
Semi-structured Data with Constraints and Incomplete Information

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini

Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”

Via Salaria 113, 00198 Roma, Italy

{calvanese,degiacomo,lenzerini}@dis.uniroma1.it

Abstract

The problem of modeling semi-structured data
is important in many application areas such
as multimedia data management, biological
databases, digital libraries, and data integra-
tion. In this paper, we base our work on bdfs,
which is a formal and elegant model for semi-
structured data [Buneman et al., 1997] where
schemas are graphs whose edges are labeled
with formulae of a theory T . We extend bdfs

with the possibility of expressing constraints
and dealing with incomplete information. In
particular, we consider different types of con-
straints, and discuss how the expressive power
of the constraint language may influence the
complexity of checking subsumption between
schemas. We then set up a framework for defin-
ing bdfs schemas under the assumption that
the theory T is not complete. Finally, we pro-
pose a new semi-structured data model, which
extends bdfs with both constraints and in-
complete theories. We present a technique for
checking subsumption in a setting where both
the constraints and the theory are expressed in
a very powerful language.

1 Introduction

The ability to represent data whose structure is less
rigid and strict than in conventional databases is con-
sidered a crucial aspect in modern approaches to data
modeling, and is important in many application ar-
eas, such as biological databases, digital libraries, and
data integration [Abiteboul, 1997; Buneman et al., 1997;
Christophides et al., 1994; Mendelzon et al., 1997;
Quass et al., 1995].

Following [Abiteboul, 1997], we define semi-structured
data as data that is neither raw, nor strictly typed as in
conventional database systems. OEM (Object Exchange
Model) [Abiteboul et al., 1997], and bdfs (Basic Data
model For Semi-structured data) [Buneman et al., 1997]
are recent proposals of models for semi-structured data.
They represent data as graphs with labeled edges, where

p1 p2

s1

s2 s3

s4

t1 t2 t3 t4 t5

t0 t6

s5
Section

Paper

Text

Text

v0

v1

v2 v3

v4

Figure 1: Schema for papers divided in sections and a
conforming database

information on both the values and the schema of data
are kept.

In particular, bdfs is a formal and elegant data model,
where the labels of edges in the schemas are formulae of
a certain theory T , and the notion of a database DB
conforming to a schema S is given in terms of a spe-
cial relation, called simulation, between the graph rep-
resenting the database and the graph representing the
schema. Roughly speaking, a simulation is a correspon-
dence between the edges of DB and those of S such that,
whenever there is an edge labeled a in DB , there is a cor-
responding edge in S labeled with a formula satisfied by
a. The notion of simulation is less rigid than the usual
notion of satisfaction, and suitably reflects the need of
dealing with less strict structures of data.

Example 1 In Figure 1, we show a bdfs schema which
models sets of web pages representing papers possibly
structured in sections, each with an associated text, and
a database that conforms to it. We assume that the
theory T implies that papers, sections, and texts are
disjoint sets.

In [Buneman et al., 1997], the authors point out that,
for several tasks related to data management, it is im-
portant to be able to check subsumption between two
schemas, i.e. to check whether every database conform-
ing to one schema always conforms to another schema,
and they present algorithms and complexity analysis for
checking subsumption in bdfs. They also indicate that
it would be interesting to extend the model with several
types of constraints. Indeed, the analysis in [Buneman et
al., 1997] is carried out under the following assumptions:

p1 p2

s1 s4

t1 t2 t3 t4 t5

t0 t6

s2 s3 s5

Paper

Text

u0

u1

Section
u2

C(u1) = ∃=1Text ∧ ∃≤1Section

Figure 2: Schema for papers divided in ordered sections
and a conforming database

• All the properties of the schema are expressed in
terms of the structure of the graph, and therefore,
there is no possibility of specifying additional con-
straints, such as existence of edges or bounds on the
number of edges emanating from a node, or impos-
ing that a certain subgraph is well-founded.

• Since the labels of the edges of the graph are formu-
lae of a complete theory T , the possibility of dealing
with incomplete information on databases is ruled
out. In other words, it is assumed that, for ev-
ery database, we have complete information on the
objects labeling its edges. This implies, for exam-
ples, that in a case where the schema represents, say,
home pages of department faculties, and database
edges represent faculties, we have complete informa-
tion on the faculties.

The goal of this paper is to extend the framework
of [Buneman et al., 1997] in order to overcome the above
limitations.

Example 2 The schema in Figure 1 presents several
modeling problems. Although in principle we would like
that each section has exactly one text associated to it,
the schema allows for sections with more that one text or
no text at all. This calls for adding constraints on nodes
v1 and v2 to impose restrictions on the number of out-
going edges (C(v1) = C(v2) = ∃=1Text). Moreover, the
order of the sections is not represented in the schema.
A possible restructuring of the schema to represent the
sequence of sections is shown in Figure 2, where it is es-
sential to impose that each section is followed by at most
one other section (C(u1) = ∃=1Text ∧ ∃≤1Section). In
addition, we would like to impose by means of suitable
constraints that such a sequence is well-founded (finite).
Finally, we would like to be able to check conformance of
papers, even if we do not have complete information on
them, e.g. we do not know the language of the text.

Specifically, we present the following contributions:

• We extend bdfs schemas with constraints. The ba-
sic idea is to express constraints in terms of formu-
lae associated to nodes of the schema. A formula
on a node u imposes a condition that, for every
database DB conforming to S, must be satisfied by
every node of DB simulating u. We consider dif-
ferent types of constraints, and we discuss how the
expressive power of the constraint language may in-
fluence the complexity of subsumption checking. In

particular, we show that adding edge-existence con-
straints to bdfs does not increase the complexity of
the problem.

• We set up a framework for defining bdfs schemas
under the assumption that the theory T is not com-
plete. We discuss several possibilities of defining
subsumption in this new setting, and we show how
the incompleteness of T may influence the complex-
ity of subsumption checking.

• We propose a new semi-structured data model,
which extends bdfs with both constraints and in-
complete information. Both the constraints and
the theory are expressed in a very powerful lan-
guage, called µALCQ [De Giacomo and Lenzerini,
1997], which is a decidable fragment of first order
logic with fixpoints. Fixpoints are used to impose
complex conditions on the schema, such as well-
foundedness of subgraphs. We present a technique
for checking subsumption in the new data model,
showing that the problem is decidable in exponen-
tial time.

The paper is organized as follows. In Section 2 we
describe the bdfs data model and the description logic
µALCQ, which are the basic formalisms in our investi-
gation. In Section 3 we address the problem of adding
constraints to bdfs, and in Section 4 we study bdfs

schemas with incomplete information. In Section 5 we
describe our overall framework for specifying schemas
with both constraints and incomplete information, and
present the results on reasoning about such extended
schemas. Finally, Section 6 concludes the paper. Proof
sketches appear in the Appendix.

2 Preliminaries

In this section, we describe the basic characteristics of
two formalisms that will be used in this paper, namely
the bdfs model for semi-structured data, and the de-
scription logic µALCQ.

2.1 The bdfs Data Model

The formalism proposed in [Buneman et al., 1997] for
specifying semi-structured data schemas, which we call
bdfs, is the basis of our investigation. The formalism
is appropriate for an edge-labeled graph model of data,
where labels are unary formulae of a first order language
LT . The language LT is constituted by a set of predi-
cates, including the equality predicate “=”, and one con-
stant for every element of a universe U .

A schema in bdfs always refers to a complete and
decidable theory T on U . In other words, T is the set of
the first order formulae which are true for the elements
of U , and it is decidable to check whether a formula p in
LT is true in T (in notation, T |= p).

Definition 3 A bdfs T -schema is a rooted connected
graph whose edges are labeled with unary formulae of LT .
A T -database is a rooted connected graph whose edges
are labeled with constants of T .

For any rooted graph G, we denote the root of G by
root(G), the set of nodes of G by Nodes(G), and the set
of edges of G by Edges(G). We denote an edge from

node u to node v labeled by a with u
a
→ v.

Definition 4 A T -database DB conforms to a bdfs T -
schema S, in notation DB � S, if there exists a simu-
lation from DB to S, i.e. a binary relation � from the
nodes of DB to those of S satisfying: (1) root(DB) �

root(S), (2) u � u′ implies that for each edge u
a
→ v

in DB, there exists an edge u′
p
→ v′ in S such that

T |= p(a), and v � v′.

Definition 5 If S and S ′ are two bdfs T -schemas, we
say that S ′ subsumes S, in notation S ⊑ S ′, if for every
T -database DB, DB � S implies DB � S ′.

In [Buneman et al., 1997], an algorithm is presented
for checking subsumption (and conformance, being a
T -database a special case of T -schema). The algo-
rithm essentially looks for the greatest simulation be-
tween the nodes of the two schemas, and works in time
O(mO(1) · tT (m)), where tT (x) is the time needed to
check whether a formula of size x is valid in T , and m is
the size of the two schemas. In the setting of [Buneman
et al., 1997] it is meaningful not to consider T to be part
of the input of the problem. Therefore, whenever tT (m)
may be assumed to be independent of m, tT (m) can be
replaced by a constant.

2.2 The Description Logic µALCQ

Description logics allow one to represent a domain of
interest in terms of concepts and roles. Concepts model
classes of individuals, while roles model relationships be-
tween classes. We concentrate on the description logic
µALCQ studied in [De Giacomo and Lenzerini, 1997],
where a correspondence was shown with a well-known
logic of programs, called modal mu-calculus [Kozen,
1983; Streett and Emerson, 1989], that has been re-
cently investigated for expressing temporal properties of
reactive and parallel processes [Stirling, 1996; Emerson,
1996]. µALCQ can be viewed as a well-behaved fragment
of first-order logic with fixpoints (see e.g. [Abiteboul et
al., 1995]). We make use of the standard first-order no-
tions of scope, bound and free occurrences of variables,
closed formulae, etc., treating µ and ν as quantifiers.

The primitive symbols in µALCQ are atomic concepts,
(concept) variables, and atomic roles (in the following
called simply roles). Concepts are formed according to
the following syntax:

C ::= A | ¬C | C1 ⊓ C2 | ∃R.C | (≥ nR.C) | µX.C | X

where A denotes an atomic concept, R a role, n a natural
number, and X a variable, and the restriction is made
that every free occurrence of X in µX.C is in the scope
of an even number of negations.

We introduce the following abbreviations: C1 ⊔ C2

for ¬(¬C1 ⊓ ¬C2), ⊤ for A ⊔ ¬A, ⊥ for ¬⊤, ∃R.C
for (≥ 1R.C), ∀R.C for ¬∃R.¬C, (≤ nR.C) for
¬(≥ n+1R.C), (= nR.C) for (≤ nR.C) ⊓ (≥ nR.C),

and νX.C for ¬µX.¬C[X/¬X] (where C[X/¬X] is the
concept obtained by substituting all free occurrences of
X with ¬X).

An interpretation I = (∆I , ·I) consists of an inter-
pretation domain ∆I , and an interpretation function ·I ,
which maps every atomic concept to a subset of ∆I , and
every atomic role to a subset of ∆I × ∆I . The pres-
ence of free variables does not allow us to extend the
interpretation function ·I directly to every concept of
the logic. For this reason we introduce valuations. A
valuation ρ on an interpretation I is a mapping from
variables to subsets of ∆I . Given a valuation ρ, we de-
note by ρ[X/E] the valuation identical to ρ except for
the fact that ρ[X/E](X) = E .

Let I be an interpretation and ρ a valuation on I. We
assign meaning to concepts of the logic by associating to
I and ρ an extension function ·Iρ , mapping concepts to

subsets of ∆I , as follows:

XI
ρ = ρ(X) ⊆ ∆I

AI
ρ = AI ⊆ ∆I

(¬C)Iρ = ∆I − CI
ρ

(C1 ⊓ C2)
I
ρ = (C1)

I
ρ ∩ (C2)

I
ρ

(≥ n R.C)Iρ = {s | #{s′ | (s, s′) ∈ RI and s′ ∈ CI
ρ } ≥ n}

(µX.C)Iρ =
⋂
{E ⊆ ∆I | CI

ρ[X/E] ⊆ E }

Observe that CI
ρ[X/E] can be seen as an operator from

subsets E of ∆I to subsets of ∆I , and that, by the syn-
tactic restriction enforced on variables, such an operator
is guaranteed to be monotonic wrt ⊆. The constructs
µX.C and νX.C denote respectively the least fixpoint
and the greatest fixpoint of the operator. The extension
of closed concepts is independent of the valuation, and
therefore for closed concepts we do not consider the val-
uation explicitly.

A µALCQ knowledge base is a finite set of axioms
C1 ⊑ C2 where C1 and C2 are closed concepts of
µALCQ. An interpretation I satisfies an axiom C1 ⊑
C2, if CI

1 ⊆ CI
2 . I is a model of a knowledge base Γ, if I

satisfies all axioms in Γ. A closed concept C is satisfiable
in a knowledge base Γ if there exists a model I of Γ such
that CI 6= ∅.

Theorem 6 ([De Giacomo and Lenzerini, 1997])
Satisfiability of closed µALCQ concepts in µALCQ
knowledge bases is an EXPTIME-complete problem.

3 Schemas with Constraints

In this section, we address the problem of extending the
bdfs data model in order to express constraints on the
graph representing a schema. We conceive a constraint
for a bdfs schema S as a formula associated to a node
u of the schema. The formula is expressed in a certain
language L, and its role is to impose a condition that,
for every database DB conforming to S, must be satis-
fied by every node of DB simulating u. In other words,
constraints are used to impose additional conditions on
the schema, with respect to those already implied by
the structure of the graph. In the rest of this section, T
denotes a complete theory, as defined in Section 2.1.

function rin(S: T -schema): T -schema;
{ (G′, C′)← rnec(S);

repeat if there is a node u in G′ with C′(u) = ∃p1 ∧ · · · ∧ ∃pr ∧ ∃
≤1f1 ∧ · · · ∧ ∃

≤1fs,
that satisfies one of the following conditions:
(1) u is not connected to root(G′) in G′

(2) r ≥ 1 and u has no outgoing edge in G′

(3) r ≥ 1, u
q1→ v1, . . . , u

qm
→ vm, with m ≥ 1, are all outgoing edges of u in G′, and

T |= ¬∃x1 · · · ∃xr(
∧

1≤i≤r
(pi(xi) ∧

∨
1≤j≤n

qj(xi)) ∧∧
1≤k≤s

∧
1≤i<j≤r

((fk(xi) ∧ fk(xj)) ⊃ xi = xj))

then remove from G′ the node u and all edges from and to u;
remove from C′ the pair (u, C′(u));

until root(G′) has been removed from G′ or no new node has been removed from G′;
return (G′, C′)
}

Figure 3: Function rin that removes inconsistent nodes

Definition 7 A T -schema with L-constraints is a pair
S = (G, C), where G is a bdfs T -schema, and C is a total
function from the nodes of G to formulae of a constraint
language L.

Definition 8 A T -database DB conforms to a T -
schema with LC-constraints S = (G, C), in notation
DB � S, if there exists a binary relation � from the
nodes of DB to those of G satisfying: (1) root(DB) �

root(G), (2) u � u′ implies that (2.1) u satisfies C(u′),

and (2.2) for each edge u
a
→ v in DB, there exists an

edge u′
p
→ v′ in S such that T |= p(a), and v � v′.

Since constraints may contradict each other, or may
even be incompatible with the structure of the graph,
the notion of consistency becomes relevant.

Definition 9 For a T -schema with L-constraints S =
(G, C), a node u ∈ Nodes(G) is consistent if there is a
least one T -database which conforms to (G′, C), where G′

is equal to G except that root(G′) = u. S is consistent,
if root(G) is consistent.

The notion of subsumption remains unchanged. We con-
sider now different constraint languages, and study con-
sistency and subsumption checking for schemas with con-
straints. Being conformance a special case of subsump-
tion, we do not explicitly deal with conformance.

3.1 Local Constraints

We first consider a language Ll in which only local con-
straints can be expressed, i.e. only constraints on the
edges directly emanating from a node. Ll is inspired by
DLs with number restrictions and its formulae have the
following syntax (γ, γ1 and γ2 denote constraints, and p
denotes a formula of T):

γ ::= ⊤ | ∃p | ¬∃p | ∃≤1p | γ1 ∧ γ2

We use ∃=1p as an abbreviation for ∃p ∧ ∃≤1p. Intu-
itively, a constraint of the form ∃p on a node u, called
edge-existence constraint, imposes that u has at least one

outgoing edge u
a
→ v such that T |= p(a), while a con-

straint of the form ∃≤1p, called functionality-constraint,

imposes that u has at most one such outgoing edge.
More precisely, let S = (G, C) be a T -schema with Ll-
constraints. and DB a T -database. Then a node u of
DB satisfies a constraint γ, in notation u |=c γ, if the
following conditions are satisfied:

u |=c ⊤ always

u |=c ∃p iff ∃u
a
→ v ∈ Edges(DB). T |= p(a)

u |=c ¬∃p iff ∀u
a
→ v ∈ Edges(DB). T |= ¬p(a)

u |=c ∃
≤1p iff #{u

a
→ v ∈ Edges(DB) | T |= p(a)} ≤ 1

u |=c γ1 ∧ γ2 iff (u |=c γ1) ∧ (u |=c γ2)

Note that we can view a T -database DB as a T -
schema (DB , C) with constraints, where C(u) = ⊤ for
every node u of DB (such a schema is always consis-
tent).

First of all, we show that we do not lose in expres-
siveness if we omit from Ll the possibility of using con-
straints of the form ¬∃p. In fact, given a T -schema
with Ll-constraints S = (G, C), we can obtain an equiva-
lent T -schema S ′ = (G′, C) not containing constraints
of the form ¬∃p and with the same set of nodes as
S as follows. For every node u in S with C(u) =
∃p1 ∧ · · · ∧ ∃pr ∧¬∃n1 ∧ · · · ∧ ¬∃ns ∧ ∃≤1f1 ∧ · · · ∧ ∃≤1ft

and outgoing edges u
q1

→ v1, . . . , u
qk→ vk, we define

C′(u) = ∃p1 ∧ · · · ∧ ∃pr ∧ ∃≤1f1 ∧ · · · ∧ ∃≤1ft, and for

i ∈ {1, . . . , k} we replace in u
qi
→ vi the formula qi by

q′i = qi ∧ ¬n1 ∧ · · · ∧ ¬ns.

Lemma 10 Let S be a T -schema with Ll-constraints
and S ′ the T -schema S ′ obtained from S by removing
the constraints of the form ¬∃n as described above. Then
|S ′| is polynomial in |S| and S ′ is equivalent to S.

We present a method for checking consistency, based
on the function rin defined in Figure 3, whose role is to
first remove the non-existence constraints by calling the
function rnec, and then remove all inconsistent nodes
from a schema. Condition (1) ensures that nodes not
connected to the root are removed, while conditions (2)
and (3) remove nodes in which a constraint cannot be
satisfied. In particular, condition (2) deals with nodes
having no outgoing edges but requiring the existence of

function subs(S0: T -schema, S ′
0: T -schema): boolean

{ (G, C)← rin(S0);
(G′, C′)← rin(S′

0);
if G does not contain root(S0) then return true;
if G′ does not contain root(S ′

0) then return false;
R← {(u, u′) | u ∈ Nodes(G), u′ ∈ Nodes(G′)};
repeat

if there is (u, u′) ∈ R, with u
q1→ v1, . . . , u

qn
→ vn all outgoing edges of u in G,

C(u) = ∃p1 ∧ · · · ∧ ∃pr ∧ ∃
≤1f1 ∧ · · · ∧ ∃

≤1fs, C
′(u′) = ∃p′

1 ∧ · · · ∧ ∃p
′
r′ ∧ ∃≤1f ′

1 ∧ · · · ∧ ∃
≤1f ′

s′ ,
that satisfies one of the following conditions:
(1) there is i ∈ {1, . . . , n} such that
T |= ∃x0∃x1 · · · ∃xr(qi(x0) ∧

∧
1≤j≤m

¬q′j(x0) ∧∧
1≤j≤r

(pj(xj) ∧
∨

1≤k≤n
qk(xj)) ∧∧

1≤ℓ≤s

∧
0≤j<k≤r

((fℓ(xj) ∧ fℓ(xk)) ⊃ xj = xk))

where u′
q′

j
→ v′

j , j ∈ {1, . . . , m} are all edges from u′ in G′ such that (vi, v
′
j) ∈ R

(2) r = 0 and r′ 6= 0, or r 6= 0 and there is i ∈ {1, . . . , r′} such that
T |= ∃x1 · · · ∃xr(

∧
1≤j≤r

¬p′
i(xj) ∧∧

1≤j≤r
(pj(xj) ∧

∨
1≤k≤n

qk(xj)) ∧∧
1≤ℓ≤s

∧
1≤j<k≤r

((fℓ(xj) ∧ fℓ(xk)) ⊃ xj = xk))

(3) there is i ∈ {1, . . . , s′} such that
T |= ∃x1 · · · ∃xr∃xr+1∃xr+2(f

′
i(xr+1) ∧ f ′

i(xr+2) ∧ xr+1 6= xr+2 ∧∧
1≤j≤r

(pj(xj) ∧
∨

1≤k≤n
qk(xj)) ∧∧

1≤ℓ≤s

∧
1≤j<k≤r+2

((fℓ(xj) ∧ fℓ(xk)) ⊃ xj = xk))

then remove (u, u′) from R;
until no new pair has been removed from R;
return (root(G), root(G′)) ∈ R
}

Figure 4: Function subs that verifies subsumption of schemas with local constraints

at least one, while condition (3) verifies the existence in
T of appropriate objects that can simultaneously satisfy
the edge-existence and functionality constraints.

Theorem 11 If S = (G, C) is a T -schema with Ll-
constraints, then S is consistent if and only if rin(S)
contains root(G). Moreover, rin(S) runs in time poly-
nomial in |S|.

We now turn our attention to the method for check-
ing subsumption of schemas with constraints, which is
also a method for checking conformance of databases to
schemas. The method is based on the function subs de-
fined in Figure 4.

Note that subs is an extension of the algorithm
in [Buneman et al., 1997]. Its basic idea is to look for
a simulation between the two schemas by constructing
a relation R as the Cartesian product of the two sets
of nodes, and then removing from R all the pairs (u, u′)
for which no relation � satisfying condition (2) of Defini-
tion 8 may exist. Intuitively, the algorithm checks locally
for the pair (u, u′), whether it is possible to construct a
database DB which can be used as a counterexample to
the subsumption, and which consists just of a node d and
the nodes connected to d by means of its outgoing edges.
In particular, condition (1) checks the existence of an
object in T which can label an edge from d which has a
corresponding edge from u but none from u′. Due to the

functionality constraints on u, this test must also take
into account the constraints on u in S. Condition (2)
checks whether DB could violate the edge-existence con-
straints on u′ while satisfying the constraints on u, and
condition (3) does a similar check for the functionality
constraints on u′.

Theorem 12 If S1 and S2 are T -schemas with Ll-
constraints, then S1 ⊑ S2 if and only if subs(S1,S2)
returns true. Moreover, subs(S1,S2) runs in time poly-
nomial in |S1| + |S2|.

The above result, together with Lemma 10, shows that
adding conjunctions of local constraints to bdfs does not
increase the complexity of subsumption.

Example 13 Figure 5 shows two extensions to the
schema in Figure 2, in which nesting of sections is con-
sidered1. Schema (a) models papers in which sections
may contain subsections (i.e. with nesting of depth two).
Schema (b), instead, models papers in which sections
may be nested at arbitrary depth. It is possible to ver-
ify, that schema (b) subsumes schema (a), and that both
subsume the schema in Figure 2. In fact, the function
subs in Figure 4 constructs a relation R between the
nodes of schema (a) and those of schema (b) such that
(u′0, u

′′
0) ∈ R.

1Constraints equal to ⊤ are not shown in the figures.

Paper

Section

Section
Text

u′′
0

u′′
1 u′′

2

(b)

Paper

Section

u′
0

u′
1

Text

Section

Section

u′
2

u′
3

u′
4

(a)

C(u′
1) = C(u′

3) = ∃=1Text ∧ ∃≤1Section

C(u′
2) = ∃≤1Section

Text

C(u′′
1) = ∃=1Text ∧ ∃≤1Section

C(u′′
2) = ∃≤1Section

Figure 5: Schemas for papers divided in ordered nested sections

Observe that, if we replace ∃=1Text by ∃≤1Text in
C(u′3) (thus modeling draft papers with possibly empty
sections), the function subs eliminates the pair (u′1, u

′′
1)

from R because of condition (2), and in turn the pair
(u′0, u

′′
0) because of condition (1). Hence, in this case,

schema (a) is not subsumed by schema (b).

3.2 Non-Local Constraints

In this section we consider a simple constraint language
in which the constraints are not local, i.e. they can ex-
press conditions on edges that are not directly connected
to the node labeled with the constraint. We show that
even in this simple case consistency (and thus subsump-
tion) of T -schemas becomes intractable due to the non-
local constraints.

The formulae of the constraint language LALE , which
is inspired by the DL ALE [Donini et al., 1992], have the
following syntax:

γ ::= ⊤ | ∃p↑γ | ∀p↑γ | γ1 ∧ γ2

where the additional rules for the satisfaction of con-
straints of LALE in a node u of a T -database are:

u |=c ∃p↑γ iff ∃u
a
→ v ∈ Edges(DB). (T |= p(a) ∧ v |=c γ)

u |=c ∀p↑γ iff ∀u
a
→ v ∈ Edges(DB). (T |= p(a) ⊃ v |=c γ)

Observe that LALE is not local since the constraints
imposed on one node may imply other constraints on ad-
jacent nodes. By exploiting this property and the hard-
ness results in [Donini et al., 1992], we can show that
consistency checking is coNP-hard.

Theorem 14 Checking the consistency of a T -schema
S with LALE -constraints is coNP-hard in the size of S,
even if T is empty, i.e. all edges of S are labeled with
true.

Theorem 14 shows that consistency checking stays
coNP-hard (and subsumption NP-hard), even if T can be
used as an oracle for validity. The complexity of checking
consistency in the presence of non-local constraints lies
in the necessity to verify whether a database may exist,
whose topology is determined by the constraints. Since
T cannot predict anything about the possible topologies
of databases, the validity checker of T cannot be used to

“hide” a potentially exponential calculation. Note that
this is different from the case of local constraints, where
the aspects related to the topology enforced by the con-
straints can be embedded in an appropriate formula of
T .

4 Schemas with Incomplete Theories

In this section, we address the problem of extending the
bdfs data model to the case where the theory T is not
necessarily complete. Thus, in the rest of this section, T
denotes a theory which is not necessarily complete, and
we assume that T is presented as a finite set of axioms
in a language LT . In this new setting, we define the
notions of conformance and subsumption as follows.

Definition 15 Let M be a model of T . A T -database
DB M-conforms to a bdfs T -schema S, in notation
DB �M S, if there exists an M-simulation from DB
to S, i.e. a binary relation � from the nodes of DB to
those of S satisfying: (1) root(DB)� root(S), (2) u�u′

implies that for each edge u
a
→ v of DB, there exists an

edge u′
p
→ v′ in S such that M |= p(a) and v � v′.

Definition 16 Let S, S ′ be two bdfs T -schemas. We
say that S ′ subsumes S, in notation S ⊑ S ′, if for every
T -database DB and every model M of T , DB �M S
implies DB �M S ′.

One can easily verify that, if T is complete, then the
two definitions are equivalent to those presented in Sec-
tion 2.

It is interesting to compare Definition 16 with the fol-
lowing alternative definitions of subsumption:

1. S ′ subsumes S if for every T -database DB , DB �1

S implies DB �1 S ′, where DB �1 S means that
for every model M of T , DB �M S.

2. S ′ subsumes S if for every T -database DB , DB �2

S implies DB �2 S ′, where DB �2 S means that
there exists a binary relation � from the nodes of
DB to those of S satisfying: (1) root(DB)�root(S),

(2) u � u′ implies that for each edge u
a
→ v of DB ,

there exists an edge u′
p
→ v′ in S such that T |=

p(a), and v � v′.

To see why we did not choose any of the above alter-
native definitions, consider the theory T with axioms
{∀x.(p(x) → q(x))}, and the T -schema S0 containing

only the edge u
p
→ v. Since for every constant c,

T 6|= p(c), it is easy to see that, in both case (1) and
case (2), the only T -database conforming to S0 is the
one with the root and no edges. It follows that, in both
cases, S0 is subsumed by every consistent T -schema, and
in particular by the schema S ′

0 containing only the edge

u
¬p
→ v, which is counterintuitive. Note that, on the con-

trary, with our definition, S0 is subsumed, for example,

by a schema containing only the edge u
q
→ v, but not by

the schema S ′
0.

We now discuss how the presence of incomplete theo-
ries may influence the computational complexity of sub-
sumption checking. To this end, we show that subsump-
tion checking is at least as hard as validity in propo-
sitional logic, even for very simple theories T (i.e. the
axioms of the theory are expressed in a very simple lan-
guage) and T -schemas.

Let f be a 3-DNF propositional formula of the form
(L11∧L12∧L13)∨· · ·∨(Ln1∧Ln2∧Ln3), and let p1, . . . , ph

be all letters appearing in f . Let T be a theory including
a constant a, the predicate symbols {q, p1, . . . , ph} (all
unary), and with axioms {∀x(q(x) ≡ (x = a))}. Finally,
let S1 and S2 be the two T -schemas defined as follows:

• S1 is u0
q
→ u1

q
→ u2

q
→ u3 and has root uo.

• S2 is the set of chains u′0
Li1→ ui1

Li2→ ui2

Li3→ ui3 , for
i ∈ {1, . . . , n}, and has root u′0.

Notice that there is an obvious correspondence between
truth assignments of f and models of T (pi(a) is true in
a model M of T iff pi is true in the corresponding truth
assignment). In particular, (1) for every truth assign-
ment M that satisfies f , the corresponding model M′ of
T is such that, for every T -database DB , DB �M′ S1

implies DB �M′ S2; (2) for every truth assignment M
that does not satisfy f , the corresponding model M′

of T is such that there is a T -database DB such that
DB �M′ S1 and DB 6�M′ S2. It follows that S1 ⊑ S2 if
and only if f is valid.

One can verify that, if T is complete, subsumption be-
tween schemas of the form of S1 and S2 can be checked
in polynomial time with respect to the size of the two
schemas and the theory. On the contrary, the above con-
siderations show that, in the presence of incomplete the-
ories, checking subsumption between two schemas may
require O(mO(1) · 2m), where m is the number of edges
of the two schemas. This means that the assumption
of considering tT (m) to be a constant may not be rea-
sonable in this new setting, because it would hide a
cost which is exponential with respect to the size of the
schemas.

Example 17 Consider the schema in Figure 6 (ignor-
ing the constraints for the moment), which models pa-
pers which are either in Italian or in English, with the
condition that all the texts of English papers is in En-
glish, while no analogous condition holds for Italian ones.

u0

Section Section

Paper ∧ Italian Paper ∧ English

Text Text ∧ English

uit
1

uen
1

uit
2 uen

2

C(uit
1) = C(uen

1) = ∃=1Text ∧ ∃≤1Section

Figure 6: Schema for Italian or English papers

Consider now the database in Figure 2. If the theory T
implies that papers p1 and p2 and all their texts are in
English, then the database M-conforms to the schema
for every model M of T . However, it may happen that
the theory does not have information about the language
of papers and texts in the database. In this case there
will be models M of T such that the database does not
M-conform to the schema.

5 Schemas with Constraints and

Incomplete Theories

In this section, we consider the combination of the two
kinds of extensions (constraints and incomplete theories)
to the bdfs model presented above. A T -schema with
L-constraints and incomplete theory S = (G, C) is de-
fined as in Definition 7, with the proviso that now T
is not necessarily complete. The previous definitions of
conformance and subsumption can then be generalized
as follows.

Definition 18 Let M be a model of T . A T -database
DB M-conforms to a T -schema S = (G, C), in notation
DB �M S, if there exists a binary relation � from the
nodes of DB to those of G satisfying: (1) root(DB) �

root(G), (2) u � u′ implies that (2.1) u satisfies C(u′),

and (2.2) for each edge u
a
→ v in DB, there exists an

edge u′
p
→ v′ in S such that M |= p(a), and v � v′.

Definition 19 Let S, S ′ be two T -schemas. We say
that S ′ subsumes S, in notation S ⊑ S ′, if for every
T -database DB and every model M of T , DB �M S
implies DB �M S ′.

We specialize this general setting to a specific one, the
cdl model, and study schema subsumption in the result-
ing framework. The following two subsections present
cdl and the results on subsumption checking, respec-
tively.

5.1 cdl-Schemas

In cdl the theory is presented as a finite set of axioms in
µALCQ, the graph is a bdfs-schema, and the constraint
language is a variant of µALCQ. More precisely, if S =
(G, C) is a cdl T -schema, then the theory T , the graph
G, and the constraint language Lµ of C have the following
forms.

The Theory T

The theory T is interpreted over a fixed countably in-
finite universe U and its language includes one distinct
constant c(d) for each element d ∈ U . T is presented as
a finite set of axioms of the form

C1 ⊑ C2 C(a)

where C1, C2 and C are closed concepts of µALCQ, and
a is a constant. We do not distinguish between T and
the axioms representing T , which will be considered part
of the input to subsumption checking.

An interpretation M = (∆M, ·M) of T is a µALCQ
interpretation, where ∆M = U , and where ·M is ex-
tended to constants, in such a way that for each con-
stant c(d), (c(d))M = d. M satisfies an axiom C1 ⊑ C2

if CM
1 ⊆ CM

2 , and an axiom C(a) if aM ∈ CM.

The Graph G
G is a bdfs T -schema, where each edge is labeled by a T -
formula, i.e. a boolean combination of closed concepts of
µALCQ (in the language of T), and expressions of the
form (self = a), where a is a constant of T . Given a
model M of T , we define when a T -formula p is true for
a in M, in notation M |= p(a), as follows:

M |= C(a) iff aM ∈ CM

M |= (self = a′)(a) iff aM = a′M iff a = a′

M |= (¬p)(a) iff M 6|= p(a)
M |= (p1 ∧ p2)(a) iff (M |= p1(a)) ∧ (M |= p2(a))

The Constraint Language Lµ

The constraint language Lµ of C is the set of closed for-
mulae constructed according to the following syntax (p
denotes a T -formula, n a positive integer, and X a vari-
able):

γ ::= X | ∃≥nF | ¬γ | γ1 ∧ γ2 | µX.γ

F ::= p | ↑γ | ¬F | F1 ∧ F2

with the restriction that every free occurrence of X in
µX.γ is in the scope of an even number of negations.

We introduce the abbreviations: γ1 ∨ γ2 for ¬(¬γ1 ∧
¬γ2), ⊤ for γ∨¬γ, ⊥ for ¬⊤, ∀p↑γ for ¬∃≥1(p∧↑¬γ),
and νX.γ for ¬µX.¬γ[X/¬X].

Let DB be a T -database, and M be a model of T . A
valuation ρ on DB is a mapping from variables to sub-
sets of Nodes(DB). We denote by ρ[X/E] the valuation
identical to ρ except for ρ[X/E](X) = E . For each node
u ∈ Nodes(DB), we define when u satisfies a constraint
γ under a valuation ρ, in notation ρ, u |=c γ, as follows:

ρ, u |=c X iff u ∈ ρ(X)

ρ, u |=c ∃
≥nF iff #{u

a
→ v ∈ Edges(DB) |

ρ, u
a
→ v |=c F} ≥ n

ρ, u |=c ¬γ iff ρ, u 6|=c γ
ρ, u |=c γ1 ∧ γ2 iff (ρ, u |=c γ1) ∧ (ρ, u |=c γ2)
ρ, u |=c µX.γ iff ∀E ⊆ Nodes(DB).

(∀v ∈ Nodes(DB). ρ[X/E], v |=c γ ⊃ ρ[X/E], v |=c X) ⊃
ρ[X/E], u |=c X

Paper

Bib
w2

w0

w1

w3

Section

Section

Text

Section

w4

w5 w6

Text

Section

Section

Paper ⊑ (English ⊔ Italian) ⊓ ∃writtenby.Person ⊓

¬Bib ⊓ ¬Section ⊓ ¬Text
Section ⊑ ¬Bib ⊓ ¬Text

Text ⊑ (English ⊔ Italian) ⊓ ¬Bib
Bib ⊑ µX.(BibItem ⊓ (∀next.⊥ ⊔ (= 1 next.X)))

· · ·

C(w0) = ∀Paper↑µX.(∀Section↑X ∧ ∀Text↑X)
C(w1) = C(w5) = ∃=1Text ∧ ∃≤1Section

C(w2) = ∃=1Bib

C(w4) = C(w6) = ∃≤1Section

Figure 7: A cdl schema for papers with nested sections
and a bibliography

where

ρ, u
a
→ v |=c p iff M |= p(a)

ρ, u
a
→ v |=c ↑γ iff ρ, v |=c γ

ρ, u
a
→ v |=c ¬F iff ρ, u

a
→ v 6|=c F

ρ, u
a
→ v |=c F1 ∧ F2 iff (ρ, u

a
→ v |=c F1) ∧

(ρ, u
a
→ v |=c F2)

Since the constraints in Lµ are closed formulae, satisfac-
tion is independent of the valuation, and we denote it
simply by u |=c γ.

Example 20 Consider the schemas in Figure 2 and in
Figure 6. It is easy to see that the schema in Figure 2
subsumes the schema in Figure 6, since the latter im-
poses more constraints. However, suppose we add the
constraint

C(u0) = ∀English↑νX.(∀(Text ∧ ¬English)↑⊥ ∧ ∀Section↑X)

to the schema in Figure 2. Then it is possible to show
that also the converse subsumption holds.

Example 21 The schema in Figure 7 is a further re-
finement of our running example, where the last section
at the top level may have a bibliography instead of the
text. It also includes a constraint on node w0 that en-
forces the absence of loops in all chainings of Text and
Section, and hence the finiteness of sequences and nest-
ings of sections.

The theory T models the content of the different parts
of papers. It has several forms of incomplete information
(for example, a Text may be either English or Italian,
without further information). The bibliography Bib is
modeled as a list of BibItems (the fixpoint constructor
enforces the proper representation of the list).

The schema in Figure 7 subsumes the schemas in the
previous figures, provided we add to them suitable con-
straints that enforce the finiteness of sequences and nest-
ings of sections (e.g. the constraint µX.∀Section↑X to
C(u1) in the schema in Figure 2).

5.2 Checking Subsumption
In cdl, it is immediate to view a T -database as a T -
schema, simply by replacing each edge label a by (self =
a). Therefore, as in bdfs, conformance is a special case
of subsumption, and we concentrate our attention on
subsumption only.

The technique we use for checking subsumption in cdl

is based on a reduction to unsatisfiability in µALCQ
knowledge bases. Given two T -schemas S1 and S2, we
reduce the problem of deciding whether S1 ⊑ S2, to the
problem of deciding the unsatisfiability of the µALCQ
concept ΦS1

⊓ ¬ΦS2
in the µALCQ knowledge base ΓT ,

where ΦS1
, ΦS2

, and ΓT are defined as follows.

ΓT : encoding of T and of the general properties
of bdfs graphs
To encode the general properties of bdfs graphs, ΓT

exploits reification of edges, as used in [Buneman et al.,
1997]. Specifically, we use a special role E and split each

labeled edge u
a
→ v into two edges u

E
→ euv

E
→ v, by

introducing an intermediate node euv labeled by a. ΓT

contains the following axioms (⊤N , ⊤E , and ⊤D are new
atomic concepts, and L is a new role):

⊤ ⊑ ⊤N ⊔ ⊤E ⊔ ⊤D

⊤N ⊑ ¬⊤E

⊤E ⊑ ¬⊤D

⊤D ⊑ ¬⊤N

⊤N ⊑ ∀E.⊤E

⊤E ⊑ ∀E.⊤N ⊓ (= 1E.⊤) ⊓ ∀L.⊤D ⊓ (= 1L.⊤)

Intuitively, these axioms partition the interpretation do-
main into objects denoting nodes (⊤N), edges (⊤E), and
constants of T (⊤D), and specify the correct links for
those object denoting nodes and edges.

In addition ΓT contains the following axioms in order
to encode the theory T :

⊤D ⊑ ∀R.⊤D for each role R appearing in T
⊤D ⊓ C1 ⊑ C2 for each axiom C1 ⊑ C2 in T
⊤D ⊓Oa ⊑ C for each axiom C(a) in T

where Oa, one for each constant a and axiom of T , are
new atomic concepts, called object-concepts. Intuitively
these are used to denote constants mentioned in the ax-
ioms of T .

Observe that the size of ΓT is polynomial with respect
to the size of T .

ΦS : encoding of the schema S
In order to define the encoding ΦS of a T -schema S =
(G, C) we define a mapping ψ from constraint expressions
to µALCQ formulae as follows:

ψ(X) = X
ψ(∃≥nF) = (≥ nE.ψ(F))
ψ(¬γ) = ¬ψ(γ)

ψ(γ1 ∧ γ2) = ψ(γ1) ⊓ ψ(γ2)
ψ(µX.γ) = µX.ψ(γ)

ψ(p) = ∀L.p
ψ(↑γ) = ∀E.ψ(γ)
ψ(¬F) = ¬ψ(F)

ψ(F1 ∧ F2) = ψ(F1) ⊓ ψ(F2)

We construct for each node u ∈ Nodes(G) = {u1, . . . , uh}
a characteristic µALCQ concept χu as follows2: Con-
sider the set of mutual recursive equations, one for each
node ui in Nodes(G)

Xu1
≡ ⊤N ⊓ ψ(C(u1)) ⊓

∀E.(⊤E ⊓
⊔

u1

p
→v

(∀L.p ⊓ ∀E.Xv))

· · ·
Xuh

≡ ⊤N ⊓ ψ(C(uh)) ⊓
∀E.(⊤E ⊓

⊔
uh

p
→v

(∀L.p ⊓ ∀E.Xv))

and eliminate, one at the time, each of the above equa-
tions, except the one for Xui

as follows: Eliminate
the equation Xuj

= Cj and substitute each occurrence
of Xuj

in the remaining equations by νXuj
.Cj . Let

Xui
= Ci be the resulting equation. The concept χui

is νXui
.Ci. The encoding ΦS of S is ΦS = χroot(G).

Observe that, in the worst case, the size of ΦS is ex-
ponential with respect to the size of S.

Properties of the encoding
The following three properties of the encoding establish
decidability and complexity of subsumption checking.

Theorem 22 A cdl T -schema S1 is subsumed by a
cdl T -schema S2 if and only if there is no model of
ΓT that satisfies ΦS1

⊓¬ΦS2
and interprets every object-

concept as a singleton.

Theorem 23 Let S1 and S2 be two cdl T -schemas, and
ΓT , ΦS1

, and ΦS2
be as defined above. Then there exists

a µALCQ knowledge base Γ′ whose size is polynomial in
|ΓT |+ |ΦS1

|+ |ΦS2
| such that: ΦS1

⊓¬ΦS2
is satisfied in

a model of ΓT that interprets every object-concept as a
singleton, if and only if ΦS1

⊓ ¬ΦS2
is satisfiable in Γ′.

Theorem 24 Given two cdl T -schemas S1 and S2,
checking whether S1 ⊑ S2 is EXPTIME-hard and de-
cidable in time O(2p(|ΓT |+|ΦS1

|+|ΦS2
|)).

Since the size of ΦS may be exponential with respect
to the size of S, it follows that subsumption checking
in cdl can be done in deterministic double exponential
time with respect to the size of the two schemas.

6 Conclusions

In this paper we have discussed extensions of bdfs in
two main directions: adding constraints to the nodes of
the schema, and admitting the possibility of incomplete
information in the theory that expresses the knowledge
about the edges of databases. Based on these extensions,
we have introduced a new model for semi-structured
data with constraints and incomplete information, and
we have presented techniques and complexity analysis
for checking subsumption and conformance. The result-
ing algorithm works in deterministic double exponential

2This construction is analogous to the one used in Process Al-
gebra for defining a characteristic formula of a process [Steffen and
Ingólfsdóttir, 1994], i.e. a formula which is satisfied by exactly all
processes that are equivalent to it under bisimulation. In a cer-
tain sense, we may say that ΦS characterizes, for each model M,
exactly all databases M-conforming to the schema S.

time with respect to the size of the theory and the two
schemas.

The analysis presented in Sections 3 and 4 shows that
the complexity of subsumption rises even when sim-
ple constraints and simple forms of incompleteness are
added to bdfs separately. This justifies our approach
that aims at adding as much expressive power as pos-
sible in specifying both the constraints and the theory,
without loosing decidability. We observe also that, in
our setting, if T is a complete theory, conformance can
be reduced to model checking, which is polynomial (as-
suming the alternation of fixpoints in the constraints to
be bounded by a constant, see e.g. [Emerson, 1996]).

We are currently working on two aspects of cdl. First,
we are developing a new technique which aims at avoid-
ing the worst case exponential blowup in the µALCQ
encoding of the schema. Second, we are considering
conjunctive queries with regular expressions over cdl

schemas, with the aim of devising techniques for query
containment, along the line of [Calvanese et al., 1998].

References

[Abiteboul et al., 1995] Serge Abiteboul, Richard Hull,
and Victor Vianu. Foundations of Databases. Addison
Wesley Publ. Co., Reading, Massachussetts, 1995.

[Abiteboul et al., 1997] S. Abiteboul, D. Quass,
J. McHugh, J. Widom, and J. Wiener. The Lorel
query language for semistructured data. Int. J. on
Digital Libraries, 1(1):68–88, 1997.

[Abiteboul, 1997] Serge Abiteboul. Querying semi-
structured data. In Proc. of the 6th Int. Conf. on
Database Theory (ICDT-97), pages 1–18, 1997.

[Buneman et al., 1997] Peter Buneman, Susan David-
son, Mary Fernandez, and Dan Suciu. Adding struc-
ture to unstructured data. In Proc. of the 6th Int.
Conf. on Database Theory (ICDT-97), pages 336–350,
1997.

[Calvanese et al., 1998] Diego Calvanese, Giuseppe
De Giacomo, and Maurizio Lenzerini. On the decid-
ability of query containment under constraints. In
Proc. of the 17th ACM SIGACT SIGMOD SIGART
Sym. on Principles of Database Systems (PODS-98),
1998.

[Christophides et al., 1994] V. Christophides, S. Abite-
boul, S. Cluet, and M. Scholl. From structured doc-
uments to novel query facilities. In R. T. Snodgrass
and M. Winslett, editors, Proc. of the ACM SIGMOD
Int. Conf. on Management of Data, pages 313–324,
Minneapolis (Minnesota, USA), 1994.

[De Giacomo and Lenzerini, 1997] Giuseppe De Gia-
como and Maurizio Lenzerini. A uniform framework
for concept definitions in description logics. J. of Ar-
tificial Intelligence Research, 6:87–110, 1997.

[Donini et al., 1992] Francesco M. Donini, Bernhard
Hollunder, Maurizio Lenzerini, Alberto Marchetti
Spaccamela, Daniele Nardi, and Werner Nutt. The

complexity of existential quantification in concept lan-
guages. Artificial Intelligence, 2–3:309–327, 1992.

[Emerson, 1996] E. Allen Emerson. Automated tempo-
ral reasoning about reactive systems. In Faron Moller
and Graham Birtwistle, editors, Logics for Concur-
rency: Structure versus Automata, volume 1043 of
Lecture Notes in Computer Science, pages 41–101.
Springer-Verlag, 1996.

[Kozen, 1983] Dexter Kozen. Results on the propo-
sitional µ-calculus. Theoretical Computer Science,
27:333–354, 1983.

[Mendelzon et al., 1997] Alberto Mendelzon, George A.
Mihaila, and Tova Milo. Querying the World Wide
Web. Int. J. on Digital Libraries, 1(1):54–67, 1997.

[Quass et al., 1995] D. Quass, A. Rajaraman, I. Sagiv,
J. Ullman, and J. Widom. Querying semistructured
heterogeneous information. In Proc. of the 4th Int.
Conf. on Deductive and Object-Oriented Databases
(DOOD-95), pages 319–344. Springer-Verlag, 1995.

[Steffen and Ingólfsdóttir, 1994] Bernhard Steffen and
Anna Ingólfsdóttir. Characteristic formulae for pro-
cesses with divergence. Information and Computation,
110:149–163, 1994.

[Stirling, 1996] Colin Stirling. Modal and temporal
logics for processes. In Faron Moller and Graham
Birtwistle, editors, Logics for Concurrency: Struc-
ture versus Automata, volume 1043 of Lecture Notes
in Computer Science, pages 149–237. Springer-Verlag,
1996.

[Streett and Emerson, 1989] Robert E. Streett and
E. Allen Emerson. An automata theoretic decision
procedure for the propositional µ-calculus. Informa-
tion and Computation, 81:249–264, 1989.

