the time, each of the above equations, except the one for X, (s) as
follows: eliminate the equation Xu; = N; and substitute each occurrence of Xy, in the remaining
equations with vX,,;.N;. Let X,,04(s) = Ns be the resulting equation. The characteristic query
QS of S is VXroot(S)-NS 4

Theorem 22 If S is a schema and Qg is its characteristic query, then, for every ground graph g,
g conforms to S if and only if g satisfies Qs.

Theorem 23 If S is a schema and Q) is a gs-query, then checking whether S C Q is EXPTIME-
hard and decidable in time O(2P(%@s|+IQD),

Observe that |@s| may be exponential with respect to |S|. Therefore checking whether a schema
satisfies a gs-query can be done in worst case deterministic double exponential time with respect to
the size of the schema (and deterministic exponential time with respect to the size of the gs-query).

5.2 Evaluating Queries over a Database

We sketch now how to exploit schemas and subsumption and disjointness relations between graphs
in order to evaluate gs-queries over databases. We remind the reader that evaluating a gs-query
over a database means selecting all graphs in the database that satisfy the query. Without loss of
generality we assume that the database does not contain equivalent graphs.

When the database is constituted by a flat set of ground graphs, evaluating a gs-query) amounts
simply to check for each ground graph separately whether it satisfies (). On the contrary, when
the database DB is constituted by ground graphs and schemas, and when for each pair of such
graphs one knows whether one is subsumed by the other or whether they are disjoint, then the
evaluation of () on DB can take advantage of this information by proceeding as follows.

Let G be equal to DB. While G is not empty, repeatedly select a graph G from G such that no
graph in G subsumes G, and do the following:

1. If G is equivalent to @, then let Q(DB) be all graphs in G subsumed by G and stop.
2. If G satisfies @, then move all graphs that are subsumed by G from G to Q(DB), and continue.

3. If @ is contained in @Q¢, then remove from G the graph G and all graphs that are disjoint
from G and continue.

4. If Q¢ is disjoint from @, then remove from G all graphs that are subsumed by G, and
continue.

5. Otherwise, remove G from G and continue.

Observe that in this way schemas act as semantic indexes on graphs in the database and help
in improving performance of query evaluation with respect to the brute approach of evaluating
graphs one by one, similarly to DataGuides proposed in [13]. Therefore, the addition of schemas
to a database constituted by ground graphs only allows for a more effective query evaluation
process. Obviously, because of the high complexity of comparing schemas and queries, one has to
carefully choose the size of schemas to be small (e.g. logarithmic) with respect to the size of the
conforming ground graphs in the database.

4This construction is analogous to the one used in Process Algebra for defining a characteristic formula of a
process [17], i.e. a formula which is satisfied by exactly all processes that are equivalent to the process under
bisimulation. Similarly, Qg characterizes exactly all databases that conform to S.

6

Future Work

We are currently working on various aspects. First, we are working to extend the polynomial time
algorithm for schema subsumption to other forms of constraints, including cardinality constraints.
Second, we are investigating the possibility of avoiding the worst case exponential blowup in the
encoding of a schema into a query. Finally, we are considering a more general query language
that uses graph selection queries as building blocks, and we are devising techniques for query
containment in such a language, along the line of [7].

References

[1]
2]

[3]
[4]
[5]
[6]

[16]
[17]

18]

[19]

[20]

S. Abiteboul. Querying semi-structured data. In Proc. of ICDT-97, pages 1-18, 1997.

S. Abiteboul, S. Cluet, V. Christophides, T. Milo, and J. S. Guido Moerkotte. Querying documents
in object databases. Int. J. on Digital Libraries, 1(1):5-19, 1997.

S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley Publ. Co., Reading,
Massachussetts, 1995.

S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. The Lorel query language for
semistructured data. Int. J. on Digital Libraries, 1(1):68-88, 1997.

P. Buneman, S. Davidson, M. Fernandez, and D. Suciu. Adding structure to unstructured data. In
Proc. of ICDT-97, pages 336-350, 1997.

P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query language and optimization technique
for unstructured data. In Proc. of ACM SIGMOD, pages 505-516, 1996.

D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query containment under
constraints. In Proc. of PODS-98, pages 149-158, 1998.

J. de Bakker. Mathematical Theory of Program Correctness. Prentice-Hall, 1980.

G. De Giacomo and M. Lenzerini. A uniform framework for concept definitions in description logics.
J. of Artificial Intelligence Research, 6:87-110, 1997.

F. M. Donini, B. Hollunder, M. Lenzerini, A. M. Spaccamela, D. Nardi, and W. Nutt. The complexity
of existential quantification in concept languages. Artif. Intell., 2-3:309-327, 1992.

M. F. Fernandez, D. Florescu, J. Kang, A. Y. Levy, and D. Suciu. Catching the boat with strudel:
Experiences with a web-site management system. In Proc. of ACM SIGMOD, pages 414-425, 1998.

M. F. Fernandez, D. Florescu, A. Y. Levy, and D. Suciu. A query language for a web-site management
system. SIGMOD Record, 26(3):4-11, 1997.

R. Goldman and J. Widom. DataGuides: Enabling query formulation and optimization in semistruc-
tured databases. In Proc. of VLDB-97, pages 436445, 1997.

D. Kozen. Results on the propositional p-calculus. Theor. Comp. Sci., 27:333-354, 1983.

A. Mendelzon, G. A. Mihaila, and T. Milo. Querying the World Wide Web. Int. J. on Digital
Libraries, 1(1):54-67, 1997.

D. Quass, A. Rajaraman, I. Sagiv, J. Ullman, and J. Widom. Querying semistructured heterogeneous
information. In Proc. of DOOD-95, pages 319-344. Springer-Verlag, 1995.

B. Steffen and A. Ing6lfsdéttir. Characteristic formulae for processes with divergence. Information
and Computation, 110:149-163, 1994.

C. Stirling. Modal and temporal logics for processes. In F. Moller and G. Birtwistle, editors, Logics
for Concurrency: Structure versus Automata, volume 1043 of LNCS, pages 149-237. Springer-Verlag,
1996.

A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics,
5:285-309, 1955.

W. Van der Hoek and M. De Rijke. Counting objects. J. of Log. and Comp., 5(3):325-345, 1995.

10

7 Appendix
Lemma 11 If S is an L;-schema, then rnec(S) is equivalent to S and its size is polynomial in |S|.

Proof (sketch). Let S’ be rnec(S).

“SC S Let g be a ground graph that conforms to S and < a simulation from g to S respecting
the constraints of S. (i.e. all conditions in Definition 9). We show that < is also a simulation from
g to S’ respecting the constraints of S’. Indeed, let d be a node of g and u a node of S (and S’)
with d < u. For each edge d % e from u in g there is an edge u > v is S such that 7 |= q(a)
and e < wv. Since d |=. C(u), we also have d |=, C'(u), and moreover T |= —p(a), for all ~Jedge (p)
appearing in C(u). Hence T E ¢'(a).

“S"C S” Similar. O

Theorem 12 An L;-schema S is consistent if and only if rin(S) contains root(S). Moreover,
rin(S) runs in time polynomial in |S|.

Proof (sketch). “<” If anode u of S is consistent, then there is a ground graph which conforms
to the schema S, identical to S except for the root which is u. Hence neither condition (2) nor (3)
of rin can be satisfied for u, and if u = root(S) then v is not removed from S.

“=” Let 8" = rin(S) and u a node (connected to root(S) = root(S’)) in S’. If conditions (2)
and (3) in rin are not satisfied for u, then: either C(u) contains no edge-existence constraints,
and the ground graph consisting of a single node conforms to S, or C(u) contains edge-existence
constraints Jedge (p1), ..., Jedge (p,), u has outgoing edges u = vi,...,u 23 vy, in S’ and the
formula in condition (3) is not satisfied. In this case there are (not necessarily distinct) objects
a,...,a, in 7 which can be used to construct a ground graph with a root d, having outgoing
edges labeled with ay,...,a,, and satisfying C(u).

“Complexity” The number of iterations is bounded by the number of nodes in S, and at each
iteration, for each node u a validity check is done for a formula of 7 whose size is bounded by
a polynomial in the sum of the size of C(u) and the sizes of the formulae labeling the outgoing
edges of u. Hence rin runs in time O(|S|%™M -t1(|S|°M)), and the thesis follows since ¢7(]S|°™M)
is assumed to be constant. O

Theorem 13 IfS; and Sy are L;-schemas, then Sy C Sy if and only if subs(S1,Ss) returns true.
Moreover, subs(S1,Sz) runs in time polynomial in |S1| + |Sa|.

Proof (sketch). For a schema S and a node u of S, let S* denote the schema identical to S except
that root(S*) = u. The proof is based on showing that the pair (u,u') is removed from R, if and
only if there is a ground graph g such that g < S} but g £ S;".

“<” Let g be a ground graph such that g < S}, and let <; be the corresponding simulation
respecting the constraints of S{*. Then the relation R constructed by subs can be used to obtain
a simulation <, from g to S¥ respecting the constraints of SY .

“=” Let (u,u’) be a pair removed from R by subs at the K-th iteration of the repeat-until loop.
The construction of a ground graph g such that ¢ < S} and g A Sé‘l is by induction on K,
exploiting the fact that all inconsistent nodes in S; and S have been removed before starting the
construction of R.

“Complexity” The number of iterations is bound by |Si]|-|S2|, and at each iteration a polynomial
number formulae of size polynomial in m = |S;| + |Sz2| are checked for validity in 7. Hence subs
runs in time O(mP® . m@W). The thesis follows from the fact that t7(m®™)) is assumed to be
constant. O

Theorem 16 Checking the consistency of an L, -schema S is coNP-hard in the size of S, even
if T is empty, i.e. all edges of S are labeled with true.

11

Ftrue true true true
PS >@ - @ .-

Uo Ui U2 U2m—2 U2m—1

Figure 5: Schema encoding F' = {fi1,..., fm}

Proof (sketch). The proof is an adaptation of the proof of coNP-hardness of satisfiability in the
Description Logic ALE [10], and is based on a reduction of the NP-complete ALL-POS ONE-IN-
THREE 3SAT problem® to inconsistency of an £,-schema.
Given a set F' = {f1,..., fm} of positive clauses with three literals over {z1,...,z,}, the schema
Sp which encodes F is shown in Figure 5, where root(Sr) = ug and C(up) = C{ A--- A CJ, with
C!,ie{l,...,m}, j€{l,...,n}, defined inductively by:

ci _ | Fedge(P)to (Cl), if € fi

’ Vedge (P) to (Cg+1): if v; & fi-
i L= Jedge (P) to (C’f:nHH), ?f xj € fi,
mti Vedge (P)to (C}, 1 iy1), ifxj & fi.

It is possible to show that Sg is consistent if and only if there is no truth assignment such that
each clause has exactly one true literal. O

Theorem 21 Checking a gs-query for satisfiability and checking containment and disjointness
between two gs-queries are EXPTIME-complete problems.

Proof (sketch). Since containment between (); and @) can be verified by simply checking the
formula Q1 A =@, for unsatisfiability, and disjointness can be verified by checking the formula
@1 N Q- for unsatisfiability, we focus on satisfiability only.
It is easy to see that a query is satisfiable if and only if there is a ground graph g such that g C Q.
In fact, if there is a database DB such that Q(DB) contains a schema S, then there exists also a
database DB’ = DB U {g}, where g is a ground graph conforming to S. Hence g is contained in
Q(DB).
To show the EXPTIME upper bound we exploit a polynomial reduction of satisfiability of a
gs-query to satisfiability in a variant of modal mu-calculus [14, 18]. In particular, we consider
modal mu-calculus extended with graded modalities 4 ALCQ studied in [9]. Graded modalities are
formulae of the form (> na.¢), (< na.¢), (= na.¢p), (where n is a positive integer, a a (binary)
relation, and ¢ a formula) which are interpreted as the set of states of the model from which a
reaches at-least (at-most, exactly) n states where ¢ holds (see e.g. [20]).
We check whether @ is satisfiable, by encoding it into a pALC Q formula ¥ = ¥; AW, and checking
the satisfiability of such formula.
In encoding @ we exploit reification of edges, as used in [5]. Intuitively, we split each labeled
edge u = v of a ground graph into two edges u — ey, — v, by introducing an intermediate node
ey labeled by a and making use of a special relation e (which is the only relation used in the
encoding).
The formula ¥; has the form

vX.(®Ale]X)
and is used to enforce that ®, encoding general properties, holds in every state of the model®
The formula ® is the conjunction ®y A @7, where &y and ®+ are as follows:

e &y, which enforces the general structure of graphs, has the form

(Node V Edge) A —~(Node A\ Edge) A
(Node D [e]Edge) A
(Edge O ((=1e.T) A [e]Node))

5ALL-POS ONE-IN-THREE 3SAT is the problem of deciding whether a 3CNF positive formula admits a truth assign-
ment such that each clause has exactly one true literal.

6By the connected model property of uALCQ we can restrict ourselves without loss of generality to connected
models only.

12

with Node and Edge new atomic formulae. Intuitively, this part of ¥; partitions the inter-
pretation domain into states denoting nodes (Node) and states denoting edges (Edge), and
specify the correct links for them.

e &, which reflects the properties of the theory 7, is formed by the conjunction of

Edge = Oy, V---V O,, where ay,...,a, are all the constants in 7, and
Oq; D =0y, for each pair of constants a;, a;

where O, is a new atomic formula associated with a. In addition, for each unary formula p
in) and for each constant a, ®7 contains a conjunct

0.>C, if Tk p)
0, ~C, if T k& -p(a)

where (), is a new atomic formula associated to p.

The formula ¥, has the form Node A ¢¥(Q), where (Q) is defined inductively as follows:

B(X) = X

)
" = e Yip) = Cp
TR I, el s e
1/’(12\&;\(1\17\27; i %{J\.f;)(z/:r;/}wz}) V(ELANEs) = (Er) AY(E2)

It can be shown that each ground graph satisfying () can be mapped to a model of ¥ and vice-versa,
that each model of ¥ can be mapped to a ground graph satisfying Q.

To get the EXPTIME upper bound it suffices to observe that ¥; does not depend on the query
and hence has a constant size, while the size of ¥y is linearly bound by the size of the query.

The EXPTIME hardness is a consequence of the EXPTIME hardness of satisfiability in uALCQ,
since uALCQ formulae can be encoded into gs-queries following a technique similar to the one
above. O

Theorem 22 If S is a schema and Qg is its characteristic query, then, for every ground graph
g, g conforms to S if and only if g satisfies Qg.

Proof (sketch). “<” Let p, be the valuation assigning the greatest extension to each X, while
satisfying the equations

Xu, C(uy) /\Vedge(\/u p Ato(Xy)))

1£>U(

Xuy, C(un) A Vedge (Vuhﬁw (p Ato(Xy)))
We define
R = {(u,u’) € Nodes(g) x Nodes(S) | pv,u = Xuw}

We show that R is a simulation from g to S, i.e. for each u, v/, if (u,u') € R then (1) u = C(u'),

and (2) for each edge u % v € Edges(g), there exists an edge u’ % o' € Edges(S) such that
T |= p(a) and (v,v") € R. Indeed, p,,u = X, implies p,,u = C(u') AVedge (\/ pAto(Xy))).
Hence

(D) pv,uf=C(u')

(2) for each u % v € Edges(g), there exists an edge v’ 5 v' € Edges(S) such that 7 |= p(a) and
v, v = Xy Le. (v,0") € R.

' Bl (

13

It remains to show that (root(g), root(S)) € R. The construction applied to build the characteristic
formula Q57 guarantees that u = Qs iff p,,u | Xroot(s)- Hence, since g C Qs, i.e. root(g) = @s,
we have that p,, 700t(g) | Xyoot(s)-

“=”" Let < € Nodes(g) x Nodes(S) be the greatest simulation relation such that v < u' implies
that (1) u satisfies C(u'), and (2) for each edge u % v € Edges(g), there exists an edge v’ = v’
such that 7 = p(a) and v < v'. Let p. be a valuation such that p.(X,) = {u | u < u'}. It is easy
to verify that

pe,u = Xy implies p.,u = C(u') A Vedge (\/ pAto(Xy))
u B’
Now the valuation p, defined above is also the valuation assigning the greatest extension to each
X, that satisfies these implications®. This implies that p.(X,) C p, (X,) and thus, since u = Qs
iff pu,u = Xyo0i(s), We get that root(g) = Qs, ie. g C Qs. O

"Note that this construction is exactly the one used e.g. in [8] to eliminate mutual fixpoints.
8This is a direct consequence of Tarski-Knaster’s fixpoint theorem [19].

14

