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Abstract

Most modern formalisms used in Databases and Arti�cial Intelligence for describing an
application domain are based on the notions of class (or concept) and relationship among
classes. One interesting feature of such formalisms is the possibility of de�ning a class,
i.e., providing a set of properties that precisely characterize the instances of the class.
Many recent articles point out that there are several ways of assigning a meaning to a
class de�nition containing some sort of recursion. In this paper, we argue that, instead of
choosing a single style of semantics, we achieve better results by adopting a formalism that
allows for di�erent semantics to coexist. We demonstrate the feasibility of our argument, by
presenting a knowledge representation formalism, the description logic �ALCQ, with the
above characteristics. In addition to the constructs for conjunction, disjunction, negation,
quanti�ers, and quali�ed number restrictions, �ALCQ includes special �xpoint constructs
to express (suitably interpreted) recursive de�nitions. These constructs enable the usual
frame-based descriptions to be combined with de�nitions of recursive data structures such
as directed acyclic graphs, lists, streams, etc. We establish several properties of �ALCQ,
including the decidability and the computational complexity of reasoning, by formulating
a correspondence with a particular modal logic of programs called the modal mu-calculus.

1. Introduction

Most modern formalisms used in Databases and Arti�cial Intelligence for representing an
application domain are based on the notions of class (or concept) and relationship among
classes. For example, the object-oriented and semantics data models developed in Databases
describe data in terms of classes (sometimes called entity types) and incorporate several
features for establishing various forms of relationships between classes. On the other hand,
the notion of class (often called concept or frame) and that of link among classes are provided
in all structured formalisms for Knowledge Representation (frame-based languages, semantic
networks, description logics, etc.). Finally, this notion is also present in several type systems
of programming languages, specially those based on the object-oriented paradigm.

There are basically two ways of using and describing classes (concepts). In the �rst one,
which we can call the prescriptive approach, the description formalism allows for expressing
a number of properties of a class, thus prescribing constraints that the instances of the class
must satisfy. In the second one, which we can call the de�nitional approach, the formalism
allows for providing the de�nition of a class, i.e., a set of properties that precisely character-
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ize the instances of the class. While the prescriptive approach is quite well understood and
established, the de�nitional approach is still the subject of an interesting debate, regarding
both its nature and its semantic foundation. In particular, it is well known that there are
various ways to assign a meaning to a class de�nition when it contains some sort of recursion
(Baader, 1990, 1991; Nebel, 1991; Beneventano & Bergamaschi, 1992; Beeri, 1990).

In this paper, we are concerned with the semantic problems related to the de�nitional
approach, arguing that, instead of choosing a single style of semantics for the knowledge
representation formalism, we achieve better results by allowing di�erent semantics to coex-
ist.

We discuss this issue in the context of Description Logics1, which are logics originally
developed in Knowledge Representation to provide a formal reconstruction of frame-based
languages. Description logics describe the domain of interest in terms of concepts, which
represent classes of individuals, and roles, which are binary relations used to specify proper-
ties or attributes of individuals as well as links with other individuals (Nebel, 1990). Starting
from atomic concepts, denoted simply by a name, more complex concepts are built by us-
ing a suitable set of constructs. For example, the expression parent umale u 8child:male
denotes the concept of father (male parent) whose children are all male. The symbol u
denotes the construct for concept conjunction, while 8 denotes universal role quanti�cation.
Typically, concepts are structured into hierarchies determined by the properties associated
with them. The hierarchical structure is de�ned in such a way that more speci�c concepts
inherit the properties of the more general ones.

We introduce a description logic, called �ALCQ, which extends the well-known de-
scription logic ALC (Schmidt-Schau� & Smolka, 1991) by including the so called quali�ed

number restrictions, which are a very general form of cardinality constraints on roles, and
special �xpoint constructs, which enable us to capture the various semantics for recursive
de�nitions within a single formalism. Notably, the availability of these constructs makes
it possible to combine the usual frame-based descriptions with de�nitions of recursive data
structures such as directed acyclic graphs, lists, streams, etc.

We establish several properties of �ALCQ, including the decidability and the compu-
tational complexity of reasoning, by formulating a correspondence with a particular modal
logic of programs called the modal mu-calculus.

Recent articles, (e.g., Bergamaschi & Sartori, 1992; Borgida, 1992), advocate the use
of description logics as a unifying framework for several types of database and knowledge
representation formalisms. Indeed, it is possible to show that, depending on both the con-
structs and the semantics used, one can capture several database models and programming
language type systems by using description logics. Therefore, the study presented in this pa-
per is not merely con�ned to description logics, but is also applicable to other representation
formalisms.

The paper is organized as follows. In Section 2, we present the basic notions regarding
both description logics and �xpoints. In Section 3, we motivate our approach through
a detailed discussion about the di�erent semantics of concept de�nitions that have been
considered in the literature, and we argue for a formalism in which the various semantics
coexist. In Section 4, we present one such formalism, namely the logic �ALCQ, and we

1. Also called Concept Languages or Terminological Languages.
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discuss several of its properties. In Section 5 we study reasoning techniques for �ALCQ
and expose the correspondence with modal mu-calculus. Finally, in Section 6, we draw the
conclusions and discuss some open problems.

2. Preliminaries

In this section, we brie
y present the basic notions regarding both description logics, and
�xpoints. The interested reader is referred to (Nebel, 1990) and (de Bakker, 1980) for a
more complete introduction to the subjects.

2.1 Description Logics

Description logics allow one to represent a domain of interest in terms of concepts and
roles. Concepts model classes of individuals, while roles model relationships between classes.
Starting with atomic concepts (denoted by A) and atomic roles (denoted by R), which are
concepts and roles described simply by a name, complex concepts and roles can be built by
means of suitable constructs.

In this section, we concentrate on the description logic ALCQ, obtained from the well-
known description logic ALC (Schmidt-Schau� & Smolka, 1991) by including quali�ed num-
ber restrictions. These are cardinality constraints on the role �llers of a very general form,
where role �llers to which a constraint applies are selected by means of a generic concept
expression, the quali�er.

ALCQ concepts (denoted by C orD, possibly with a subscript) are composed inductively
according to the following abstract syntax (n denotes a natural number):

C ::= A j > j ? j :C j C1 u C2 j C1 t C2 j 9R:C j 8R:C j (� nR:C) j (� nR:C):

These constructs are not all independent. The following equalities hold: > = A t :A,
? = :>, 8R:C = :9R::C, and (� nR:C) = :(� n+ 1R:C).

From a semantic point of view, concepts are interpreted as subsets of an abstract domain,
while roles are interpreted as binary relations over such a domain. More precisely, an
interpretation I = (�I ; �I) consists of a domain of interpretation �I , and an interpretation

function �I mapping every atomic concept A to a subset of �I and every atomic role R to
a subset of �I ��I .

The interpretation function �I is extended to complex concepts of ALCQ (note that in
ALCQ roles are always atomic) as follows:

>I = �I

?I = ;
(:C)I = �I � CI

(C1 u C2)
I = CI1 \ CI2

(C1 t C2)
I = CI1 [ CI2

(9R:C)I = fs 2 �I j 9s0: (s; s0) 2 RI and s0 2 CIg
(8R:C)I = fs 2 �I j 8s0: (s; s0) 2 RI implies s0 2 CIg
(� nR:C)I = fs 2 �I j #fs0 j (s; s0) 2 RI and s0 2 CIg � ng
(� nR:C)I = fs 2 �I j #fs0 j (s; s0) 2 RI and s0 2 CIg � ng

89



De Giacomo & Lenzerini

where #S denotes the cardinality of the set S.
A concept C is satis�able i� there exists an interpretation I such that CI 6= ;, otherwise

C is unsatis�able. A concept C1 is subsumed by a concept C2, written as C1 v C1, i� for
every interpretation I, CI1 � CI2 .

Our knowledge expressed in terms of concepts and roles is assembled into a special
knowledge base, traditionally called TBox, which consists of a �nite (possibly empty) set
of assertions. In order to be as general as possible, we assume that every assertion has the
form of an inclusion assertion (or simply inclusion):

C1 v C2

without any restriction on the form of the concepts C1 and C2. A pair of inclusions of the
form fC1 v C2; C2 v C1g is often written as C1 � C2 and is called equivalence assertion.

An interpretation I satis�es an inclusion C1 v C2 i� CI1 � CI2 . An interpretation I is
a model of a TBox K i� I satis�es all inclusions in K.

Let K be a TBox. We say that a concept C is satis�able in K, i� there exists a model
I of K such that CI 6= ;, unsatis�able otherwise. We say that a concept C1 is subsumed by

a concept C2 in K, written K j= C1 v C2, i� for every model I of K, CI1 � CI2 .

2.2 Fixpoints

We brie
y recall few notions on �xpoints. Consider the equation:

X = f(X)

where f is an operator from 2S to 2S (2S denotes the set of all subsets of a set S). Every
solution E of this equation is called a �xpoint of the operator f (while every set E such that
f(E) � E is called pre-�xpoint, and every set E such that E � f(E) is called post-�xpoint).
In general, an equation as the one above may have either no solution, a �nite number of
solutions, or an in�nite number of them. Among the various solutions, the smallest and the
greatest solutions (with respect to set-inclusion) have a prominent position, if they exist. A
fundamental result due to Tarski (Tarski, 1955) guarantees the existence and the uniqueness
of both such solutions in case f is monotonic wrt set-inclusion (�), where f is monotonic
wrt � whenever E1 � E2 implies f(E1) � f(E2).

Theorem 1 (Tarski) Let S be a set, and f an operator from 2S to 2S that is monotonic

wrt �. Then:

� There exists a unique least �xpoint of f , which is given by
T
fE � S j f(E) � Eg.

� There exists a unique greatest �xpoint of f , which is given by
S
fE � S j E � f(E)g.

3. Concept De�nitions as Equations

We now analyze the notion of concept de�nition in detail. Let us ignore for the moment
knowledge bases as they have been introduced in the previous section, and let us consider a
di�erent kind of assertion: the de�nition statement. Let the form of a de�nition statement

(or simply de�nition) be:
A =def C
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where A is an atomic concept which cannot appear in the left-hand side of other de�nition
statements, and C is a concept expression in ALCQ. In principle, A =def C is intended to
provide an exact account for the concept to A in terms of C, i.e., to de�ne A as the set of
the individuals satisfying C.

In specifying the semantics of de�nitions, we need to distinguish between two di�erent
types of atomic concepts, namely, primitive concepts and de�ned concepts. Given a set of
de�nition statements, the primitive concepts are the atomic concepts that do not appear in
the left-hand side of any de�nition statement, whereas the de�ned concepts are those that
appear in the left-hand side of a de�nition statement.

Given an interpretation I = (�I ; �I), the interpretation function �I directly assigns
a subset of �I to primitive concepts, but not to de�ned concepts. The meaning of a
de�ned concept A is assigned through its de�nition statement A =def C, extending the
interpretation function so as the following requirement is satis�ed:

AI = CI : (1)

Consider, for example, the de�nition statement:

parent =def 9child:>:

Note that the de�ned concept parent does not appear in the body of its de�nition statement.
By (1), the de�nition statement provides the de�nition for the concept parent, in the
following sense: in any interpretation I = (�I ; �I), parentI denotes a single subset of �I ,
exactly the one denoted by (9child:>)I , i.e., fs j 9t:(s; t) 2 childIg. In general, if a concept
A is de�ned in terms of primitive and already de�ned concepts, then for every interpretation
I there exists a unique way to extend the interpretation function to de�ned concepts, and
hence there is no doubt that the de�nition statement provides a de�nition of A.

Now, consider the following de�nition statement:

A =def 9child:A:

Given an interpretation I = (�I ; �I), by (1) the statement is interpreted as the equation:

AI = fs 2 �I j 9t:(s; t) 2 childI and t 2 AIg:

However such equation does not specify univocally how to extend the interpretation function
�I to the de�ned concept A, since ; satis�es the equation as well as any set of individuals
where each member has an in�nite chain of descendants that are also members.

In general, we call recursive de�nition statements2 (or simply recursive de�nitions),
de�nition statements of the form:

A =def F (A)

where F (A) stands for a concept that has A as a subconcept3. According to (1), the recursive
de�nition A =def F (A) is interpreted simply as a sort of equation specifying that, given an

2. Terminological cycles in (Baader, 1990, 1991; Nebel, 1991). In the present discussion, for sake of sim-
plicity, we do not consider mutual recursive de�nitions, as A =def F (B), B =def F

0(A). We shall come
back to this point later on.

3. A subconcept of a concept C is any substring of C (including C itself) that is a concept, according to
the syntax rules.
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interpretation I, the subset of �I that can be tied to the de�ned concept A must satisfy
the equation AI = F (A)I , i.e., must be one of its solutions. Observe that, in general, either
none, one, or several subsets of �I may exist which are solutions of the above equation.

Another convenient way to consider a de�nition statement is to associate to it, for every
interpretation I, an operator from subsets of �I to subsets of �I instead of an equation, so
that the �xpoints of the operator correspond to the solutions of the equation. For example,
to the de�nition A =def 9child:A we associate the operator:

�S:fs 2 �I j 9t:(s; t) 2 childI and t 2 Sg

for any interpretation I. In general as either none, one or multiple solutions exist for the
equation associated with a recursive de�nition, we have that either none, one or multiple
�xpoints exist for the corresponding operator.

In this situation the word \de�nition" itself seems misleading: the body of the de�nition
does not give a complete account of the de�ned concept. An additional criterion is needed
for selecting solutions of the associated equation, or equivalently, �xpoints of the associated
operator. In other words in addition to (1), a criterion is needed to extend univocally the
interpretations I to the de�ned concepts. This observation has led to various semantics,
each of which interprets recursive de�nitions di�erently, by choosing, a priori and once and
for all, which solutions, or equivalently which �xpoints, are to be assigned to the de�ning
concept of a recursive de�nition4.

3.1 Di�erent Semantics for Recursive De�nitions

In the literature on description logics, three semantics for recursive de�nitions have been
proposed (see Nebel, 1991):

� Descriptive Semantics

� Least Fixpoint Semantics

� Greatest Fixpoint Semantics

and which of these semantics is the \right" one is a long standing matter of debate. Below
we describe how each of the three semantics interprets recursive de�nitions, and present
some examples showing that the choice of the semantics depends in fact upon the concept
to be de�ned. But �rst, it should be stressed that only the descriptive semantics is able to
assign meaning to general inclusion assertions C1 v C2 introduced in the previous section.

According to the Descriptive Semantics, a recursive de�nition A =def F (A) is a con-

straint stating that, for any I, AI has to be a solution of the equation AI = F (A)I . Under
the descriptive semantics, A =def 9child:A simply states that the individuals in the class
A have a child in the class A, and the individuals that have a child in the class A are
themselves in the class A, where A is no better speci�ed. In general the descriptive seman-
tics is not appropriate to properly de�ne recursive concepts, in the sense that, given an

4. We remark that a non-recursive de�nition is interpreted by the various semantics in the same way, since,
for every I, the equation associated to it has a single solution.
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interpretation I, it is unable to assign a unique subset of �I to the de�ned concept of the
recursive de�nition.

In fact under descriptive semantics de�nition statements are indistinguishable from the
equivalence assertions introduced in the previous section. In other words, the meaning
assigned to A =def F (A) is the same as that assigned to the equivalence assertion A � F (A).
Although such equivalence assertions can be used to specify if-and-only-if constraints, they
do not provide proper de�nitions when recursion is involved. For example, we can express
the fact that humans are mammals having parents that are humans, and on the converse,
that mammals having parents that are humans are humans themselves, in terms of the
equivalence assertion:

human � mammal u 9parent:>u 8parent:human:

Similarly we may require horses to satisfy an analogous property:

horse � mammal u 9parent:>u 8parent:horse:

However the two equivalence assertions above do not de�ne human and horse as shown,
e.g., by the fact that (correctly) they do not imply that all humans are horses and vice-versa
(in contrast to what happen when a �xpoint semantics is used, see below).

The Least Fixpoint Semantics interprets a recursive de�nition statement A =def F (A)
by assigning to A the smallest possible extension in each interpretation I, among those that
satisfy AI =def F (A)I { i.e., the least �xpoint of the corresponding operator. In fact it is
always assumed that the operator associated with the de�nition statement is monotonic,
so that Theorem 1 applies and a least �xpoint exists and is unique, i.e., the corresponding
equation has a unique smallest solution. Hence under the least �xpoint semantics the
recursive de�nition statement A =def F (A) de�nes the concept A. It is easy to verify that
in the example A =def 9child:A, the least �xpoint semantics leads us to identify A with ?.
Indeed the empty set is a solution of the equation associated with the statement, and it is
obviously the smallest solution. Similarly if we interpret the de�nition statement:

human =def mammal u 9parent:>u 8parent:human

with the least �xpoint semantics, we have that humanI = ; for any interpretation I.
Observe that if, as above, we adopt a similar de�nition for horse, we get again horseI = ;,
so we can trivially infer that horse � human.

The least �xpoint semantics is particularly suitable for providing inductive de�nitions

of concepts. For example, consider the class of a list (LIST) de�ned as follows:

� An EMPTY-LIST is a LIST.

� A NODE that has exactly one successor that is a LIST is a LIST.

� Nothing else is a LIST.

The �rst two conditions can be captured by the following recursive de�nition statement5:

list =def emptylist t (node u (� 1 succ:>) u 9succ:list)

5. Additionally we specify that the two concepts emptylist and node are disjoint.
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where (� 1 succ:>) forces succ to be a function. To enforce the third condition we must
assign the smallest possible extension to list. Thus, the class of LISTs can be naturally
de�ned by means of the above de�nition statement, interpreted according to the least
�xpoint semantics.

TheGreatest Fixpoint Semantics interprets a recursive de�nition statement A =def F (A)
by assigning to A the largest possible extension in each interpretation I, among those that
satisfy AI =def F (A)

I { i.e., the greatest �xpoint of the corresponding operator. Again, it
is assumed that such operator is monotonic in order to guaranty the existence an the unicity
of the greatest �xpoint (Theorem 1). As for the least �xpoint semantics, under the greatest
�xpoint semantics a recursive de�nition statement A =def F (A) de�nes the concept A. For
example, considering again the de�nition statement A =def 9child:A, the greatest �xpoint
semantics leads us to interpret A as the class of all the individuals having a child that in
turn is a member of A.

While the least �xpoint semantics naturally captures classes de�ned by induction, the
greatest �xpoint semantics naturally captures classes of individuals whose structure is non-
well-founded or co-inductive. An example is the class of STREAMs, modeling the well-
known linear data structure having a NODE as �rst element, and such that the rest of the
structure is a STREAM itself. Note that streams are similar to lists except that while lists
can be considered as �nite sequences of nodes, streams are in�nite sequences of nodes. Such
a class can be captured by the following recursive de�nition statement:

stream =def node u (� 1 succ:>) u 9succ:stream

with the proviso that the greatest possible extension is assigned to stream.

Finally, consider under the greatest �xpoint semantics the recursive de�nition state-
ments:

human =def mammal u 9parent:>u 8parent:human

horse =def mammal u 9parent:>u 8parent:horse:

Although they do not assign the empty extension to both human and horse as the least
�xpoint semantics does, we do have again the rather counter intuitive consequence that
human � horse, since humanI = horseI for any interpretation I. In general under both
types of �xpoint semantics the particular name used to denote a de�ned concept does not
have any impact on the interpretation of it, since the meaning of the de�ned concept is
completely speci�ed by its de�nition statement.

3.2 Least and Greatest Fixpoints as Concept Constructs

The above considerations show that arguing about which is the \right" semantics for recur-
sive de�nitions is not really an issue. Each of them captures an essential use of recursive
equations: the descriptive semantics is appropriate to specify constraints on concepts and
is the only one that extends to the general inclusion assertions introduced in Section 2; the
least �xpoint semantics is appropriate to de�ne a structure inductively; the greatest �xpoint
semantics is the appropriate to de�ne non-well-founded structures. Generally, we may need
the three of them in the same knowledge base, in order to model the various properties of
the di�erent concepts.
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Our proposal in this paper is exactly in the direction of reconciling the various semantics
in the same knowledge base. This is pursued by means of a logic that incorporates two
constructs, �X:F (X) and �X:F (X) (the symbols X;Y; : : : stand for concept variables),
denoting, respectively, the least �xpoint and the greatest �xpoint of the operator associated
with the de�nition X =def F (X), that is, for every I, the smallest solution and the greatest
solution of the equation XI = F (X)I .

In our approach, de�nition statements will never appear in a TBox. Instead, a knowledge
base will be simply a set of inclusion assertions (interpreted according to the descriptive se-
mantics) that can involve �xpoint constructs. For example, in order to specify the properties
of the concepts of list, stream, human and horse we can use the following assertions6:

list � �X:emptylist t (node u (� 1 succ:>) u 9succ:X)
stream � �X:node u (� 1 succ:>) u 9succ:X
human � mammal u 9parent:>u 8parent:human
horse � mammal u 9parent:>u 8parent:horse:

Note that, if we then add to the above knowledge base the equivalence assertion:

mgm � �X : mammal u 9parent:>u 8parent:X

de�ning the concept mgm (mammal generated by mammal), then it correctly turns out
that both human and horse are subsumed by mgm.

The availability of least and greatest �xpoint constructs, by allowing di�erent semantics
to be used in the same TBox, makes it possible to model not only abstract classes, but also
inductively and co-inductively de�ned data structures, such as lists and streams. This is
particularly important if our objective is to integrate class-based representation formalisms
and programming systems (declarative or procedural), in order to make these formalisms
more useful in practice. Furthermore, we have the possibility of nesting �xpoints, thus
going beyond the simple equational format by which we motivated their introduction. As
an example, consider the following one:

Among the inhabitants of the planet \Plonk", a disease called \foo" is quite
common. Such a disease manifests itself in two forms: a \visible" one and a
\latent" one, and it has a rather intricate hereditary pattern. Individuals that
have the visible form transmit the visible form to at least one (say the �rst) direct
descendant (obviously, if there is any direct descendant), these ill descendants
in turn do the same, and so on, until someone transmits the latent form of the
disease. More precisely, along any chain of descendants, the visible form of the
disease sooner or later is interrupted, because either an individual has no direct
descendant or an individual transmits to some descendant the latent form. All
direct descendants (if any) of an individual that has the latent form inherit the
visible form. The pattern goes on like this, generation after generation, forever.

The hereditary pattern (foo hp) of the above disease can be de�ned as follows:

foo hp � �X:�Y:((visible u (9child:Y t 8child:?))t
(latent u 8child:(visible uX)))

6. We also include the assertion emptylist v :node, specifying that the concepts emptylist and node are
disjoint.
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where visible and latent denote the visible and the latent form respectively of the disease,
and are assumed to be disjoint (latent v :visible).

4. The Description Logic �ALCQ

We provide a formal account of the meaning of the �xpoint constructs by introducing a
description logic, called �ALCQ, which is obtained by adding these constructs to ALCQ.

We make use of the notions of scope, bound and free occurrences of variables, closed
formulae, etc. The de�nitions of these notions are the same as the analogues in �rst-order
logic, treating � and � as quanti�ers. In addition, we use the symbol � as an abstraction
for either � or �.

The primitive symbols in �ALCQ are atomic concepts, (concept) variables (denoted by
X;Y; : : :), and atomic roles which are the only roles admitted in the logic.

Concepts in �ALCQ are formed inductively according to the following abstract syntax:

C ::= A j > j ? j :C j C1 u C2 j C1 tC2 j 9R:C j 8R:C j (� nR:C) j (� nR:C) j
�X:C j �X:C j X

where A denotes an atomic concept, R an atomic role, n a natural number, andX a variable,
and with the restriction that only a variable X occurring positively in C can be bounded by

a �xpoint � in �X:C. We say that a variable X occurs positively in a concept C, if every
free occurrence of X is in the scope of an even number of negations, considering concepts
C 0 in (� nR:C 0) in the scope of one negation.

The two �xpoint constructs are mutually de�nable: �X:C = :�X::C[X=:X] (where
C[X=:X] is the concept obtained substituting all free occurrences of X by the concept
:X).

As before, an interpretation I = (�I ; �I) consists of a domain of interpretation �I , and
a interpretation function �I , which maps every atomic concept to a subset of �I , and every
atomic role to a subset of �I ��I . But the presence of free variables does not allow us to
extend the interpretation function �I directly to every concept of the logic. For this reason
we introduce valuations. A valuation � on an interpretation I is a mapping from variables
to subsets of �I .

Given a valuation �, we denote by �[X=E ] the valuation identical to � except for
�[X=E ](X) = E . In other words, for every variable Y :

�[X=E ](Y ) =

(
E if Y = X
�(Y ) if Y 6= X

Let I be an interpretation and � a valuation on I. We assign meaning to concepts of
the logic by associating to I and � an extension function �I� , mapping concepts to subsets

of �I , as follows:

96



Concept Definitions in Description Logics

XI
� = �(X) � �I

AI� = AI � �I

>I� = �I

?I� = ;
(:C)I� = �I � CI�
(C1 u C2)

I
� = (C1)

I
� \ (C2)

I
�

(C1 t C2)
I
� = (C1)

I
� [ (C2)

I
�

(9R:C)I� = fs 2 �I j 9s0: (s; s0) 2 RI and s0 2 CI� g
(8R:C)I� = fs 2 �I j 8s0: (s; s0) 2 RI implies s0 2 CI� g
(� nR:C)I� = fs 2 �I j #fs0 j (s; s0) 2 RI and s0 2 CI� g � ng
(� nR:C)I� = fs 2 �I j #fs0 j (s; s0) 2 RI and s0 2 CI� g � ng
(�X:C)I� =

T
fE � �I j CI�[X=E] � E g

(�X:C)I� =
S
fE � �I j E � CI�[X=E] g

In the last two cases CI�[X=E ] is interpreted as an operator from subsets E of �I to subsets

of �I . By the syntactic restriction enforced on variables, such an operator is guaranteed
to be monotonic wrt �. Notice that free variables appearing in a concept are interpreted
similarly to atomic concepts.

A concept C is satis�able, if there exists an interpretation I and a valuation � on I
such that CI� 6= ;, otherwise C is unsatis�able. A concept C1 is subsumed by a concept C2,

written as C1 v C2, if for every interpretation I and every valuation � on I, (C1)
I
� � (C2)

I
� .

A �ALCQ TBox is a �nite (possibly empty) set of inclusion assertions C1 v C2 where
C1 and C2 are closed concepts of �ALCQ. As before, we use equivalence assertions of the
form C1 � C2 as an abbreviation for fC1 v C2; C2 v C1g.

An interpretation I satis�es an inclusion assertion C1 v C2, if (C1)
I
� � (C2)

I
� , where �

is any valuation on I (being C1 and C2 closed, and hence independent from valuations).
I is a model of a TBox K, if I satis�es all inclusion assertions in K. We say that a TBox
K is satis�able, if it has a model. Observe that inclusion assertions in K are interpreted
according to the descriptive semantics.

We say that a TBox K logically implies an inclusion assertion C1 v C2, written K j=
C1 v C2, if for every model I of K and every valuation � on I, (C1)

I
� � (C2)

I
� .

4.1 Properties of the Fixpoint Constructs

In the following, we use the notation C(X) to indicate that the variable X occurs free in
the concept C (other variables could occur free in C as well), and the notation C(D), where
D is a concept, as a shorthand for C(X)[X=D] (i.e., the concept obtained substituting all
free occurrences of X in C(X) by the concept D).

Let us comment brie
y on some simple properties of the logic. First, the concept
�X:C(X) is equivalent to the concept �Y:C(Y ), as long as Y is free for X in C(X). Second,
the extension function �I� assign to a closed concept a value which is independent of the actual
valuation �. Hence �X:C, where X does not occur in C, is equivalent to C. Third, since
�X:C(X) is a �xpoint we have that C(�X:C(X)) is equivalent to �X:C(X). Furthermore,
we have that the concept �X:C(X) is always subsumed by the concept �X:C(X).
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The next property is more substantial. Consider the class of a single source �nite
directed acyclic graphs (DAGs) de�ned inductively as follows7:

� The EMPTY-DAG is a DAG (base step).

� A NODE that has connections and all connections are DAGs, is a DAG (inductive
step).

� Nothing else is a DAG.

Consider now a �ALCQ TBox K containing the two equivalence assertions:

dag of student � �X : emptydag t (student u 9arc:>u 8arc:X)

dag of person � �X : emptydag t (person u 9arc:>u 8arc:X)

which de�ne the concepts dag of student and dag of person as the classes of DAGs whose
nodes are students and persons respectively. Assuming that students are persons, we want
to be able to infer that DAGs of students are DAGs of persons as well. That is, we want:

K j= student v person implies K j= dag of student v dag of person:

It turns out that for �ALCQ such a property holds. To prove this, we introduce the
following two theorems.

Theorem 2 Let K be a �ALCQ TBox, and C and D two �ALCQ concepts in which a
variable X occurs free positively. Then:

K j= C v D implies K j= �X:C v �X:D:

Proof We proceed by contradiction8. Assume that CI� � DI
� holds for all models I of K

and all valuations � on I. And suppose that there exists a model I of K and a valuation �
on I such that (�X:C)I� 6� (�X:D)I� .

First we prove the result for � = �. Let s be an individual in (�X:C)I� but not in

(�X:D)I� . Now, we have:

s 2 (�X:C)I� i� 8E � �I : (CI�[X=E] � E implies s 2 E) (2)

s 62 (�X:D)I� i� 9E 0 � �I : (DI
�[X=E 0] � E 0 and s 62 E 0): (3)

For the set E 0 in (3), the following expression holds:

CI�[X=E 0] � DI
�[X=E 0] � E 0

7. We assume that a leaf of a DAG is a NODE with all arcs leading to a special DAG called EMPTY-DAG.
As an alternative, one can assume that a leaf of a DAG is a NODE having no connection at all. In the
latter case, the de�nition of dag would simplify to dag =def nodeu 8arc:dag (in which the general form
of inductive de�nitions { i.e., base case and inductive case { is less apparent).

8. For uniformity, we do not distinguish if X occurs free or not. Obviously if X does not occur free, the
result is trivial.
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hence by (2) we have s 2 E 0 and by (3) we have s 62 E 0, which is impossible.

The proof for � = � is similar. Let s be an individual in (�X:C)I� but not in (�X:D)I� .
Now, we have:

s 2 (�X:C)I� i� 9E 00 � �I : (E 00 � CI�[X=E 00] and s 2 E 00) (4)

s 62 (�X:D)I� i� 8E � �I : (E � DI
�[X=E] implies s 62 E): (5)

For the set E 00 in (4), the following expression holds:

E 00 � CI�[X=E 00] � DI
�[X=E 00]

hence by (4) we have s 2 E 00 and by (5) we have s 62 E 00, which is impossible. 2

Above we have de�ned what it means for a variableX to occur positively in a concept C.
Similarly we say that a variable X occurs negatively in a concept C, if every free occurrence
of X is in the scope of an odd number of negations, considering concepts C 0 in (� nR:C 0)
in the scope of one negation.

Theorem 3 Let K be a �ALCQ TBox, and D(X) a �ALCQ concept with the variable X
as a free variable. Then, for any �ALCQ concepts C1 and C2:

K j= C1 v C2 implies

(
K j= D(C1) v D(C2) if X occurs positively in D(X)
K j= D(C2) v D(C1) if X occurs negatively in D(X)

Proof We prove the result by induction on the formation of D(X).

Base case. If D(X) = X, the result holds trivially.

Inductive cases. If D(X) has the form :D0(X) j (� nR:C 0) , then X occurs positively
(negatively) in D0(X) and negatively (positively) in D(X). By induction hypothesis K j=
D0(Ci) v D0(Cj) (where i; j 2 f1; 2g and i 6= j) and hence by the semantics of the constructs
K j= D(Cj) v D(Ci).

If D(X) has the form D0
1(X) uD0

2(X) j D0
1(X) tD0

2(X) j 8R:D0(X) j (� nR:D0(X)),
then X occurs positively (negatively) both in D0(X) and in D(X). By induction hypothesis
K j= D0(Ci) v D0(Cj) and hence by the semantics of the constructs K j= D(Ci) v D(Cj).

It remains to prove the result for D(X) = �Y:D0(X) (Y 6= X). In this case, by the
syntactic restriction enforced, Y occurs positively inD0(X) and hence by Theorem 2 we have
K j= D0(Ci) v D0(Cj) implies K j= �Y:D0(Ci) v �Y:D0(Cj), thus by induction hypothesis
we are done. 2

Going back to our example, we can, in fact, infer that DAGs of students are also DAGs of
persons. Indeed, by applying Theorem 3 and then Theorem 2, we have that K j= student v
person impliesK j= �X:emptydagt(studentu9arc:>u8arc:X) v �X:emptydagt(personu
9arc:> u 8arc:X).
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4.2 Internalizing Assertions

We now show that logical implication in �ALCQ TBoxes (thus also satis�ability of �ALCQ
TBoxes) is reducible to unsatis�ability of a single �ALCQ concept. To prove this result, we
introduce the notions of generated sub-interpretation and sub-valuation9.

Let I = (�I ; �I) be an interpretation, � a valuation on I, and s 2 �I an individual.
We de�ne the interpretation Is = (�Is ; �I

s
), and the valuation �s on Is, as follows:

� �Is = fs0 2 �I j (s; s0) 2 (RI1 [ : : : [RIm)
�g.

� For each atomic role Ri, we have R
Is

i = RIi \ (�Is ��Is).

� For each atomic concept A, we have AI
s
= AI \�Is .

� For each variable X, we have �s(X) = �(X) \�Is.

We call Is the sub-interpretation of I generated by s, and �s the sub-valuation of � generated
by s.

For generated sub-interpretations and sub-valuations we can state the following lemma.

Lemma 4 Let C be a �ALCQ concept. Then for any interpretation I, any valuation � on

I, and any individual s 2 �I, we have:

8t 2 �Is: t 2 CI� i� t 2 CI
s

�s :

Proof Without loss of generality, we consider concepts formed according to the following
simpli�ed abstract syntax: C ::= A j ? j :C j C1 u C2 j 9R:C j (� nR:C) j �X:C j X:

We prove the result by induction on the number of nested �xpoint constructs. Base
case. If in C there are no �xpoint constructs, the thesis can be proven by induction on the
formation of C.

Inductive case. We assume that the thesis holds for concepts C with k nested �xpoint
constructs, and we prove it for concepts �X:C with k + 1. We recall that, by the Tarski-
Knaster Theorem on �xpoints (Tarski, 1955), t 2 (�X:C)I� i� there exists an ordinal � such

that t 2 (��X:C)I� , where (��X:C)I� is de�ned by trans�nite induction as:

� (�0X:C)I� = ;

� (��+1X:C)I� = CI
�[X=(��X:C)I� ]

� (��X:C)I� =
S
�<�(��X:C)I� , if � is a limit ordinal.

Hence we proceed by trans�nite induction on ordinals �.
Base case of the trans�nite induction. �0X:C is de�ned as ?, thus trivially we have

t 2 (�0X:C)I� i� t 2 (�0X:C)I
s

�s .

Successor case of the trans�nite induction. We want to show that t 2 (��+1X:C)I� i� t 2

(��+1X:C)I
s

�s , which reduces to:

t 2 CI�[X=(��X:C)I� ]
i� t 2 CI

s

�s[X=(��X:C)I
s

�s
]
: (6)

9. Together these notions play the same role as that of generated sub-model in modal logics.
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To prove this, we start by showing that:

t 2 CI
s

�s[X=(��X:C)I
s

�s
]
i� t 2 CI

s

(�[X=(��X:C)I� ])
s : (7)

Notice that the two valuations above may di�er only on the value of X. If it holds that:

t 2 XIs

�s[X=(��X:C)I
s

�s
]
i� t 2 XIs

(�[X=(��X:C)I� ])
s ; (8)

then by straightforward induction on the formation of C we have that (7) holds as well.
Let us prove (8). We can write it as:

t 2 �s[X=(��X:C)I
s

�s ](X) i� t 2 (�[X=(��X:C)I� ])
s(X);

and since t 2 �Is , this reduces to

t 2 (��X:C)I
s

�s i� t 2 (��X:C)I� :

which holds by trans�nite inductive hypothesis.

Now, since C contains k �xpoint constructs, by inductive hypothesis on k, we have:

t 2 CI�[X=(��X:C)I� ]
i� t 2 CI

s

(�[X=(��X:C)I� ])
s :

Hence, considering (6) and (7), it follows that indeed t 2 (��+1X:C)I� i� t 2 (��+1X:C)I
s

�s .

Limit case of the trans�nite induction. Let � be a limit ordinal, then t 2 (��X:C)I� i�

there exists an ordinal � < � such that t 2 (��X:C)I� . By trans�nite induction hypothesis,

it holds that: t 2 (��X:C)I� i� t 2 (��X:C)I
s

�s , and thus:

t 2 (��X:C)I� i� t 2 (��X:C)I
s

�s :

This completes the trans�nite induction. So for all ordinals � it holds that:

t 2 (��X:C)I� i� t 2 (��X:C)I
s

�s :

The induction on the nesting of �xpoint constructs is completed as well, hence we have
proven the lemma. 2

Now we are ready to state the result mentioned above.

Theorem 5 Let K = fC1 v D1; : : : ; Cq v Dqg be a �ALCQ TBox, and C and D two

�ALCQ concepts. Then K j= C v D if and only if the �ALCQ concept:

�X:(8R1:X u : : : u 8Rm:X u CK) uC u :D (9)

is unsatis�able, where R1; : : : ; Rm are all the atomic roles appearing in K, and CK = (:C1t
D1) u : : : u (:Cq tDq).
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Proof If part. By contradiction. Assume that (9) is not satis�able, and suppose that
K 6j= C v D, i.e., there exists an interpretation I, and a valuation � on I, such that I
is a model of K and CI� 6� DI

� . It follows that, there exists an individual s 2 �I such

that s 2 CI� and s 2 (:D)I� . On the other hand, the fact that I is a model of K implies

that (CK)
I
� = �I , and thus that (�X:(8R1:X u : : : u 8Rm:X u CK))

I
� = �I . So we have

s 2 (�X:(8R1:X u : : : u 8Rm:X u CK) u C u :D)I� , i.e., (9) is satis�able, contradicting the
hypotheses.

Only If part. Again we proceed by contradiction. Assume K j= C v D. And suppose
that (9) is satis�able, i.e., there exists an interpretation I, a valuation � on I, and an
individual s 2 �I , such that s 2 (�X:(8R1:X u : : : u 8Rm:X u CK) u C u :D)I� .

Now consider the sub-interpretation Is = (�Is ; �I
s

�s ) and the sub-valuation �s on Is

generated by s. On the one hand, we clearly have that (CK)
Is

�s = �Is, hence Is is a model

of K. On the other hand by Lemma 4 s 2 (�X:(8R1:Xu: : :u8Rm:XuCK)uCu:D)I
s

�s , so it
follows that Is and �s do not satisfy the subsumption C v D, contradicting the hypotheses.
2

This result states that satis�ability of �ALCQ concepts and logical implication in
�ALCQ TBoxes (and thus of satis�ability of �ALCQ TBoxes) are not distinct reasoning
tasks. Hence in the following we will limit our attention to concept satis�ability without
loss of generality.

5. Reasoning with Fixpoints

In this section we concentrate on developing reasoning methods to check for satis�ability
concepts involving �xpoints. In particular, we exhibit a correspondence between �ALCQ
and a well-known logic of programs, called modal mu-calculus (Kozen, 1983; Kozen &
Parikh, 1983; Streett & Emerson, 1984, 1989), that has been recently investigated for
expressing temporal properties of reactive and parallel processes (Stirling, 1992; Larsen,
1990; Cleaveland, 1990; Winsket, 1989; Dam, 1992).

To get a better insight on the correspondence between the two logics, we �rst study
the sublanguage �ALC obtained from �ALCQ leaving out quali�ed number restrictions10.
Then, we study the full logic �ALCQ.

5.1 Reasoning in �ALC

Let us introduce modal mu-calculus formally. Formulae �;	; : : : of modal mu-calculus
are formed inductively from atomic formulae A; : : : and variables X; : : : according to the
following abstract syntax:

�;	 ::= A j > j ? j :� j � ^	 j � _	 j hai� j [a]� j �X:� j �X:� j X

where a is the generic element of a set of labels L, and every bounded occurrence of every
variable X must be in the scope of an even number of negation signs.

10. Observe that, in Theorem 5 quali�ed number restrictions play no role. Hence exactly the same reduction
from logical implication to unsatis�ability holds for �ALC as well. This allows us to restrict our attention
to satis�ability only.
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The semantics of modal mu-calculus is based on the notions of (Kripke) structure and
valuation. A Kripke structure M is a triple (S; fRi j i 2 Lg;V), where S is a set of states,
each Ri is a binary relation on S, and V is a mapping from atomic formulae to subsets of
S. A valuation � on M is a mapping from variables to subsets of S. To a Kripke structure
M and a valuation � on M, it is associated an extension function �M� de�ned inductively
as follows:

XM
� = �(X) � S

AM� = V(A) � S
>M� = S
?M� = ;
(:�)M� = S � �M�
(� ^	)M� = �M� \	M�
(� _	)M� = �M� [	M�
(hai�)M� = fs 2 S j 9s0: (s; s0) 2 Ra and s0 2 �M� g
([a]�)M� = fs 2 S j 8s0: (s; s0) 2 Ra implies s

0 2 �M� g
(�X:�)M� =

T
fE � S j �M�[X=E] � E g

(�X:�)M� =
S
fE � S j E � �M�[X=E] g

A formula � is satis�able if there exists a Kripke structureM and a valuation � onM such
that �M� 6= ;.

The following theorem is the basis for the correspondence between �ALC and the modal
mu-calculus.

Theorem 6 There exists a one-to-one linear-time function q mapping concepts of �ALC
to formulae of modal mu-calculus such that: for any �ALC concept C, C is satis�able if

and only if q(C) is satis�able.

Proof We can de�ne q in the following way: q(A) = A (atomic concepts are mapped
to atomic formulae), q(X) = X, q(>) = >, q(?) = ?, q(:C) = :q(C), q(9R:C) =
hRiq(C) (atomic roles are mapped to labels), q(8R:C) = [R]q(C), q(�X:C) = �X:q(C),
and q(�X:C) = �X:q(C).

An interpretation I = (�I ; �I) is equivalent to a Kripke structure M = (S; fRi j i 2
Lg;V) such that: S = �I ; L is equal to the set of names of the atomic roles interpreted
in I; RR = RI for each atomic role R; and V(A) = AI for each atomic concept A. In
addition, a valuation � on I is equivalent to a valuation �0 on M. Now both the extension
function associated with I and � and the extension function associated with M and �0

map, respectively, any concept C and the corresponding formula q(C) to the same subset
of �I = S. Hence the thesis follows. 2

It follows that we may transfer both decidability and complexity results for the modal
mu-calculus (Kozen & Parikh, 1983; Emerson & Jutla, 1988; Safra, 1988) to �ALC. Thus,
we can immediately state what is the complexity of reasoning with �ALC concepts and
�ALC TBoxes.

Theorem 7 Satis�ability of �ALC concepts, satis�ability of �ALC TBoxes, and logical

implication in �ALC TBoxes are EXPTIME-complete problems.
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Proof The satis�ability problem for modal mu-calculus is EXPTIME-complete (Emerson
& Jutla, 1988), hence by Theorem 6 and by Theorem 5 the thesis follows. 2

5.2 Reasoning in �ALCQ

Next we exhibit a mapping from �ALCQ concepts to formulae of variant of modal mu-
calculus, called deterministic modal mu-calculus, which has the same syntax as the modal
mu-calculus, but is interpreted over deterministic Kripke structures, that is Kripke struc-
tures M = (S; fRi j i 2 Lg;V) in which the relations Ri are partial functions (Streett &
Emerson, 1984).

Let us ignore for a moment the quali�ed number restriction constructs. Formulae of
�ALCQ without quali�ed number restrictions are, in fact, formulae of the modal mu-
calculus, as shown in the previous section. By using a well-known technique developed
for propositional dynamic logic (Parikh, 1981), (nondeterministic) modal mu-calculus for-
mulae can be reduced to deterministic modal mu-calculus formulae (Streett & Emerson,
1984), as shown below.

We use the following notations for usual operations on binary relations: ��� for chaining,
�� for re
exive transitive closure, �+ for transitive closure, and �� for converse. We also use
the following abbreviations:

[R�]� for �X:(� ^ [R]X)
[R+]� for [R][R�]�
hR�i� for �X:(� _ hRiX)
hR+i� for hRihR�i�:

The reduction is as follows: in a formula �, we recursively replace each subformulae of
the form [R]� by [R][(Rnew)

�]� and each subformulae of the form hRi� by hRih(Rnew)
�i�,

where Rnew is a new symbol and both R and Rnew in the resulting formula are interpreted
as partial functions. Let us call the resulting formula �0, we have that � is satis�able if and
only if �0 is satis�able.

We brie
y sketch the reasoning behind the proof of this statement. The if direction
is easy: it su�ces to observe that if MD = (SD; fRD

i j i 2 LDg;VD) is a model of �0,
then can transform it into a model M = (S; fRi j i 2 Lg;V) of � by de�ning S = SD,
L = LD � new, RR = RD

R � (RD
new)

�, and V = VD. The only if direction is as follows. We
recall that both nondeterministic and deterministic modal mu-calculus have the tree model
property (Streett & Emerson, 1989, 1984): if a formula has a model it has a tree model,
i.e., a model having the form of a tree11. So without loss of generality we can restrict our
attention to tree models only. Now there is a one-to-one transformation from tree models
MT = (ST ; fRT

i j i 2 LT g;VT ) of � to (tree) models MB = (SB ; fRB
i j i 2 LBg;VB) of

�0. Indeed, we put SB = ST , VB = VT , LB = LT , and given a state x 2 ST having as

11. Given a model of � we get a tree model simply by \unfolding" the original one.
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RT
R-successors z1; : : : ; zl,

12 we put (x; z1) 2 R
B
R, and (zi; zi+1) 2 R

B
Rnew , for i = 1; : : : ; l� 1.

In this way we have (x; zi) 2 R
T
R if and only if (x; zi) 2 R

B
R � (R

B
Rnew

)�.13

We remark that MT is required to be a tree because once we get MB we need to recover
the \original" RT

R-predecessor x of a state zi, namely we need (RB
R � (RB

Rnew
)�)� to be

a partial function, otherwise, given a state zi, we would not know which of the various
(RB

R � (R
B
Rnew

)�)�-successors is its original RT
R-predecessor x, and therefore we would not

be able to reconstruct MT from MB .

By interpreting R and Rnew as partial functions, it easy to express quali�ed number
restrictions as constraints on the chain of (R � R�new)-successors of a state. For example:
(� 3R:�) can be expressed by

[R][(Rnew)
�](:� _ [(Rnew)

+](:� _ [(Rnew)
+](:� _ [(Rnew)

+]:�)))

and can be read as \everywhere along the chain R � (Rnew)
� there are at most three states

where � holds", which corresponds exactly to the intended meaning. Similarly (� 3R:�)
can be expressed by

hRih(Rnew)
�i(� ^ h(Rnew)

+i(� ^ h(Rnew)
+i�))

and can be read as \somewhere along the chain R � (Rnew)
� there are at least three states

where � holds", which again corresponds exactly to the intended meaning.
The above discussion allows us to state the following result.

Theorem 8 There exists a polynomial function t mapping concepts of �ALCQ to formulae

of deterministic modal mu-calculus such that: for any �ALCQ concept C, C is satis�able

if and only if u(C) is satis�able.

Proof The function t is de�ned inductively as follows:

u(A) = A
u(X) = X
u(C1 u C1) = u(C1) ^ u(C2)
u(C1 t C2) = u(C1) _ u(C2)
u(:C) = :u(C)
u(�X:C) = �X:u(C)
u(�X:C) = �X:u(C)
u(9R:C) = hRih(Rnew)

�iu(C)
u(8R:C) = [R][(Rnew)

�]u(C)

where Rnew is a new role. Finally, (� nR:C) and (� nR:C) are mapped to the following
formulae:

12. We implicitly assume that MT is a �nite branching tree model. This can be done without loss of
generality since modal mu-calculus has the �nite model property, and hence unfolding a �nite model we
get a �nite branching tree model. Note however that it would su�ce to assume MT to be a countable
branching tree model.

13. Note that this construction is similar to the one often used in programming to reduce n-ary trees to
binary trees by coding children of a node as the combination of one child and its siblings.
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u((� nR:C)) =[R][(Rnew)
�](:u(C) _ [(Rnew)

+](:u(C)_
[(Rnew)

+](: : : (:u(C) _ [(Rnew)
+]:u(C)) : : :)))

where the number of nested formulae of the form :u(C) _ [(Rnew)
+]� is n, and

u((� nR:C)) =hRih(Rnew)
�i(u(C) ^ h(Rnew)

+i(u(C)^
h(Rnew)

+i(: : : (u(C) ^ h(Rnew)
+iu(C)) : : :)))

where the number of nested formulae of the form u(C) ^ h(Rnew)
+i� is n� 1.

u(C) is clearly polynomial in the size of C (under the usual assumption that numbers in
C coded in unary). Moreover, following the technique in (Parikh, 1981; Streett & Emerson,
1984) that as been exposed above, it is easy to verify, by induction on the formation of the
concept C, that the mapping t preserves satis�ability. 2

It follows that we may transfer both decidability and complexity results for the de-
terministic modal mu-calculus (Streett & Emerson, 1984; Emerson & Jutla, 1988; Safra,
1988) to �ALCQ. Thus, we can immediately state what is the complexity of reasoning with
�ALCQ concepts and �ALCQ TBoxes.

Theorem 9 Satis�ability of �ALCQ concepts, satis�ability of �ALCQ TBoxes, and logical

implication in �ALCQ TBoxes are EXPTIME-complete problems.

Proof Satis�ability in deterministic modal mu-calculus is an EXPTIME-complete problem
(Streett & Emerson, 1984; Emerson & Jutla, 1988; Safra, 1988). Hence by Theorem 8 and
Theorem 5 the thesis follows. 2

6. Discussion and Conclusion

The work presented in this paper stems out from (De Giacomo, 1993), where the basic ideas
of introducing explicit �xpoint was �rst presented, and (De Giacomo & Lenzerini, 1994b),
where such idea was further elaborated and �ALCQ was �rst introduced.

One of the main contributions of this work has been to devise a tight correspondence
between description logics with �xpoints and modal mu-calculus. In this respect we remark
that, while �ALC corresponds directly to modal mu-calculus, the full �ALCQ corresponds
to a variant of modal mu-calculus whose decidability and complexity had not been studied.
More precisely, a notion essentially equivalent to that of quali�ed number restrictions has
independently emerged in modal logics, namely that of graded modalities (Van der Hoek
& de Rijke, 1995; Van der Hoek, 1992; Fattorosi-Barnaba & De Caro, 1985; Fine, 1972).
However the combination of �xpoints and graded modalities had not been investigated
before in the setting of modal logics. Given the tight correspondence between �ALC and
modal mu-calculus, �ALCQ can be considered as modal mu-calculus augmented with graded

modalities. Hence the results in this paper apply to such a logic as well.

The research reported in this paper bears several similarities with the one on the cor-
respondence between description logics and propositional dynamic logics (Baader, 1991;
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Schild, 1991; De Giacomo & Lenzerini, 1994a, 1995; De Giacomo, 1995). In fact what char-
acterize description logics based on propositional dynamic logics are the role constructs for
chaining, choice, test, and above all re
exive transitive closure of roles, which is a limited
form of �xpoint. Such role constructs can be easily expressed by using the explicit �xpoints
introduced here. It su�ce to resort to the following equivalences:

9R1 �R2:C = 9R1:9R2:C
9R1 tR2:C = 9R1:C t 9R2:C
9R�:C = �X:(C t 9R:X)
9id(D):C = C uD:

Note that 8R�:C = �X:(C u 8R:X). In (Calvanese, De Giacomo, & Lenzerini, 1995)
a further implicit form of �xpoint has been advocated, the so called well-founded role
construct wf(R). By explicit �xpoints, wf(R) is expressed simply as �X:(8R:X).

Our proposal of allowing for �xpoint constructs explicitly in the formalism is shared
by the study independently carried out by Schild in (Schild, 1994)14. The main goal of
that work is to study both the expressive power and the computational complexity of
subsumption and satis�ability for TBoxes expressed in ALC (no �xpoint constructs), that
allow for mutually recursive de�nitions. To this end, a description logic is de�ned that
corresponds to a variant of the modal mu-calculus in which mutual �xpoints are allowed
but some restrictions on nested �xpoints are enforced (Vardi & Wolper, 1984). It is well
known that mutual �xpoints can be re-expressed by means of nested ones (see, for example,
Park, 1976; de Bakker, 1980). As a consequence of this observation it follows that the logic
introduced in this paper, is more expressive than the one analyzed in (Schild, 1994) since,
on the one hand, it allows nesting of �xpoints without any restriction, on the other hand
it makes it possible to state sophisticated forms of cardinality constraints on role �llers by
means of quali�ed number restrictions.

The present work can be extended along several directions. We conclude by outlining
two of them.

We already noticed that �xpoint constructs allow for representing not only abstract
classes, but also several data structures extensively used in software development. We
believe that this characteristic is an important step towards a satisfactory integration of
description logics with both traditional and declarative programming systems. Indeed the
description logic proposed in this paper provides powerful mechanisms for data structure
modeling. In particular, the properties stated in Section 4.1 can be the base to formulate a
notion of parametric concept15. For instance, the expression (named dag of [Z])

�X : emptydag t (Z u 9arc:>u 8arc:X)

where Z is a formal parameter, denotes the class of DAGs whose nodes are left unspeci�ed.
This class can be used in several ways in the TBox. For example, it can be instantiated
by binding the formal parameter to actual parameters, thus getting, say, dag of [student],
dag of [person], etc., which are concepts inheriting the properties of dag of [Z].

14. In (Schild, 1994) number restrictions are not considered.
15. Note that parametric concepts can be introduced also in simpler logics which do not include �xpoint

constructs.
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Although �ALCQ is a powerful logic, it lacks the construct for inverse roles which is
needed for example to correctly capture the notions of (�nite) TREE, BINARY-TREE, etc.
Indeed, to de�ne the concept of TREE (an EMPTY-TREE is a TREE; a NODE that has
at most one parent, some children, and all children are TREEs, is a TREE; nothing else is a
TREE) we can write tree � �X : empty treet(nodeu(� 1 child�:>)u9child:>u8child:X
where child� denotes the inverse of child. Notice that the introduction of inverse roles
does not pose any di�culty from the semantical point of view; however, its impact on
the reasoning method needs to be investigated. More generally, a wide variety of concept
constructs can be studied in conjunction with �xpoints. The research on description logics
related to propositional dynamic logics in (De Giacomo & Lenzerini, 1994a, 1995; Calvanese
et al., 1995; De Giacomo, 1995) may give us hints on how to proceed along this direction.
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