
Conjunctive Query Containment in Description Logics
with n-ary Relations

Diego Calvanese and Giuseppe De Giacomo and Maurizio Lenzerini

Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”

Via Salaria 113, 00198 Roma, Italy

{calvanese,degiacomo,lenzerini}@dis.uniroma1.it

Abstract

Recent research points out that query con-
tainment is a central problem in several
database and knowledge base applications, in-
cluding data warehousing, data integration,
query optimization, and (materialized) view
maintenance. In this paper we present a de-
cision procedure for containment of conjunc-
tive queries defined over a database schema
specified in a very expressive description logic,
comprising n-ary relations and general inclu-
sion axioms on both concepts and relations.

1 Introduction

Query containment is the problem of checking whether
for every data (or knowledge) base, the result of one
query is always a subset of the result of another query.
Many recent papers point out that query containment
is a central problem in several database and knowledge
base applications, including data warehousing, data in-
tegration, query optimization, (materialized) view main-
tenance, etc. (see for example [11, 1, 10]).

The issue of developing algorithms for query contain-
ment has been addressed by both the Database and
Knowledge Representation community. Most of the re-
sults in databases deal with a framework where the
database schema is expressed in a very simple data model
(e.g. the relational model), and the query has the form
of a conjunction of atomic queries (each involving one
relation). On the other hand, the research on Knowl-
edge Representation, and on Description Logics (DLs)
in particular, typically assumes a more powerful schema
specification language (although restricted to unary and
binary predicates), and a query language where n-ary re-
lations are either not used (e.g. queries as concepts) [2],
or treated separately from the concepts and the roles of
the schema (and therefore are not part of the knowledge
base) [8, 9].

In this paper we present a new decision procedure for
query containment which refers to a general framework
where:

• The database (or knowledge base) schema is spec-
ified in a very expressive DL, comprising n-ary re-

lations and general inclusion axioms on both con-
cepts and relations;

• The query is a conjunctive query over the predi-
cates used in the schema specification;

• Query containment amounts to checking whether
in every model (database instance) of the schema,
the set of tuples satisfying one query is a subset of
the set of tuples satisfying another query.

The DL used in this work is able to capture virtually
all data models (at least the structural part of them) we
know of. In particular, our DL can express typed inclu-
sion dependencies, existence dependencies, some forms
of functional dependencies (at least those that are nat-
urally expressed in an object-oriented framework) and
many other forms of constraints.

We believe that our framework has several advan-
tages, in that it provides significant expressive power for
both specifying the schema, and for formulating queries.
Our result shows that, in this powerful setting, query
containment is still decidable in exponential time with
respect to the size of the schema.

We are presently working on applying our results to
a new approach to data integration, which we are devel-
oping in an Esprit project on Data Warehousing (called
Data Warehouse Quality - DWQ).

2 The Logic DLR
We introduce the description logic DLR, which includes
concepts and n-ary relations. DLR is inspired by the
languages introduced in [4, 5, 6, 3], where the notion of n-
ary relation was already present. We believe that DLR
is a natural extension of DLs towards n-ary relations.

We assume to deal with a finite set of atomic relations
and concepts, denoted by P and A respectively. We use
R to denote arbitrary relations (of given arity between 2
and nmax) and C to denote arbitrary concepts, respec-
tively built according to the following syntax:

R ::= P | $i/n : C | ¬R | R1 ⊓ R2

C ::= A | ¬C | C1 ⊓ C2 |

∀R1[$i].R2 | ∃≥kR1[$i].R2

A relation of the form $i/n : C has arity n.

fol(P) = λ~x.P(~x)
fol($i/n : C) = λ~x.reln(~x) ∧ fol(C)(xi)

fol(¬R) = λ~x.reln(~x) ∧ ¬fol(R)(~x)
fol(R1 ⊓ R2) = λ~x.fol(R1)(~x) ∧ fol(R2)(~x)

fol(A) = λx.A(x)
fol(¬C) = λx.¬fol(C)(x)

fol(C1 ⊓ C2) = λx.fol(C1)(x) ∧ fol(C2)(x)
fol(∀R1[$i].R2) = λx.∀~x.fol(R1)(~x) ∧ x = xi ⊃ fol(R2)(~x)

fol(∃≥kR1[$i].R2) = λx.∃≥k~x.x = xi ∧ fol(R1)(~x) ∧ fol(R2)(~x)

Figure 1: The semantics of DLR

We consider only concepts and relations that are well-
typed. An atomic relation is always well-typed. A rela-
tion of the form $i/n : C is well-typed if i ∈ {1, . . . , n}
and C is well-typed. A relation R is well-typed if all
atomic relations and all relations of the form $i/n : C
occurring in R are well typed and have the same arity
n (which is also the arity of R). An atomic concept is
always well-typed. A concept of the form ∀R1[$i].R2

(similarly for ∃≥kR1[$i].R2) is well-typed if R1 and
R2 are well-typed, arity(R1) = arity(R2) = n, and
i ∈ {1, . . . , n}. Finally a concept is well-typed, if all
concepts occurring in it are well-typed.

We give the semantics of our language by providing a
translation fol(·) of concepts and relations to open for-
mulae of first order logic with equality, and relying on
usual first order interpretations.

We use lambda notation for open formulae, hence in-
terpreting E = λ~x.γ(~x) as a predicate of arity n, where n
is the number of variables of ~x. By the application E(~y)
we denote γ(~y). We also introduce the abbreviation
reln(~x)

.
= Pn

1 (~x)∨· · ·∨Pn
l (~x), where {Pn

1 , . . . ,Pn
l } is the

set of all atomic relations of arity n. Let P,R,R1,R2

be of arity n. The semantics of the constructors of DLR
is shown in Figure 1.

Given a first order interpretation I with domain ∆I ,
a formula defined by the lambda expression λ~x.γ(~x) is
interpreted as

(λ~x.γ(~x))I = {~d ∈ ∆I | γI,[~x/~d] is true}

Hence the set CI of instances of C in I is fol(C)I . Sim-
ilarly, the set RI of tuples that are instances of R is
fol(R)I .

Intuitively, $i is used to denote the i-th component
of a tuple 1. We observe that “ordinary” DL roles can
be modeled by binary relations, and inverse roles are
expressed simply by specifying components in the ap-
propriate order. Negated relations essentially are able
to capture difference of relations, since in the semantics
the extension of ¬R is obtained as the difference between
the union of the extensions of all atomic relations of the
same certain arity as R and the extension of R.

1$i/n makes the arity of the tuple explicit.

A DLR knowledge base is constituted by a finite set
of inclusion assertions of the form

R1 ⊑ R2

C1 ⊑ C2

where R1 and R2 are of the same arity. We give also
the semantics of assertions in terms of fol(·), by deriving
the corresponding first order closed formulae:

fol(R1 ⊑ R2) = ∀~x.fol(R1)(~x) ⊃ fol(R2)(~x)

fol(C1 ⊑ C2) = ∀x.fol(C1)(x) ⊃ fol(C2)(x)

The first order translation fol(K) of a knowledge base
K is the conjunction of the formulae obtained by trans-
lating the assertions of K. A model I of K is a first order
interpretation that satisfies fol(K).

A conjunctive query q for a DLR knowledge base K
is an open formula of the form

λ~x.∃~y.α(~x, ~y)

where α(~x, ~y) is a conjunction of atomic formulae whose
predicates are atomic relations and concepts of K, having
~x, ~y as arguments. The arity of the conjunctive query is
equal to the number of variables of ~x.

We observe that, since assertions on both relations
and concepts can be expressed in K, every predicate
used in the conjunctive query can actually denote any
complex relation or concept expressible in DLR. This
distinguishes our approach with respect to [8, 9], where
relations appearing in queries are not part of the knowl-
edge base.

Given two conjunctive queries (of the same arity n)
q1 and q2 for K, we say that q1 is contained in q2 wrt to
K, if

fol(K) |= ∀~x.q1(~x) ⊃ q2(~x).

3 Deciding Conjunctive Query

Containment

The decision problem we address is that of deciding
whether a conjunctive query q1 is contained in a con-
junctive query q2 wrt a DLR knowledge base K. Let
q1 = λ~x.∃~y.α(~x, ~y) and q2 = λ~x.∃~z.β(~x,~z) be two
conjunctive queries for K. Then q1 is contained in q2,

i.e. fol(K) |= ∀~x.(∃~y.α(~x, ~y) ⊃ ∃~z.β(~x,~z)), iff fol(K) ∧
∃~x.∃~y.α(~x, ~y) ∧ ¬∃~z.β(~x,~z) is unsatisfiable, iff

fol(K) ∧ α(~a, ~b) ∧ ¬∃~z.β(~a,~z) (1)

is unsatisfiable, where ~a, ~b are distinct constants.
We develop an algorithm for deciding conjunctive

query containment which is based on a reduction to un-
satisfiability2 of a concept C ′ in a knowledge base K′

expressed in the EXPTIME-decidable DL CIQ [7].
We encode the three parts of formula (1) in K′ =

K′
K ∪ K′

α ∪ K′
β ∪ K′

aux.

Encoding of K
K′

K is the translation of the DLR knowledge base K into
a CIQ knowledge base. Let us define a mapping σ(·) as
follows:

σ(P) = AP

σ($i/n : C) = ⊤n ⊓ ∃fi.σ(C)

σ(¬R) = ⊤n ⊓ ¬σ(R)

σ(R1 ⊓ R2) = σ(R1) ⊓ σ(R2)

σ(A) = A

σ(¬C) = ⊤1 ⊓ ¬σ(C)

σ(C1 ⊓ C2) = σ(C1) ⊓ σ(C2)

σ(∀R1[$i].R2) = ∀f−
i .¬σ(R1) ⊔ σ(R2)

σ(∃≥kR1[$i].R2) = ∃≥kf−
i .σ(R1) ⊓ σ(R2)

σ(C1 ⊑ C2) = σ(C1) ⊑ σ(C2)

σ(R1 ⊑ R2) = σ(R1) ⊑ σ(R2)

where AP, A, ⊤1, . . . ,⊤nmax
are newly introduced

atomic concepts and f1, . . . , fnmax
are newly introduced

atomic roles. K′
K contains the mapping σ(·) of all asser-

tions in K and the following assertions (⊤ is interpreted
as the whole domain):

⊤ ⊑ ⊤1 ⊔ · · · ⊔ ⊤nmax

⊤ ⊑ ¬∃≥2fi.⊤ for all i s.t. 1 ≤ i ≤ nmax

∀fi.⊥ ⊑ ∀fi+1.⊥ for all i s.t. 1 ≤ i < nmax

⊤n ≡ ∃f1.⊤1 ⊓ · · · ⊓ ∃fn.⊤1 ⊓ ∀fn+1.⊥
for each n = arity(P) for some P

AP ⊑ ⊤n for each P of arity n

A ⊑ ⊤1 for each concept name A in K

The size of K′
K is polynomial in the size of K.

Intuitively, K′
K is based on the reification of n-ary re-

lations, i.e tuples are represented by individuals having
one functional link fi for each component. The correct-
ness of this technique is due to the inability in CIQ of
expressing that two chains of links meet the same indi-
vidual, thus disallowing the possibility of creating two
individuals representing the same tuple [5].

2A concept is satisfiable in a knowledge base K if K admits
a model in which the concept has a nonempty extension.

Encoding of α(~a, ~b)

K′
α encodes α(~a, ~b), which is of the form

P1(~cP1
) ∧ · · · ∧ Pp(~cPp

) ∧ A1(cA1
) ∧ · · · ∧ Aa(cAa

).

In K′
α we make use of special concepts, called sk-

concepts, for representing the constants in α(~a, ~b) (the
properties of sk-concepts are specified by K′

aux – see
later). More specifically, we introduce one sk-concept

c for each constant c in α(~a, ~b), and one sk-concept ~c for

each P(~c) in α(~a, ~b).

For each P(~c) in α(~a, ~b) we include in K′
α

~c ⊑ AP

and for each A(c) in α(~a, ~b) we include

c ⊑ A.

For each ~c = c1, . . . , cn we include

~c ≡ ∃f1.c1 ⊓ · · · ⊓ ∃fn.cn ⊓ ∀fn+1.⊥

and for each ci we include

ci ⊑ ¬∃≥2f−
i .~c.

The size of K′
α is polynomial in the size of q1.

Intuitively, K′
α is very close to a “naive encoding” of

an ABox as a TBox. In principle, we build an ABox cor-

responding to α(~a, ~b) and then we encode it as a TBox
introducing the sk-concepts representing objects. The
encoding is that of [7], except that: (i) we allow two ob-
jects in the ABox to denote the same individual; (ii) we
force objects representing tuples to be completely deter-
mined by the objects representing their components.

Encoding of ¬∃~z.β(~a,~z)
We call parameters all ai and zj appearing in β(~a,~z).
K′

β encodes ¬∃~z.β(~a,~z) by making use of the so called
tuple-graph, which is a directed graph having:

• One node for each parameter v and one node for
each ~v such that P(~v) appears in ¬∃~z.β(~a,~z).
Each node corresponding to v is labeled by v itself
and all A such that A(v) appears in ¬∃~z.β(~a,~z).
Similarly, each node corresponding to ~v is la-
beled by ~v and all P such that P(~v) appears in
¬∃~z.β(~a,~z).

• For each node labeled by ~v = v1, . . . , vn, one
edge labeled by i to the node labeled by vi, for
i ∈ {1, . . . , n}.

In general the tuple-graph may be composed of m ≥ 1
connected components. For the i-th connected compo-
nent we build a concept expression δi(~z) by starting from
a node corresponding to a parameter and visiting the
corresponding component as follows (let u be the cur-
rent node in the visit):

• If u corresponds to a parameter v, then construct
the concept as the conjunction of: (i) v, if u is either
ai, or a zj appearing in a cycle in the tuple-graph,
⊤1 otherwise; (ii) every concept labeling the node

u; (iii) one concept ∃f−
i .C for each non-marked

edge labeled by i from a node ~v to v, where C
is the concept resulting by marking the edge and
visiting the node corresponding to ~v.

• If u corresponds to a tuple ~v = v1, . . . , vn, let
e1, . . . , eh be the non-marked edges from u to the
nodes corresponding to the components vi. We
mark e1, . . . , eh and construct the concept as the
conjunction of: (i) every relation labeling the node
u; (ii) one concept ∃fi.C for each edge ej , where i
is the label of ej , and C is the concept resulting by
visiting the node corresponding to vi.

• If u has already been visited then it must corre-
spond to a parameter v and the resulting concept
is v.

Observe, that δi(~z) contains newly introduced atomic
concepts zj , one for each variable occurring in a cycle in
the tuple-graph.

K′
β consists of all assertions of the form (U abbreviates

(f1 ⊔ · · · ⊔ fnmax
⊔ f−

1 ⊔ · · · ⊔ f−
nmax

)∗)

⊤ ⊑ ¬(∃U .δ1(~z) ⊓ · · · ⊓ ∃U .δm(~z))

obtained by replacing each zj occurring in the assertion
above by each sk-concept corresponding to a constant in

α(~a, ~b). Observe that the number of assertions in Kβ is

O(ℓℓ1
2), where ℓ1 is the number of variables in q1 and ℓ2

is the number of variables zj occurring in a cycle in the
tuple-graph.

The special attention that K′
β needs is due to the fact

that the variables ~z in ¬∃~z.β(~a,~z) are universally quan-
tified. Conceptually we need to distinguish between two
cases, depending on whether there is a cycle in the tuple-
graph for q2. The tuple-graph for a query reflects the
dependency between variables and tuples resulting from
the appearance of the variables in the atoms:

• If there is no cycle in the tuple-graph then we can
directly build a concept expressing the constraints
in ¬∃~z.β(~a,~z).

• If there is a cycle then, due to the fundamental
inability of expressing in DLs that two chains of
links meet the same individual, no concept can di-
rectly express the constraints in ¬∃~z.β(~a,~z). For
the same reason, however, the only cycles that can
be enforced in the models are those formed by the

objects corresponding to the constants ~a, ~b. There-
fore it suffices to build a concept for each possible
instantiation for the variables zi, appearing in some
cycle of the tuple-graph, with the objects corre-

sponding to ~a, ~b.

Encoding of objects

K′
aux enforces that for each sk-concept representing a

constant in α(~a, ~b), a specific instance representative of
the constant can be singled out. This is done, similarly
to [7] by one assertion of the form

(~c ⊓ C) ⊑ ∀U .(¬~c ⊔ C)

(c ⊓ C) ⊑ ∀U .(¬c ⊔ C)

for each sk-concept ~c, c in K′
α, and each concept C satis-

fying the conditions specified in [7]. The number of such
assertions is polynomial in the size of K′

K ∪ K′
α ∪ K′

β .

The concept C ′

Let s1, . . . , st be all sk-concepts. Then

C ′ = ∃create.s1 ⊓ · · · ⊓ ∃create.st

where create is a newly introduced atomic role [7]. Thus
C ′ expresses the existence of an instance for each of the
sk-concepts.

Theorem 1 fol(K) ∧ α(~a, ~b) ∧ ¬∃~z.β(~a,~z) is unsatisfi-
able iff C ′ is unsatisfiable in K′.

Since satisfiability of a concept in a CIQ knowledge
base is an EXPTIME complete problem [6], we get the
following upper bound for conjunctive query contain-
ment.

Theorem 2 Deciding whether a conjunctive query q1 is
contained in a conjunctive query q2 wrt to a DLR knowl-

edge base K can be done in time O(2p(|K|·ℓ
ℓ1
2

)), where |K|
is the size of K, ℓ1 is the number of variables in q1, and
ℓ2 is the number of existentially quantified variables in
q2 that appear in a cycle of the tuple-graph for q2.

4 Discussion

The DL DLR has been designed with the primary goal
of giving n-ary relations the status of first-order citizen
in the language. Looking at the constructs of DLR,
one realizes that the typical way of “traversing” roles in
DLs by ∃ and ∀ is extended in order to “traverse” n-ary
relations. The extension is achieved through the possi-
bility of denoting the components of an n-ary relation
(by means of $i).

Our logic allows for inclusion assertions not only on
concepts, but also on relations. Relations in turn can
be either atomic or complex. This is a distinguishing
feature of our approach compared to any other DL we
know of. We believe that the possibility of expressing
general inclusion assertions is crucial in applications such
as data integration. For example, certain forms of inter-
schema assertions [4] can be expressed only by means of
inclusion assertions on complex relations.

As we said in the introduction, DLR is able to capture
a great variety of data models and knowledge represen-
tation formalisms. For example, from the language of
DLR one obtains:

• the relational model, by considering only atomic
relations and atomic concepts;

• the entity relationship model in a straightforward
way [3];

• an object-oriented data model, by restricting the
use of existential and universal quantifications in
concept expressions, by restricting the attention to
binary relations, and by eliminating negation and
disjunction;

• a “more traditional” DL, by restricting the atten-
tion to binary relations.

The problem of conjunctive query containment with
respect to a DL knowledge base was also addressed in the
setting of CARIN [9]. Our proposal extends that work in
two main aspects. The most obvious difference is that as-
sertions on n-ary relations are allowed in the knowledge
base, as discussed above. Additionally, DLR enables
to specify the traversal of relations in arbitrary order,
in particular to specify the inverse of binary relations.
Thus, also restricting DLR to only binary relations, we
get a DL which is strictly more expressive than the DL
ALCNR used in CARIN. Observe that the possibility of
expressing inverse roles and number restrictions causes
our logic to lose the finite model property, making ap-
proaches to reasoning based on model construction, such
as constraint systems, not directly applicable.

The result presented in this paper can be extended to
even more expressive DLs. Indeed, our method for query
containment still works if we add an ABox to the knowl-
edge base, and if we consider queries with constants. We
are presently working on extending the query contain-
ment algorithm to the language CVL [3], which includes
records, sets, and non first order features such as transi-
tive closure and well foundedness.

Acknowledgments

This research was partially supported by Esprit LTR
Project No. 22469 - Foundations of Data Warehouse
Quality (DWQ).

References

[1] Catriel Beeri, Alon Y. Levy, and Marie-Christine
Rousset. Rewriting queries using views in descrip-
tion logics. In Proc. of the 16th ACM SIGACT
SIGMOD SIGART Sym. on Principles of Database
Systems (PODS-97), pages 99–108, 1997.

[2] Martin Buchheit, Francesco M. Donini, Werner
Nutt, and Andrea Schaerf. Terminological systems
revisited: Terminology = schema + views. In Proc.
of the 12th Nat. Conf. on Artificial Intelligence
(AAAI-94), pages 199–204, Seattle, USA, 1994.

[3] Diego Calvanese, Giuseppe De Giacomo, and Mau-
rizio Lenzerini. Structured objects: Modeling and
reasoning. In Proc. of the 4th Int. Conf. on Deduc-
tive and Object-Oriented Databases (DOOD-95),
number 1013 in Lecture Notes in Computer Science,
pages 229–246. Springer-Verlag, 1995.

[4] Tiziana Catarci and Maurizio Lenzerini. Represent-
ing and using interschema knowledge in cooperative
information systems. Journal of Intelligent and Co-
operative Information Systems, 2(4):375–398, 1993.

[5] Giuseppe De Giacomo and Maurizio Lenzerini. De-
scription logics with inverse roles, functional restric-
tions, and n-ary relations. In Proc. of the 4th Euro-
pean Workshop on Logics in Artificial Intelligence

(JELIA-94), volume 838 of Lecture Notes in Arti-
ficial Intelligence, pages 332–346. Springer-Verlag,
1994.

[6] Giuseppe De Giacomo and Maurizio Lenzerini.
What’s in an aggregate: Foundations for descrip-
tion logics with tuples and sets. In Proc. of the 14th
Int. Joint Conf. on Artificial Intelligence (IJCAI-
95), pages 801–807, 1995.

[7] Giuseppe De Giacomo and Maurizio Lenzerini.
TBox and ABox reasoning in expressive description
logics. In Luigia C. Aiello, John Doyle, and Stu-
art C. Shapiro, editors, Proc. of the 5th Int. Conf.
on the Principles of Knowledge Representation and
Reasoning (KR-96), pages 316–327. Morgan Kauf-
mann, Los Altos, 1996.

[8] Francesco M. Donini, Maurizio Lenzerini, Daniele
Nardi, and Andrea Schaerf. A hybrid system inte-
grating Datalog and concept languages. In Proc.
of the 2nd Conf. of the Italian Association for
Artificial Intelligence (AI*IA-91), number 549 in
Lecture Notes in Artificial Intelligence. Springer-
Verlag, 1991. An extended version appeared also
in the Working Notes of the AAAI Fall Symposium
“Principles of Hybrid Reasoning”.

[9] Alon Y. Levy and Marie-Christine Rousset.
CARIN: A representation language combining Horn
rules and description logics. In Proc. of the 12th Eu-
ropean Conf. on Artificial Intelligence (ECAI-96),
pages 323–327, 1996.

[10] Alon Y. Levy, Divesh Srivastava, and Thomas Kirk.
Data model and query evaluation in global infor-
mation systems. Journal of Intelligent Information
Systems, 5:121–143, 1995.

[11] Jeffrey D. Ullman. Information integration us-
ing logical views. In Proc. of the 6th Int. Conf.
on Database Theory (ICDT-97), Lecture Notes in
Computer Science, pages 19–40. Springer-Verlag,
1997.

