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Abstract

In this paper we explore a research direction in rea-
soning about actions stemming from the Robot-Tino
Project at the University of Rome. We introduce a log-
ical formalism that combines a very expressive logic of
programs, the modal mu-calculus, with a special use of
a minimal knowledge operator. Reasoning in such for-
malism can be done by integrating model checking for
modal mu-calculus and propositional inference. This
allows for exploiting existing model checking tech-
niques and systems for reasoning about complex high-
level robot behaviors, without renouncing to deal with
incomplete information on the initial state and both
the preconditions and the effects of actions.

Introduction

In this paper we explore a research direction stem-
ming from the Robot-Tino Project at the University
of Rome “La Sapienza” (De Giacomo et al. 1996;
1997). This project aims at integrating deliberative
behaviors specified in a logical formalism with reactive
behaviors provided by low-level mechanisms, which are
not required to support reasoning. The robot adopted
within the project is a Pioneer-1 equipped with reac-
tive behaviors which are defined within the Saphira
environment. The logical formalism adopted for rep-
resenting and reasoning about actions at the delibera-
tive level is a variant of Propositional Dynamic Logic
(in the original proposal is a Description Logic cor-
responding to a PDL ! (De Giacomo et al. 1996;
1997)).

The variant of PDL considered includes a minimal
knowledge operator which strongly characterizes how
the deliberative behavior of the robot is modeled: the
robot may perform an action if it knows that the pre-
conditions for that action hold, not simply if the pre-
conditions are true. Similarly, the effects of an action

!See (Schild 1991; De Giacomo & Lenzerini 1994) for
an introduction to the correspondence between Description
Logics and Propositional Dynamic Logics.

of interest for the robot are only the ones the robot is
aware of, i.e. the effects that change its epistemic state.
This is obtained by specifying what a robot knows after
an action, instead of specifying what is true after an
action. In this approach, the robot follows the changes
in the world through the changes in its epistemic state
only. Obviously, it is responsibility of the designer to
ensure that changes in the world are suitably reflected
in changes in the robot epistemic state and vice-versa.

In (De Giacomo et al. 1996; 1997) it was shown
that this approach allows for dealing with incomplete
information about the initial state and about both pre-
conditions and effects of actions, and moreover sim-
plifies planning, which is the only form of reasoning
about action considered in those papers. The sim-
plification of the planning task is illustrated by the
fact that the plan existence problem can be solved in
PSPACE (as in the case of STRIPS (Bylander 1991))
instead of EXPTIME as required by a corresponding
formulation in PDL (De Giacomo et al. 1996).2 The
simplification of the planning problem in this setting
is due to the special use of the epistemic operator in
the axioms that specify preconditions and effects of
actions. Such axioms force a strong uniformity on the
models. In general, PDL interpretation structures can
be thought of as infinite trees labeled on both nodes
and edges: each node represents a state and is labeled
by the propositions that are true in that state, while
each edge represents a state transition and is labeled
by the action that causes the transition. The axioms
mentioned above force their models so that, wrt the
planning problem, all models can be seen as identical

2There it was also shown that reasoning in the formaliza-
tion based on the epistemic operator could be seen as a well-
characterized weakening of reasoning in standard PDL. In
addition, the proposed framework has the nice property wrt
planning that the existence of a plan is inferred only if an
“executable” plan exists, i.e. a sequence of actions which in
every model reaches the goal, while a standard PDL frame-
work would infer the existence of a plan also if such plan
depends on the particular model.



except for the labeling of the states. In other words,
the propositions that are true in the states are gener-
ally different in different models, however state tran-
sitions are the same in every model. This allows for
building a single graph, representing all models, which
reflects the common state transitions in each model,
and whose nodes are the propositions that are true in
all models —which correspond to the propositions that
are known by the robot. The planning problem reduces
to find a path on such a graph, executing validity tests
on the nodes while traversing the graph.

In this paper we show that such an approach can
be extended from planning to reasoning about ac-
tions in general. Specifically, we introduce and demon-
strate a very general formalism to denote dynamic
properties. Such a formalism is a variant of modal
mu-calculus (Kozen 1983; Streett & Emerson 1989;
Stirling 1996), a logic of programs that subsumes
both propositional dynamic logics such as standard
PDL, PDL enhanced with repeat constructs (Kozen
& Tiuryn 1990), and branching time temporal log-
ics such as CTL and CTL* (Emerson 1996). Modal
mu-calculus is used in the verification of concurrent
systems (Hoare 1985; Hennessy 1988; Milner 1989;
Baeten & Weijland 1990), and for this task several
automated model checking techniques and systems
have been developed (Clarke, Emerson, & Sistla 1986;
Emerson & Lei 1986; Winskel 1989; Cleaveland 1990;
Stirling 1996; Burch et al. 1992; McMillan 1993;
Cleaveland & Sims 1996). By exploiting the possibility
of representing all models of a dynamic system specifi-
cation as a single graph, it becomes possible to adapt
model checking techniques for the modal mu-calculus
to our setting. Essentially, such model checking tech-
niques are used to visit the graph in a suitable fashion,
checking validity (instead of truthness) of propositional
formulae on single states, while traversing the graph.

The paper is structured as follows. In the next sec-
tion, we introduce the logical formalism used for de-
noting dynamic properties. Then, we address repre-
sentation of dynamic systems in such a formalism, and
present techniques for reasoning about actions in this
framework. Next, we present some examples of prop-
erties which can be expressed and computed in this
setting, and we deal with the possibility of express-
ing and reasoning about complex actions. Finally, we
briefly discuss the formalization of sensing actions.

Logical formalism

The technical background of our proposal is consti-
tuted by a logical formalism £ that originates from
a suitable integration of modal mu-calculus and epis-
temic decription logics (see (Kozen 1983; Stirling 1996;

Emerson 1996) and (Donini et al. 1992; 1994; Donini,
Nardi, & Rosati 1997; De Giacomo et al. 1996) respec-
tively for an introduction to these formalisms). The
basic elements of £ are a finite set of actions Act, a
countable set of propositions Prop, and a countable
set of propositional variables Var.

Formulae of the formalism are divided in two layers:

e state description formulae:
pu=A|pi Aps|-p
with A € Prop.

e dynamic formulae:

pu=kp|d1 A2 | ¢ |a]d| X | uX.¢

with p a state description formula, a € Act and X €
Var. The formula ¢ in pX.¢ must be syntactically
monotone in X, that is the variable X must be in
the scope of an even number of negations.

We use the usual abbreviations V, D, tt, ff denoting
tautology and contradiction, and also the abbrevia-
tions (a)¢p = —la]-¢ and vX.¢ = —-uX.—¢[X/-X]
where [X/—X] denotes the syntactic substitution of X
by -X.

We give the semantics of £ by first fixing once and
for all a countable-infinite set S of state names which
will constitute the interpretation domain of £. We
assume to have a set of constants Const C S that are
used to univocally denote state names.

An L pre-interpretation Z is a function over & which
assigns to each constant in Const the corresponding
state name, i.e. s = s; to each atomic proposition in
Prop a subset of S, i.e. A7 C &; and to each action
a € Act a functional relation over S, i.e. af C S x S,
with the restriction that for every s,s’,s” € & if
(s,s') € al and (s,s") € af then s’ = s”. In addi-
tion, the union of the relations interpreting the actions
is backward functional, i.e. for every s,s’,s" € S if
(s',8) € Ugcacta® and (s",5) € Ugeacta® then s’ = s".
Pre-interpretations are extended to state description
formulae as follows:

(p1 Ap2)* Pt Npg
(-p)* = S§-p'

An L valuation p is a function from Var to a subset
of S such that p(X) C S for every X € Var. Given
a valuation p and £ C §,, we denote by p[X/£] the
valuation obtained from p by changing to £ the subset
assigned to the variable X.

An L interpretation YV is a set of pre-interpretations
over S. We define interpretations of state formulae and



actions respectively as:

PV = Nzewp?

aV = Nzewa®

Interpretations and valuations are used to interpret dy-
namic formulae as follows:

(kp)p¥ = p¥

(p1 Ag2)¥ = (61)) N(¢2))

(=)} = S-¢)

([a]d))}fv = {se8|Vs.(s,s)ea’VDs € d)},/v}
X = p(X)

(/JX'd)))p/v = N{€CS| d))p/FX/S] c&}

In particular we will be interested in closed formulae
(formulae with no free variables). Such formulae are
interpreted independently from the valuation, hence we
will interpret them using an interpretation ) alone:
™.

An £ knowledge base ¥ is defined as a pair ¥ =
(T, A), where T is a finite set of state description for-
mulae and (closed) dynamic formulae, and A is a fi-
nite set of assertions of the form (s) with 1 either a
state description formula or a dynamic formula, and
s € Const.

An L interpretation W satisfies a formula ¢ € T iff
YW = 8. W satisfies an assertion p(s) € A iff s € pV.
W satisfies a knowledge base ¥ = (T, .A) iff W satisfies
every formula from 7 and every assertion from A.

An £ interpretation W is a model for X iff W is a
maximal set of £ interpretations satisfying X, i.e., for
each £ interpretation W', if W C W' then W' does
not satisfy . This corresponds to impose a “minimal
knowledge” semantics on the epistemic states of the
agent (De Giacomo et al. 1996). In fact, each £ inter-
pretation can be viewed as a Kripke structure in which
each £ pre-interpretation is a possible world, and each
world is connected to all worlds in the structure: only
structures satisfying ¥ and having a maximal set of
possible worlds are considered, which maximizes igno-
rance of the agent in its epistemic states.

Finally, ¥ logically implies a formula or an assertion
o, written ¥ |= o, iff every model for ¥ satisfies o.

Dynamic system representation

In this section we present the framework for represent-
ing dynamic systems in the logic £. Our framework
essentially follows the one presented in (De Giacomo
et al. 1996; 1997).

The formalization of a dynamic system is constituted
by the following elements.

e Initial state description is formed by a finite set of
assertions of the form

p(sinit)

where p is a state description formula and s;,; is
a constant in Const. In fact we may assume that
Const = {Sinit}-

e Static axioms are a finite set of state description for-
mulae p, which are assumed valid, defining invari-
ance properties of states.

e Precondition axioms specify under which conditions
an action can be executed. In our case such a con-
dition depends on the epistemic state of the agent
and not on what is true in the world. Precondition
axioms are dynamic formulae of the the form:

kp D (a)kit

o Fffect azioms specify the effects of an action when
executed under certain conditions. Again in our ap-
proach both effects and conditions concern the epis-
temic state of the agent. Effect axioms are dynamic
formulae of the form:

kp; D [a]kps

No special treatment of the frame problem is con-
sidered here; we simply make use of frame axioms
constituted by effect axioms of the form:

kp D [alkp

Let ¥ be the knowledge base describing the dynamic
system as above. We are interested in verifying if the
system satisfies a certain dynamic property. Formally,
we are interested in logical inference of the form

S b ¢(simit) (1)

where ¢ can be any dynamic formula. As we shell
see later, in this way we can deal with the projection
problem, “given a sequence of actions, does a given
state description formula hold in the resulting state?”;
the planning problem, “is there a sequence of actions
such that the goal (a state description formula) holds
in the resulting state?”; but also very sophisticated
dynamic properties such as liveness, safeness, etc. that
are easily expressed using fixpoint formulae.

Reasoning

Let us now turn our attention to the problem of com-
puting the logical implication (1).

First of all, an £ knowledge base ¥ corresponding to
a dynamic system representation has in general many
models, however it can be shown that all such models
are isomorphic up to renaming of states. It is thus
possible to reason on a single model, since it can be



ALGORITHM TG
INPUT: ¥ = (FS UlpUTE, {p(smit)})
OUTPUT: TG(Y)
begin
Sactive = {Sinit};
S = {sinit};
Ls(sinit) = {p(sinit) };
repeat
s = choose(Sactive);
for each action a do
if (kp D (a)ktt) € I'p and (I's U Lg(s) = p) then
begin
s’ = NEW state name;
PROP(s") = {ql(kp' > lalkq € T's) A (s U Ls(s) = p)};
if there exists s”’ € S such that
(Ts U Lg(s")) and (I's U Lg(s")) are logically equivalent
then Ly (s,a) ="
else begin
Sactive - Sactive U{SI};

S =SuU{s'};
Ls(s') = PROP(s')
end

end;

Sactive - Sactive _{5}
until Syctive = 07
return (S, Ls, L4)

end;

Figure 1: Algorithm computing T'G(X)




shown that all the properties that are expressible in
the right-hand side of (1) are independent of such state
names.

We represent the models of ¥ by means of the transi-
tion graph (TG) of X. Roughly speaking, the transition
graph is a graph in which:

e each node corresponds to a state and is labeled with
a propositional formula representing the properties
which are known in such a state;

e each edge is labeled with an action name, and de-
notes the transition caused by the execution of the
corresponding action.

Observe that what the robot knows in the initial
state is the set of propositional formulae which are
valid in s;,, i.e. the set of propositional formulae
which are logically implied by p(s;n:t). Moreover, what
the robot knows after executing an action is the set of
propositional formulae which are logically implied by
the postconditions representing the effects of the action
execution. In this way it can be shown that it is possi-
ble in each state to verify whether an action can be ex-
ecuted (that is, whether the preconditions are known
by the robot) by simply checking for the validity of
the action precondition. This correspondence between
the notions of robot’s knowledge (about propositional
properties) and propositional validity is exploited in
the construction of the transition graph.

Formally, TG(X) = (S,Ls,La), where S C S is
the set of states which includes s;,;t, Ls is a function
assigning a finite set of propositional formulae to each
state in S, and L, is a partial function assigning a
state to a pair formed by a state and an action.

Let ¥ = (7T,.A), where 7T is the set of static ax-
ioms (I's), precondition axioms (I'p), and effect ax-
ioms (T'g), and A = {p(sinit)} is the initial state
description, be the the dynamic system specification.
The transition graph TG(X) is computed by the algo-
rithm shown in Fig. 1.

Informally, the algorithm, starting from the initial
state s;nit, iteratively proceeds as follows. First, it
finds an action a which can be executed in the current
state, by identifying in the set I'p a precondition ax-
iom for a whose left-hand side is logically implied by
the current knowledge base. Then, it propagates the
effects of the action a, which again is based on check-
ing whether the left-hand side of each effect axiom for
a in the set I'p is logically implied by the properties
holding in the current state. In this way, the set of
properties corresponding to the effect of the execution
of a in the current state is computed. A new state is
then generated, unless a state with the same proper-
ties has already been created. This step is repeated

until all actions executable in the current state have
been considered. Then, a new current state is chosen
among those previously created and the main iteration
proceeds.

The transition graph is unique, that is, every order
of extraction of the states from the set S,.tye produces
the same set of assertions, up to the renaming of states.
Moreover, the algorithm terminates, that is, the condi-
tion Syetive = 0 is eventually reached, since the number
of states generated is bounded to the number of differ-
ent subsets of the set £ = {q|kp’ D [alkq € I'g}, i.e.
2" where n is the number of axioms in I'g. Finally,
the condition

(Ts U Lg(s")) and (I's U Lg(s")) are logically
equivalent

can be verified by a propositional validity check, as well
as the propositional logical implication

C,ULy(s) Ep

Next let us define the extension of a dynamic for-
mula in TG(X) wrt an £ valuation p as follows:

(kp)ZG(E;G 2 - {3 ETSG |EFS y Ls (ﬁé |; p}
(61 AT‘f;%%’; @ = (p)n ;;(ﬂz )(¢2)p =)
- = S -

( ¢)pm® = () , o
([a]®), = {se€S|Vs.(La(s,a)=5")D
ros) (s' € 65 “)}

Xp = p(X)
WX.$);° = n{ECS|srm C B}

In fact, we are interested in closed formulae ¢, whose

extension in T'G(o) is independent of the valuation:

each such formula will be denoted simply by ¢T¢),
Now we can state the following result:

Theorem 1 Let X be a specification of a dynamic sys-
tem as above, and let ¢ be any closed dynamic formula
in L. Then, ¥ |= ¢(sinit) if and only if sinit € pTC®),

Being TG(X) essentially a finite “transition system”
whose nodes represent sets of valid propositional for-
mulae, it is immediate to modify model checking al-
gorithms for modal mu-calculus formulae for finite
transition systems (Clarke, Emerson, & Sistla 1986;
Emerson & Lei 1986; Winskel 1989; Cleaveland 1990;
Stirling 1996; Burch et al. 1992; McMillan 1993;
Cleaveland & Sims 1996), to verify whether s;,,; is in
the extension of a formula in TG(X), and hence, by the
theorem above, to reason about actions in our setting.

Examples
We illustrate the expressiveness capabilities of the for-
malism proposed with some examples. Below, we in-
formally say that a formula “holds” in a state if the



formula is “known” in the robot’s corresponding epis-
temic state.

We start by expressing the projection problem: “does
a proposition p hold in the state resulting from the ex-
ecution of a given sequence of actions, say a1, as,az?”
This can be checked by verifying the following logical
implication:

Y E [a1)(az2)(as)kp](sinit)

where (a1)(a2){as)kp expresses that the sequence of
actions ai, as,as can be executed and that it leads to
a state where p holds.

Let us now consider the planning problem: “is there
a sequence of actions that leads to archiving a given
goal pgoqr?”. This can be expressed by

Y = [uX. kpgoar V \/ (a) X](sinit)
acAct

The dynamic formula on the right-hand side denotes
the following inductive property: either pgoq; holds in
the current state, or there is an action a that leads
to a state from which there exists a sequence of ac-
tions that leads to a state where pyoq; holds. Notably
our formalization guarantees that the existence of a se-
quence of actions can be inferred if and only if the same
sequence of actions achieves the goal in every model.
That is, unrealizable plans are discarded a priori (see
also (De Giacomo et al. 1996)).

The planning problem can be more sophisticated
than what shown above. For example we may want
to do planning with archiving and maintenance goals:
“is there a sequence of actions which achieves a cer-
tain goal Pagoas While another goal py,goar is always
satisfied?”. This can be expressed by modifying the
formula expressing planning as follows:

:U/X kpmgoal A (kpagoal V \/ <a>X)
a€Act

expressing that, inductively, either both py,g0a and
Dagoar hold in the current state, or pmgoar holds and
there is an action a leading to a state where there exists
a sequence achieving pggoq; While maintaining py,goai-
Next we consider safeness properties. These in gen-
eral are properties that express that “something bad
can never happen”. For example, “it is not possible
to reach a state from which there exists no plan to get
the batteries charged”; in other words, in any reach-
able state the robot can formulate a plan to charge its
battery. In L, the existence of a plan to charge the
batteries can be expressed, as shown above, by:

bpeb = X kBttrChrgd vV \/ (a)X
acAct

the fact that this can always be done (a safeness prop-
erty) is expressed as vX. ¢pep A A, pcela] X

Invariance properties can be expressed in an analo-
gous way, since they can be seen as safeness properties:
the bad thing is the violation of the invariant.

Liveness properties, that in general express that
“something good is eventually achieved”, can also be
captured. For example, “a given job eventually comes
to an end” can be expressed as

pX.kJobEndedV (\/ (a)ktt) A( J [a]X)
a€Act a€Act

Liveness and safeness conditions can be used together
to express complex properties as “whenever a job is
started, the job is also terminated”:

vX. [startjobly A /\ [a] X

a€Act
where
p=wr.(\/ @k)A( A\ X
a€Act a€ActNa#endjob

Observe the use of ¢ to express the well-foundedness
of all sequences of actions not including endjob.

Programs

In this section we introduce a notion of robot program
in order to enforce a control flow on actions. Robot
programs are not part of the basic action theory spec-
ifying the general behavior of the robot; instead, they
are used on top of the action theory to introduce a no-
tion of control on the robot actions. This way to pro-
ceed mirrors that of the Toronto Cognitive Robotics
Group in developing GoLOG (Levesque et al. 1997).
We consider a simple programming language that
allows for building nondeterministic while-programs:

0 == mnoplaldi;ds]|di|d2|if ¢ thend; else s |
while¢dod

where nop is a special instruction that does nothing,
a is the command requiring the execution th action a,
“” is the sequential composition, “|” is nondetermin-
istic choice, and if - then - else- and while - do- are
the classical if-then-else and while constructs. The se-
mantics of the various constructs is the usual one (see
e.g. (H. R. Nielson 1992)), except for atomic actions,
whose semantics is given by the basic action theory.

As in the case of GoLoG (Levesque et al. 1997), for-
mally programs are not part of the formalism £. They
are used to define suitable macros that are translated
into £ dynamic formulae.



afterA(if ¢’ then &1 else d2, @)
afterA(while ¢’ do 6, ¢)

(

(a,

(
afterA(6, |52 , )

(

(

duringA
duringA
duringA
duringA
duringA
duringA

nop, ¢)

a,9)

81562, 9)

51|527¢)

if ¢’ then §; else J2, @)
while ¢' do 4, ¢)

.~

afterS (nop, ¢) = ¢

afterS(a, @) = (a)¢

afterS(01;02, @) = afterS(d1, afterS(02,¢))

afterS (01|02, @) = afterS(61,9) V afterS(d2,¢)

afterS(if ¢' then J1 else §2,9) = ¢’ A afterS(61,¢) V —¢' A afterS(61,)
afterS(while ¢' do 4, ®) = puX. ="' AN V ¢ AafterS(s, X)
afterA(nop, @) @

afterA(a, @) (a)p

afterA 51 82, 0) afterA(d1, afterA(d2, @)

afterA(61, ) A afterA(d2, @)
@' A afterA(61, )
uX.—=¢' N V @' A afterA(5,X)

¢

¢ A [alp

duringA (61, d) A afterAw (1, duringA(d2, P))
duringA (61, ¢) A duringA(d2, @)

@' A duringA(d1,9) V ¢' A duringA (61, P)
vX.=¢' ANp V ¢ A duringA (S, ) A afterAw (5, X)

V —¢' A afterA(81,¢)

Figure 2: Definitions of afterS(d, ¢), afterA(d, ¢), and duringA(d, ¢)

We illustrate this approach with some examples.
First, we express the property “there exists a termi-
nating execution of program § that terminates in a
state where ¢ holds”. This is similar to the expression
3s'.DO(6, s,s") A ®(s) used in GOLOG computations
(Levesque et al. 1997). We define the correspond-
ing £ dynamic formula afterS(d,¢) by induction on
the structure of the program as in Fig.2 (we define
(nop)p = [nopl¢ = ¢). The formula afterS(s, p) is
particularly meaningful if we assume that at the vari-
ous choice points of the program the robot can do the
choice, choosing the execution that eventually leads to
termination in a state where ¢ holds (exactly as as-
sumed by GOLOG computations).

Similarly, we express the property “all executions of
program ¢ terminate in states where ¢ holds”, as the
L formula afterA(d, #) defined in Fig.2.> The basic
difference between the definitions of afterA(d, ¢) and
afterS (8, ¢) is in the treatment of the choice construct:
in the case of afterA(d,¢) we require that, indepen-
dently of the choices made, the program terminates in
a state satisfying ¢, while in the case of afterA(d, ¢)
only one such choice has to do so. That is, afterA(d, ¢)
is especially meaningful if the robot has no control on
the choice points of the program, so we require that

3Observe that {a)¢ = (a)ktt A [a]¢, since actions are
assumed to be deterministic.

the program “does the right thing” independently of
the choices made.*

Typical total correctness conditions, usually writ-
ten as [¢1]0[p=], are expressible by ¢1 D afterA(d, ¢2).
Instead, partial correctness conditions (correctness
for terminating executions only), usually written as
{$1}6{¢2}, are expressible by ¢1 D afterAw(d, ¢2),
where afterAw(d,$) is the formula obtained from
afterA(d, ¢) replacing (a)¢ in the first equation by [a]®,
and the least fixpoint x in the last equation by a great-
est fixpoint v.

As a final example, we express the property “dur-
ing every execution of the program § a given property
¢ always holds”. Again, we define the corresponding
L dynamic formula duringA(d, ¢) by induction on the
structure of the program, as shown in Fig.2.

Sensing actions

In this section we sketch the formalization of sensing
actions in our framework. Such a formalization follows
the line of (De Giacomo et al. 1997).

A sensing action is an action which allows the robot
to know the truth value of a certain property. We as-
sume that a sensing action changes the epistemic state
of the robot only wrt the value of the sensed property

*Notice that afterS(d,$) is expressible in PDL (leaving
aside the k operator), while afterA(d, ¢) is not.



(and only if such value was not known by the robot
before the action execution). An example of this kind
of actions is the action sense-door-open, which requires
the robot to check whether the door is open or closed.

Suppose a is a generic sensing action whose effect is
to let the agent know the truth value of the property
q, where ¢ is any state formula. Also, suppose p is the
precondition for the execution of a. Such a sensing ac-
tion is represented in our framework by an usual action
precondition axiom kp D (a)kit, plus the effect axiom

kp D [a](kg V k—g)

which formalizes the fact that, after the execution of
a, the robot knows whether ¢ holds or not. Notably,
for each sensing action a, we enforce a frame axiom
schema of the form:

ke D [a]kyp

which formalizes the fact that all the properties known
by the robot before the execution of the sensing action
are still known after executing it. Observe that as a
consequence of the frame axiom schema if the robot
already knows the truth-value of g then the sensing
action a does not have any effect, in the sense if the
robot knows ¢ (—g) then after executing a the robot
will still know ¢ (—¢). It is possible to show that the
above axiom schema can be represented, without loss
of generality, through a finite (linear) number of in-
stances, by replacing ¢ in the schema with the initial
state description and with each effect appearing in ef-
fect axioms.

The reasoning technique presented here can be
straightforwardly adapted to deal with sensing actions.
Roughly, adding sensing actions gives rise to logical
theories with multiple models, however it is possible
to suitably modify the algorithm reported in Fig.1 in
order to correctly represent all such models by means
of a unique transition graph.

Conclusions

In this paper we have shown a research direction in rea-
soning about actions stemming from the Robot-Tino
Project(De Giacomo et al. 1996; 1997). The basic idea
is to combine model checking for a very expressive logic
of programs with propositional inference in order to
exploit the model checking techniques and systems for
reasoning about complex high-level robot behaviors.
The work presented is related to several propos-
als in reasoning about actions and cognitive robotics.
There are clear connections with the work done by the
Cognitive Robotics Group in Toronto. In particular
our formal treatment of programs as a means to de-
fine formulae macros is inspired by (Levesque et al.

1997). Recently that group has also developed a “va-
lidity /provability based Golog” which shares, in fact,
some of the ideas behind our transition graph construc-
tion (Lesperance & Tremaine 1998).

There are also some similarities with 4-like action
languages (Gelfond & Lifschitz 1993; Baral & Gelfond
1993; Lifshitz & Karta 1994), indeed the semantics of
such language is based on a single transition function,
and this allows for building a single transition graph.
States in such graph are characterized by the formu-
lae that are true (vs. valid), while the initial state is
replaced by a set of possible initial states. Notably,
model checking techniques could be adopted in that
setting as well (see (Chen & De Giacomo 1998) for a
simple treatment of multiple possible initial states) and
some work towards that direction has already started
(Cimatti et al. 1997).

Model checking is the basic reasoning technique
adopted in (De Giacomo & Chen 1996; Chen & De Gi-
acomo 1998), where a process algebra is introduced to
specify the behavior of the dynamic system, and a suit-
able variant of modal mu-calculus is adopted as verifi-
cation formalism. Interestingly, programs (processes)
in that work have a somewhat different role, since they
are used for specifying basic behavior of the robot and
are not considered in the verification formalism.
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