
Journal of Intelligent Information Systems� � ���� ����	

c� ���	 Kluwer Academic Publishers� Boston� Manufactured in The Netherlands�

Intensional Query Answering by

Partial Evaluation

GIUSEPPE DE GIACOMO degiacomo�dis�uniroma��it

Dipartimento di Informatica e Sistemistica� Universit�a di Roma �La Sapienza�� Via Salaria ����
���	
 Roma� Italy

Editor�

Abstract� Intensional query answering aims at providing a response to a query addressed to
a knowledge base by making use of the intensional knowledge as opposed to extensional� Such
a response is an abstract description of the conventional answer that can be of interest in many
situations� for example it may increase the cooperativeness of the system� or it may replace the
conventional answer in case access to the extensional part of the knowledge base is costly as for
Mobile Systems� In this paper we present a general framework to generate intensional answers
in knowledge bases adhering to the logic programming paradigm� Such a framework is based
on a program transformation technique� namely Partial Evaluation� and allows for generating
complete and procedurally complete �wrt SLDNF
resolution
 sets of intensional answers� treating
both recursion and negation conveniently�

Keywords� Knowledge bases� intensional query answering� logic programs� partial evaluation

�� Introduction

Intensional answers are responses that provide an abstract description of the con�
ventional answer to a query addressed to a knowledge base� They are expected to
�provide compact and intuitive characterizations of sets of facts� making it explicit
why a speci�c set of facts answers the query instead of just which facts belong
to the answer� �	
�� Formally� intensional answers are logical formulas express�
ing su�cient conditions for objects in order for them to belong to the conven�
tional answer� Various research studies have investigated this kind of answers� e�g�
��
� ��
�� �	� �
� 	
� 	
� 	�� �	� �� ��� 		� 	�� ��� ��� ���
�� 	�� �
�� Most of such
studies are concerned with increasing the cooperativeness of the system� however it
should be mentioned that intensional answers can also be exploited as an alterna�
tive way to answer queries when the access to the extensional knowledge �typically
a database� is costly� as in the case of Mobile Systems �
���

In this paper we assume knowledge bases to be� essentially� logic programs whose
proof procedure is the SLDNF�resolution� as in �
��� and we propose a method for
intensional query answering based on a program transformation technique� namely
Partial Evaluation �PE�� PE for logic programs in the SLDNF�resolution framework
is de�ned in �
��� Although PE is usually considered an optimization technique� it
turns out to be also very e�ective in generating intensional answers�

�

We show that given a program P and a query Q�X�� a new program P � �
P � fq�X� � Q�X�g �where q is a predicate symbol not occurring in P � can be
de�ned such that for every PE of q�X� in P � there corresponds a complete set of
intensional answers to Q�X� in P � Furthermore� each set SIA of intensional answers
computed in this way is procedurally equivalent to the original query Q�X�� i�e� the
conventional answers that can be computed from SIA in P are exactly those that
can be computed from Q�X� in P �

Having pointed out this correspondence we have a tool to produce intensional
answers for a very general class of queries and programs� i�e� for every query in
every program intended to run under SLDNF�resolution� Therefore� in principle�
we can deal with function symbols� recursion and negation� something usually not
permitted by other approaches to intensional query answering�

Speci�cally� we suggest a simple but quite e�ective way to return intensional
answers when recursion is involved� Notice that often using PE we obtain recursion�
free intensional answers for a query involving recursive predicate symbols� In case
we cannot remove a recursive predicate symbol p from an intensional answer� then
we return� together with the intensional answer� an auxiliary de�nition for p� This
is a specialized de�nition that is general enough to cover the meaning of p in the
context of the intensional answers in which it appears� Note that� if a recursive
predicate symbol p� other than p shows up in the auxiliary de�nition for p� then we
return an auxiliary de�nition for p� as well�

The pair � SIA� AD �� where SIA is a set of intensional answers to a query Q�X�
and AD is a set of auxiliary de�nitions for SIA� can be interpreted as the implicit
representation of the in�nite set of all the intensional answers to Q�X�� which can
be inferred from SIA� using the axioms corresponding to AD�

With regard to negation� we remind the reader that if a negative literal is found
at a certain point of the PE process� then either it is completely evaluated� or the
atom in the negative literal is partially evaluated and the de�nition obtained is
added to the PE returned �e�g� see �	���

We could follow a similar approach in the generation of intensional answers� re�
turning auxiliary de�nitions for the atoms in the negative literals that cannot be
evaluated� Yet� this would be quite unsatisfactory� because we would lose the �in�
teraction� between the positive part and the negative part of an intensional answer�
To avoid this problem� we propose making some additional logical transformations�
Roughly� given such an auxiliary de�nition� we consider its completion� negate both
sides of the equivalence� perform some logical manipulations on the right side� and
replace the corresponding negative literals in the intensional answers by the proper
instances of the right part of the equivalence obtained�

The rest of the paper is organized as follows� After recalling some basic notions
on logic programming� Section
 introduces intensional answers� Section 	 intro�
duces partial evaluation� Section � presents the basic techniques for intensional
query answering by partial evaluation� Our treatment of recursion is described in
Section �� while the one for negation is described in Section �� Conclusions and
further work end the paper�

�

�� Preliminaries

In this section we introduce some basic de�nitions� the kind of knowledge bases
considered� and intensional answers� We assume the reader�s familiarity with the
standard theoretical results of logic programming �cf� �
�����

De�nition� A statement is a �rst order formula of the form

A�W

where A is an atom and W is a �rst order formula� A is the head of the statement
and W the body of the statement� The body of a statement may be empty� in this
case the statement is a fact� Statements whose body is a conjunction of literals are
called program clauses or just clauses�

De�nition� A program is a �nite set of statements� A program whose statements
are program clauses is called a normal program�

De�nition� The de�nition of a predicate symbol p in a program P is the set of all
statements in P which have p in their head�

De�nition� A goal is a �rst order formula of the form

�W

where W is a �rst order formula� Any free variable in W is assumed universally
quanti�ed in front of the goal� A goal� W such that W is conjunction of literals
is called a normal goal�

De�nition� Let P be a program� The dependency graph of P is a directed graph
in which the nodes are the predicate symbols in P and there is a directed arc from
p to q if there exists a statement s in P in which p is the predicate symbol in the
head of s and q is a predicate symbol occurring in the body of s�

De�nition� Let P be a program and W a �rst order formula� We say that W
depends upon a predicate symbol p in P if there is a path from a predicate symbol
in W to p in the dependency graph for P �

The declarative semantics we adopt in this paper is standard Clark�s completion�
As usual� we denote as comp�P � the completion of a program P � which is the �rst
order theory corresponding to the program P � formed by the collection of completed
de�nitions of the predicate symbol in P together with associated Clark�s equality
theory� SLDNF�resolution is assumed as procedural semantics�

Any program P can be transformed �applying Lloyd�Topor transformations� in a
normal program PN called the normal form of P such that comp�PN � is a conser�
vative extension of comp�P ��

�

To run a goal �W in a program P � �rst a predicate symbol ans� not appearing
in P or in W � is de�ned as

ans�X��W

where X are the free variables of W � and then the goal � ans�X� is run in the
normal program P ans

N � that is the normal form of P � fans�X��Wg� Keeping in
mind such considerations� when we talk about SLDNF�resolution for non�normal
programs we refer to the corresponding normal forms�

De�nition� Let P be a program and�W a goal� A correct answer for comp�P ��
f� Wg is a substitution � for the free variables in W such that comp�P � implies
the universal closure of W��

comp�P � j� �W��

De�nition� Let P be a program and G a goal� A computed answer � for P �fGg
is the substitution obtained by restricting the composition �� � � � �n to variables of
G� where �� � � � �n is the sequence of substitutions used in an SLDNF�refutation of
P � fGg�

Next de�nition formalizes the concepts of procedural equivalence for programs wrt
goals�

De�nition� Let P and P � be two programs� G and G� two goals with the same
free variables� We say that P �fGg and P ��fG�g are procedurally equivalent if the
following holds�

�� P � fGg has an SLDNF�refutation with computed answer � i� P � � fG�g does�

� P � fGg has a �nitely failed SLDNF�tree i� P � � fG�g does�

Intuitively� P � fGg and P � � fG�g are procedurally equivalent i� every time an
answer �possibly negative� is obtained for one of them� the same answer is obtained
for the other one as well�

Now we introduce a de�nition needed throughout the paper�

De�nition� Let S be a set of de�nitions of predicate symbols� We denote by

comp��S�

the set of the corresponding completed de�nitions together with Clark�s equality
theory�

Given a program P � comp��P � is the subset of comp�P � formed by the completed
de�nitions of the predicate symbols explicitly de�ned in P �i�e� the predicate symbols
appearing in the head of a statement of P �� To further clarify the concept let us
look at an example�

�

Example� Consider the following program P �

p�x�� r�x� � s�x�
r�a��

comp�P � is

�x�p�x�� r�x� � s�x��
�x�r�x�� �x � a��
�x��s�x��

while comp��P � is

�x�p�x�� r�x� � s�x��
�x�r�x�� �x � a���

We consider a knowledge base KB essentially constituted by a program divided
in two strata IDB and EDB�

� IDB is a set of predicate de�nitions that may depend upon predicate symbols
de�ned in EDB� We call IDB the intensional program of the knowledge base
KB�

� EDB is a set of predicate de�nitions which do not depend upon predicate sym�
bols de�ned in IDB� We call EDB the extensional program of the knowledge
base KB�

Notice that EDB cannot contain a predicate symbol de�ned in IDB� neither in
the head nor the body of its statements� The notions of IDB and EDB introduced
here are a generalization of the usual notions of intensional database and extensional
database in the deductive database context� in which IDB is a set of statements
and EDB a set of facts � indeed� wrt the intensional program IDB� the extensional
program EDB can be considered as speci�ed by a �possibly in�nite� set of facts�
We say that an intensional program IDB is a normal intensional program if it is

normal program� In the same way we say that an extensional program EDB is a
normal extensional program if it is a normal program�
A query to a knowledge base can be any �rst order formula�� Let Q�X� be a

query whose free variables are X� A tuple of ground terms T is an extensional
answer for Q�X� in a program P i� the substitution � � fX�Tg a correct answer
for comp�P � � f� Q�X�g�
We now turn our attention to intensional answers� We adopt the same de�nitions

as in ���� �	
�� �	��� etc�� adapting them to the SLDNF�resolution framework� Let
IDB be the intensional program of a knowledge base KB� and Q�X� a query whose
free variables are X�

�

De�nition� A �rst order formula Ai�X�� whose free variables are X� is an inten�
sional answer for Q�X� �wrt IDB� if

comp��IDB� j� �X�Ai�X� � Q�X���

Obviously not all the intensional answers are interesting� e�g� we can drop in�
tensional answers which are trivial variants of the query� those inconsistent wrt
comp��IDB�� and those subsumed by others�

De�nition� A set SIA of intensional answers for Q�X� �wrt IDB� is complete if

comp��IDB� j� �X��
�

Ai�SIA

Ai�X�� � Q�X���

Since� SLDNF�resolution is sound but not complete in general� it makes sense to
introduce the notion of a set of intensional answers� complete from the procedural
point of view�

De�nition� A set SIA of intensional answers for Q�X� �wrt IDB� is procedurally
complete if for every possible extensional program EDB�

IDB �EDB � f�
�

Ai�SIA

Ai�X�g and IDB �EDB � f� Q�X�g

are procedurally equivalent�

Let us show a simple example of intensional query answering�

Example� Consider the following fragment� concerning scienti�c publications and
the bonus they get� of the intensional program IDB of a research institution knowl�
edge base�

publication bonus�x� ����
conference publication�x� y�

publication bonus�x� �����
conference publication�x� y� �major conference�y�

publication bonus�x� �����
journal publication�x� y�

major conference�x� � sponsor�x�ACM �
major conference�x� � sponsor�x� IEEE�
major conference�x� � accepted rate�x� y� � �y 	 ��
�
� � �

�

Suppose we want the answer to the query �Which are the papers that get a
publication�bonus greater or equal to ������ that is�

�
y�publication bonus�x� y� � �y � ������

A �complete and procedurally complete� set of intensional answers can be�

f
z�conference publication�x� z� � sponsor�z� ACM ���

z�conference publication�x� z� � sponsor�z� IEEE���

z�conference publication�x� z� � accepted rate�x� z� � �z 	 ��
���

z�journal publication�x� z��g�

That is� �Papers published in an ACM conference� papers published in an IEEE
conference� papers published in a conference whose accepted rate is less or equal to
��
� and papers published in a journal��

Beside IDB and EDB� a knowledge base KB may contain additional components
that could be exploited in generating intensional answers� In particular KB may
contain a set IC of integrity constraints which are closed �rst order formulas such
that�

comp�IDB �EDB� j� IC�

Note that the integrity constraints IC can be considered as part of the intensional
knowledge of KB� thus we may de�ne intensional answers Ai�X�� as

comp��IDB� � IC j� �X�Ai�X�� Q�X��

and complete sets of intensional answers SIA� as

comp��IDB� � IC j� �X��
�

Ai�SIA

Ai�X��� Q�X���

However arguments have been exhibited �e�g� see �	��� showing that integrity con�
straints are often inadequate for inferring additional intensional answers� and that
they are better suited for controlling the inference process� In the present paper
we leave open the possibility of exploiting integrity constraints for controlling the
generation of intensional answers� although we do not investigate the issue further�

�� Partial evaluation

Partial evaluation was introduced as an optimization technique� �rst in functional
programming� and then in logic programming �cf� �
���� It consists in deriving
a �custom� version of a program� wrt some known input data� Usually� partial
evaluation is used to increase the e�ciency of a program� computing� a priori� as
much as possible of the program wrt a certain class of input�

�

In logic programming terms� partial evaluation� can be described as follows�
Given a program P and a goal G� partial evaluation produces a new program P ��
which is �customized� for the goal G� Obviously� G should have the same answers
wrt P and P ��
Partial evaluation relies on the following transformations of the program�

� unfolding �in�line substitution� of procedure calls�

� specializing with forward and backward propagation of data structure�

The two transformations above merge together in the logic programming frame�
work� The �rst transformation corresponds to unfolding of a literal in a derivation�
and the second� i�e� the propagation of partially instantiated data structures� is
automatically supported by uni�cation during the unfolding process� The basic
technique to obtain a partial evaluation P � of a logic program P is to construct
�partial� search trees for P and suitably chosen atoms as goals� and then extract
P � from the de�nitions associated with the leaves of these trees�
The formal notions and results described here are from �
��� We refer to normal

programs and normal goals only� It is convenient to use slightly more general
de�nitions of SLDNF�derivation and SLDNF�tree than those given in �
��� In �
���
an SLDNF�derivation is either in�nite� successful or failed� We also allow it to be
incomplete� in the sense that at any step we are allowed simply not to select any
literal� and terminate the derivation� Likewise� in an SLDNF�tree we may neglect
to unfold a goal�

De�nition� A resultant is a �rst order formula of the form

Q� � Q�

where Qi �i � ��
�� is either absent or a conjunction of literals� Any variables in
Q� or Q� are assumed to be universally quanti�ed at the front of the resultant�

In general a resultant is not a clause because Q� stands for a conjunction and not
a disjunction of literals�

De�nition� Let P be a normal program� G a normal goal � Q� and G� �
G�G�� � � � � Gn an SLDNF�derivation for P � fGg� where the sequence of substitu�
tions is ��� � � � � �n� and Gn is � Qn� Let � be the restriction of ��� � � � � �n to the
variables in G� Then we say the derivation has length n with computed answer �
and resultant Q� � Qn� �

Now� we state the de�nition of partial evaluation �PE for short�� Note that the
de�nition refers to three kinds of PE� the PE of an atom in a program� of a set of
atoms in a program� and of a program wrt a set of atoms�

De�nition� Let P be a normal program� A an atom� and T a �not necessarily
complete� SLDNF�tree for P � f� Ag� Let G�� � � � � Gr be a set of �non�root�

�

goals in T such that each non�failed branch of T contains exactly one of them� Let
Ri �i � �� � � � � r� be the resultant of the derivation from� A down to Gi associated
with the branch leading to Gi�

� The set of resultants � � fR�� � � � � Rrg is a PE of A in P � These resultants
have the following form�

Ri � A�i � Qi �i � �� � � � � r��

where we have assumed Gi �� Qi

� Let A � fA�� � � � � Asg be a �nite set of atoms� and �i �i � �� � � � � s� a PE of Ai
in P � Then � � �� � � � �� �s is a PE of A in P �

� Let P � be the normal program resulting from P when the de�nitions therein of
the predicate symbols in A are replaced by a PE of A in P � Then P � is a PE
of P wrt A�

Intuitively� to obtain a PE of an atom A in P we consider a �not necessarily
complete� SLDNF�tree T for P �f� Ag� and choose a cut in T � The PE is de�ned
as the resultants of the derivations from the original goal � A down to the goals
in the cut that do not fail in T �
Note that given a �not necessarily complete� SLDNF�tree T and a cut C of T � we

can always de�ne an incomplete SLDNF�tree T �� such that the PE formed by the
resultants of the derivations in T � from the original goal to the non�failing leaves�
is identical to the PE formed by the resultants of the derivations in T from the
original goal to the non�failing goals in the cut C��

Thus� without losing generality� we can obtain PE as the resultants of the deriva�
tions from the original goal to the non�failing leaves of an incomplete SLDNF�tree�
In such a way� the choice of the PE depends entirely on the choice of the SLDNF�
tree� which� in turn� depends on the selection rule �computation rule�� used to
expand goals in the nodes of the SLDNF�tree�
The next theorem is the main result on the declarative semantics� First we report

the de�nition of the closedness condition to be used in the theorem�

De�nition� Let S be a set of �rst order formulas and A a �nite set of atoms� We
say S is A�closed if each atom in S containing a predicate symbol occurring in A
is an instance of an atom in A�

Intuitively� the reason we need this condition is that if we �specialize� the de��
nition of a predicate symbol p wrt an atom A containing p� then we cannot expect
to be able to correctly answer calls to p that are not instances of A�

Theorem � �Lloyd�Shepherdson� Let P be a normal program�W a closed �rst
order formula� A a �nite set of atoms� and P � a PE of P wrt A such that P ��fWg
is A�closed� If W is a logical consequence of comp�P ��� then W is also a logical
consequence of comp�P �� i�e�

	

comp�P �� j�W � comp�P � j�W�

Notice that� the converse of this theorem does not hold�

For the procedural semantics we have a theorem stating the procedural equiva�
lence of the original program and its partial evaluation� under the closedness con�
dition and the additional condition of independence�

De�nition� Let A be a �nite set of atoms� We say A is independent if no pair of
atoms in A have a common instance�

The meaning of the independence condition can be understood as follows� Let p
by the predicate symbol appearing in an atom Ai
 A� A PE of Ai in a program
P contributes to the corresponding PE of P wrt A with a part of the de�nition of
p� The independence condition A imposes that such contributes be disjoint� that
is the heads of the clauses coming from the PE of two di�erent atoms cannot have
common instances�

Theorem � �Lloyd�Shepherdson� Let P be a normal program� G a normal
goal� A a �nite� independent set of atoms� and P � a PE of P wrt A such that
P � � fGg is A�closed� Then P � fGg and P � � fGg are procedurally equivalent�

In the theorem above� the closedness condition can be replaced by the coveredness
condition given below�

De�nition� Let P be a normal program and G a normal goal A a �nite set of
atoms� P � a PE of P wrt A� and P � the subprogram of P � consisting of the de�ni�
tions of the predicate symbols in P � upon which G depends� We say that P ��fGg
is A�covered if P � � fGg is A�closed�

In the coveredness condition we only force the de�nitions of the predicate symbols
that are actually used in the derivation from the goal G in the partially evaluated
program P �� to be as �general� as those in the original program�
We remark that the PE of a program wrt a goal is not directly de�ned� Anyway�

there are procedures �e�g� �	�� that� given a program P and a goal G� compute a
set of atom A and a PE of the program P wrt A such that the original program
and the partially evaluated program are procedurally equivalent wrt the goal G�

�� Intensional answers by partial evaluation

In this section we set up the basic results on generating intensional answers by
means of partial evaluation�
Let us stress that the intensional program IDB of a knowledge base KB is an

�incomplete program�� i�e� a program for which some predicate symbol de�nitions
are missing� hence it should be considered more as a collection of predicate symbol

		

de�nitions than as a running program� It is evident that for IDB� the completion
comp�IDB� does not make sense �all predicate symbols de�ned in EDB would be
set to false�� while comp��IDB� does�
The partial evaluation theorems seen in the previous section are not directly useful

in dealing with intensional programs� Here� we state analogous theorems which are
suitable for such programs� First� we need the next de�nition �	��

De�nition� Let L be a set of predicate symbols� We say that a literal is L�
selectable if its predicate symbol is in L� We say that an SLDNF�tree is L�compatible
if the predicate symbol of each selected literal in the tree �including subsidiary
refutations and trees� is in L�

Let IDB be a normal intensional program of a knowledge base KB� LIDB the set
of predicate symbols de�ned in IDB� A a �nite set of LIDB�selectable atoms� and
IDB� a PE of IDB wrt A obtained from a LIDB�compatible SLDNF�tree� such
that IDB� is A�closed� The following two theorems hold�

Theorem � Let W be a �rst order formula which is A�closed� Then

comp��IDB�� j�W � comp��IDB� j� W�

Proof� First� IDB� and W being A�closed� by Theorem �� we have that for every
normal extensional program EDB� which is obviously A�closed�

comp�IDB� �EDB� j� W � comp�IDB �EDB� j� W�

Now� suppose the thesis was not true� that is

comp��IDB�� j�W �� comp��IDB� j� W�

Consider the extensional program EDB� such that EDB� � fA � A � the predi�
cate symbol in A is not de�ned in IDB� and an instance of A occurs in the body of
a program clause in IDBg� Since comp�IDB �EDB�� is identical to comp��IDB��
and comp�IDB� �EDB�� is identical to comp��IDB��� we would have that

comp�IDB� �EDB�� j� W �� comp�IDB �EDB�� j�W�

which is a contradiction�

Theorem � Let G be a normal goal which is A�closed� If A is independent� then
for every possible normal extensional program EDB of KB� IDB � EDB � fGg
and IDB� �EDB � fGg are procedurally equivalent�

Proof� From the de�nition of PE it is obvious that IDB� � EDB is a PE of
IDB �EDB wrt A� Since A is independent and IDB� �EDB � fGg is A�closed�
by Theorem
 the thesis follows�

	�

We are now ready to describe the �rst results on generating intensional answers
by using partial evaluation�

�� Let �W be a normal goal� We de�ne a new predicate symbol �i�e� a predicate
symbol not appearing in KB or W �� as

q�X��W

where X are the free variables occurring in W � and we add this new de�nition to
IDB� getting

IDBq � IDB � fq�X��Wg�

� Let LIDBq be the set of the predicate symbols de�ned in IDBq � We choose
a PE � of q�X� in IDBq obtained from an LIDBq �compatible SLDNF�tree for
IDBq � f� q�X�g� Let � be

q�X��� �W�

���
q�X��r �Wr

where �i � fXi�Tig� Xi are the variables in X instantiated by �i� and Ti are terms�

	� We rewrite the completed de�nition for q given by these resultants as follows�

�X�q�X� �
Y���X� � T�� �W�� � � � ��
Yr��Xr � Tr� �Wr�� ���

where Yi are the free variables in �Xi � Ti��Wi other than those inX� and Xi � Ti
is a loose notation for �x�i � t�i��� � ���xni � tni� �supposing Xi to be the sequence
x�i � � �xni��

�� We are returned the set constituted by the disjuncts in the above formula

Y���X� � T�� �W��
���

Yr��Xr � Tr� �Wr��

Each of these formulas can be regarded as intensional answers� Furthermore the
whole set of these formulas is a complete and procedurally complete set of intensional
answers� as the following theorems show�

Theorem 	 The formulas returned by the process above form a complete set of
intensional answers for the query W in the program P �

Proof� Let IDBq� be the PE of IDBq wrt A � fq�X�g obtained by substituting
the original de�nition for q with the PE � of q in IDBq at step
� The atom q�X�
is LIDBq �selectable� IDB

q� is A�closed� being q�X� the most general atom whose

	�

predicate is q� Hence� by Theorem 	 for every A�closed �rst order formula W we
have

comp��IDBq� � j�W � comp��IDBq � j� W�

In particular� indicating the disjuncts in the formula at step 	 as Ei� �i � � � � � r�
the formula �X�q�X� � E� � � � ��Er� is A�closed� and so

comp��IDBq � j� �X�q�X� � E� � � � ��Er��

By the axiom �X�q�X� �W � in comp��IDBq � we can write

comp��IDBq � j� �X�W � E� � � � ��Er��

Now� since the predicate symbol q does not appear in �X�W � E� � � � ��Er�� we
can drop the axiom ��q�X� �W � from comp�IDBq �� getting

comp��IDB� j� �X�W � E� � � � ��Er��

Obviously the following holds as well

comp��IDB� j� �X�W � Ei�� i � � � � � r�

Recalling the de�nitions of intensional answer and complete set of intensional an�
swers the thesis follows�

Theorem
 The set of intensional answers returned by the process above is pro�
cedurally complete�

Proof� We want to show that

IDB �EDB � f�Wg �
�

and

IDB �EDB � f�

r�

i	�

Yi��Xi � Ti� �Wi�g �	�

are procedurally equivalent� for any EDB�
First notice that �	� has to be transformed into normal form� Applying Lloyd�

Topor transformations we get

IDB �EDB � fans�X�� �Xi � Ti� �Wi� i � � � � � rg � f� ans�X�g ���

Assuming for the predicate symbol ��� the standard procedural meaning �uni��
able�� then ��� is procedurally equivalent to

IDB �EDB � fans�X��i �Wi� i � � � � � rg � f� ans�X�g ���

	�

where �i � fXi�Tig�
On the other hand �
� is procedurally equivalent to

IDBq �EDB � f� q�X�g �
�

because every SLDNF�derivation for � q�X� in IDBq � EDB has � W as node
at depth �� and q�X� �W is not used again in the derivation�
Let IDBq� be the PE of IDBq wrt A � fq�X�g which is obtained by substituting

the original de�nition for q with the PE � of q in IDBq at step
� A is independent
and q�X� is LIDBq �selectable� IDBq� is A�closed� being q�X� the most general
atom whose predicate is q� Hence� by Theorem �� �
� and

IDBq� �EDB � f� q�X�g ���

are procedurally equivalent�
Noting that ��� and ��� di�er only for the names of the predicate symbols q and

ans� combining the procedural equivalence above� the thesis follows�

Let us illustrate the method just presented with an example�

Example� Consider again the intensional program IDB on scienti�c publications
and the query �Which are the papers that get a publication�bonus greater or equal
to ������ of the previous example� We proceed as follows�

�� We de�ne a new predicate symbol q as

q�x�� publication bonus�x� y� � �y � �����

Let IDBq be IDB � fq�x�� publication bonus�x� y� � �y � ����g�

� We choose a PE � of q�x� in IDBq obtained from an LIDBq �compatible SLDNF�
tree� Let such a tree be the one in Figure �� and � the PE associated with the
non�failing leaves of such a tree� i�e�

q�x�� conference publication�x� z� � sponsor�z� ACM �
q�x�� conference publication�x� z� � sponsor�z� IEEE�
q�x�� conference publication�x� z� � accepted rate�x� z� � �z 	 ��
�
q�x�� journal publication�x� z��

	� We rewrite the completed de�nition of q in IDBq �

�x�q�x� �
z�conference publication�x� z� � sponsor�z� ACM �� �

z�conference publication�x� z� � sponsor�z� IEEE�� �

z�conference publication�x� z� � accepted rate�x� z� � �z 	 ��
�� �

z�journal publication�x� z����

�� We return the disjuncts in the right hand part the above formula� These form
a complete and procedurally complete set of intensional answers� precisely the one
previously seen�

	�

fy����g

fy����g

fy���g
�
�
�
�

�
�

�
�

�
��

�
�
�
�

�
�

�
�

�
��

X
X
X
X
X
X
X
X
X
XX

� q
x�

� pb
x� y� �
y � ����

� cp
x� z� �mc
z� �
��� � ����

� cp
x� z� �mc
z�

� cp
x� z� � s
z� IEEE�

� cp
x� z� �
�� � ����

fail

� cp
x� z� � s
z�ACM�

� jp
x� z� �
��� � ����

� jp
x� z�

� cp
x� z� � ar
z� z�� �
z� � ����

P
P
P
P
P
P
P
P
P
P
P

Figure �� The SLDNF
tree used for the partial evaluation�

We conclude the section making some remarks of the method presented� Observe
that� the process above is parametric wrt the choice of the PE � of q in IDBq at
step
�

The quality of the intensional answers returned strongly depends on the choice of
�� which in turn essentially depends on the selection rule for the related SLDNF�
tree� While we do not directly address such an issue in this paper� �nding criteria
from which to devise a �good� selection rule is one of the most crucial to doing
intensional query answering in practice� Suggestions for possible options can be
found in �	��� however more work has to be done in de�ning quality measures for
intensional answers�

The termination of the above process depends again on the selection rule to
be used in the generation of the PE �� Such a selection rule should build �nite
�incomplete� SLDNF�trees� Conditions on the selection rules� dealing with the
termination of the partial evaluation� can be found in the related literature �e�g�
���� 	�� 	�� ����

�� Recursion

The basic method presented in the previous section allows one to return intensional
answers for every query in every logic program� In particular� it does not rule out
recursion� Obviously� such intensional answers should be expressed in a language
that is known by the user�� If recursive predicate symbols �i�e� predicate symbols

	�

which appear in a loop in the dependency graph of a program� are allowed to ap�
pear in the intensional program of a knowledge base� then it might be impossible
to obtain a complete set of intensional answers in which no occurrences of recur�
sive predicate symbols� that are not known by the user� appear� In this case� no
satisfying set of intensional answers would be returned�
The next example shows the problem arising when recursion cannot be eliminated�

and hints on how it can be tackled�

Example� Consider the following fragment of the intensional program of a knowl�
edge base�

collateral line relative�x� y� � ancestor�x� z� � ancestor�y� z�

ancestor�x� y�� parent�x� y�
ancestor�x� y�� parent�x� z� � ancestor�z� y�
� � �

and suppose we want intensional answers for the query�

� collateral line relative�x� y�

Possible complete sets of intensional answers are

f
z�ancestor�x� z� � ancestor�y� z��g

or

f
z�parent�x� z� � ancestor�y� z���

z
z��parent�x� z�� � ancestor�z�� z� � ancestor�y� z��g

or� also

f
z�parent�x� z� � parent�y� z���

z
z��parent�x� z�� � ancestor�z�� z� � parent�y� z���

z
z��parent�x� z� � parent�y� z�� � ancestor�z�� z���

z
z�
z���parent�x� z�� � ancestor�z�� z� � parent�y� z��� � ancestor�z��� z��g

etc�
As we can see� we cannot eliminate the predicate symbol ancestor in the set of

intensional answers returned� Now� if the meaning of ancestor is known by the
user� then the most intuitive set of answers is probably the �rst one� being the
simplest� But� if the meaning of ancestor is not known �e�g� the user may not be
clear on whether or not his wife�s grandfather is his ancestor�� none of the above
sets is satisfying� because ancestor appears in each of them� We need a type of
de�nition giving the meaning of ancestor in the context of the set of intensional
answers returned�
For instance we may return�

	�

f
z�ancestor�x� z� � ancestor�y� z��g

ancestor�x� y�� parent�x� y�
ancestor�x� y�� parent�x� z� � ancestor�z� y��

In this way� asking �which are collateral�line relatives�� we get an answer such
as �the individuals that have a common ancestor� where an ancestor is a parent or
a parent of an ancestor��

Given the observations in the above example� we propose to answer a query
by a set SIA of intensional answers and a set RD of de�nitions for the recursive
predicate symbols� that for some reason are marked unknown
� occurring in the
answer� Notice that� if other predicate symbols marked unknown appear in such
de�nitions� then their de�nitions are to be included in RD as well�� To formalize
the set RD we now introduce the notion of �set of auxiliary de�nitions��
The general idea is to return an answer made up of two components� a set of

intensional answers� and a set of special de�nitions for the elements of a given set
of predicate symbols L� The latter component is called set of auxiliary de�nitions�
Intuitively a set of auxiliary de�nitions supplies the meaning of each atom occur�

ring in the composite answer returned� whose predicate symbol is in L �i�e� wrt the
atoms occurring in the composite answer whose predicate is in L� the auxiliary def�
initions retain the same meaning as the corresponding de�nitions in the intensional
program��
Typically� the set L will be the set of unknown recursive predicate symbols oc�

curring in the composite answer� However this is not the only interesting case�
sometimes� for example� we may choose a di�erent L to return a shorter composite
answer instead of an excessively large set of intensional answers� Another choice of
L is shown in the next section� when the treatment of negation is presented�
We now formally introduce the notion of set of auxiliary de�nitions� As usual�

let IDB be the intensional program of a knowledge base KB� LIDB the set of
predicate symbols de�ned in IDB� Q�X� a query whose free variables are X� and
SIA a set of intensional answers Ai�X� �i � �� � � � � n� for Q�X��

De�nition� Let L be a subset of LIDB � AL a set of atoms� one for each predicate
symbol in L� and AD a set of statements such that all predicate symbols in L occur
in the head of at least one of its statements�
We say AD is a set of auxiliary de�nitions �wrt AL� for predicate symbols in L

if�

�� comp��IDB� j� comp��AD�AL
� and

� SIA � comp��AD�AL
is AL�closed�

where comp��AD�AL
denotes the instance of comp��AD� such that the atoms on

the left hand sides of the completed de�nitions therein coincide �modulo variants�
with the corresponding atoms in AL�

	�

Notice that� each predicate symbol p in L is contained in no more that a single
atom in AL� hence we have exactly one logical equivalence in comp��AD�AL

in�
volving p� This equivalence can be thought of as the logical de�nition of p in the
context of SIA and AD���

Notice also that given a set L � LIDB of predicate symbols� a set AD of auxiliary
de�nitions for predicate symbols in L� always exists� In fact� the IDB de�nitions
of these predicate symbols form one such a set� But generally the de�nitions in AD
are specialized versions of those in IDB�
Finally� let us remark that we do not require the de�nitions in AD to be used�

instead of the corresponding de�nitions in IDB� to evaluate the intensional answers
in SIA� preserving the correct answers� or at least the computed answers� of the
original query� Indeed such a property would be quite �severe�� since� to enforce
it� we should return auxiliary de�nitions that are not only general enough to cover
the meaning of the predicate symbols in L� in the context of SIA and AD� but
also to cover their meaning throughout the evaluation of each intensional answer
in SIA� Indeed� if a predicate symbol p �
 L� which depends on predicate symbol
p�
 L� appears in some atoms of SIA �AD� then in choosing the generality of the
auxiliary de�nition for p� we should consider the occurrences of p� arising from the
evaluation of these atoms as well�
Observe that� the intensional answers in SIA have the same status as queries�

while the set AD of auxiliary de�nitions is an �incomplete� program� How does the
pair � SIA� AD � relate to the original notion of intensional answers�

The pair � SIA� AD � can be interpreted as the implicit representation of the
in�nite set of all the intensional answers for Q�X� which can be inferred from the
intensional answers in SIA using the axioms of comp��AD�AL

�

Indeed� the pair � SIA� AD � may be thought of as representing the in�nite set
of all the formulas 	ij�X� �i � �� � � � � n� j � ��
� � � �� such that

comp��AD�AL
j� ��	ij�X� � Ai�X��� ���

Note that 	ij�X� �j � ��
 � � �� are intensional answers to Ai�X� wrt the intensional
program AD�
By de�nition of a set of auxiliary de�nitions� the following holds

comp��IDB� j� comp��AD�AL
� ���

From ��� and ��� we get

comp��IDB� j� ��	ij�X�� Ai�X��� ����

Now� for Ai�X� we have

comp��IDB� j� ��Ai�X�� Q�X��� ����

	�

Hence� from ���� and ����

comp��IDB� j� ��	ij�X�� Q�X��� ��
�

that is� 	ij�X� �i � �� � � � � n� j � ��
� � � �� are intensional answers to Q�X� wrt
KB�

Let us turn to the problem of how to compute a set of auxiliary de�nitions�
Assuming IDB to be normal� we get the following result�

Theorem � Let L be a subset of LIDB � AL a set of atoms� one for each predicate
symbol in L� and SIA a set of intensional answers for a query W � Then� any PE
� of AL in IDB� obtained from an LIDB�compatible SLDNF�tree and such that
SIA � � is AL�closed� is a set of auxiliary de�nitions �wrt AL	 for the predicate
symbols in L�

Proof� We have to show that�

�� comp��IDB� j� comp����AL
�

� SIA � comp
����AL

is AL�closed�

The second condition is an immediate consequence of the assumption that SIA��
is AL�closed�
Turning to the �rst condition� we have that comp���� j� comp����AL

� and hence
by Theorem 	 comp��IDB� j� comp����AL

�

When AD is computed by PE� unfolding the intensional answers in SIA using
statements in AD leads to new sets of intensional answers S�IA which preserve the
completeness and the procedural completeness� as the following theorem states�

Theorem � Let L be a subset of LIDB � and AL a set of atoms� one for each
predicate symbol in L� Let also SIA be a complete and procedurally complete set of
intensional answers for the query W � and AD a set of auxiliary de�nitions �wrt
AL	 for the predicate symbols in L� which is a PE of AL obtained from an LIDB�
compatible SLDNF�tree� and such that SIA � AD is AL�closed� Then every set
S�IA of intensional answers for Q derived by SLDNF�resolution from SIA using
statements in AD� is complete and procedurally complete�

Proof� By the Sub�Derivation Lemma and Lemma ���
 in �
��� it follows that
each SLDNF�derivation from the original query� using resultants in AD can be
expanded in a corresponding SLDNF�derivation that uses only statements of the
original intensional program IDB� This in turn implies that any SLDNF�tree
built using resultants in AD can be expanded into an SLDNF�tree built using only
program clauses in IDB�
Now� suppose SIA to be the set fAi�X�� i � �� � � � � ng where X are the free

variables of the query W � We introduce a new predicate symbol ans de�ned as

�

Procedure IQA�
Input� A normal query W � and a normal intensional program IDB�
Output� A set of intensional answers SIA� a set AR of atoms� and a set RD of auxiliary
de�nitions
wrt AR� for the recursive predicate symbols in SIA and RD marked unknown�

�� De�ne a new predicate symbol q as q
X� � W � where X are the free variables in W � Let
IDBq 	 IDB 	 fq
X� �Wg�

�� Let A 	 fq
X�g� Aaux 	 fg� Aold 	 fg� D 	 fg�

�� Repeat

A� Select an atom A in A that has not been selected before
modulo variant��

B� Choose a PE of A in IDBq obtained by an LIDBq�selectable SLDNF�tree�

C� Put
or replace if it is already present� in D the de�nition D for the predicate symbol
in A�

D� Aaux �	 A 	 fp
T � j p
T � is in a literal of the body of a statement in D� and p is
recursive and marked unknown g�

E� Aold �	 A�

F� A �	 f the msgs of Aauxg�

�� Until A 	 Aold�

�� Extract from the de�nition of q the set of intensional answers SIA�

�� Extract AR dropping the atom containing q from A�

�� Extract RD dropping the de�nition for q from D�

End Procedure�

Figure �� Procedure to compute SIA and RD

fans�X� � Ai�X� i � �� � � � � ng and add such a de�nition for ans to IDB obtain�
ing IDBans�
From what has been said above� every S�IA can be computed as a PE of ans�X�

in IDBans� By Theorem � and Theorem
� S�IA is a complete and procedurally
complete set of intensional answers for ans�X�� and hence for Q�

Now that we have characterized the notion of a set of auxiliary de�nitions� we can
turn back to dealing with recursive predicate symbols� We answer a query with a
set SIA of intensional answers and a set RD of auxiliary de�nitions for the recursive
predicate symbols marked unknown appearing in SIA or in RD itself�
Note that� by Theorem �� if an auxiliary de�nition D
 RD of some predicate

symbol p is not recursive in reality� then �assuming� for now� that p does not occur
in a negative literal� we may unfold the corresponding positive literals in SIA and
RD� and drop D from RD�

In Figure � we show a procedure� based on partial evaluation� to compute SIA
and RD� which is adapted from the procedure in �	�� The underlying idea is to
build �run�time� the set of atoms AR that is partially evaluated� while computing

�	

SIA and RD� The procedure makes use of most speci�c generalization� brie�y msg
�cf� �	�� ����� formally de�ned as follows�

De�nition� Let S be a set of atoms with the same predicate symbol� Then an
atom A is a most speci�c generalization �msg� of S if�

� for every atom B in S� B is an instance of A� and

� if all the atoms in S are instances of an atom C� then A is an instance of C as
well�

	� Negation

The notion of PE is directly derived from the notion of SLDNF�tree� Therefore�
the negation during the PE process is treated in a somewhat limited way� In fact
the following two constraints must hold�

�� A negative literal can be selected only if it is ground�

� If a ground negative literal is selected then it is either completely evaluated �if
possible�� or not evaluated at all�

In the literature on partial evaluation �e�g� �	�� the negation is� usually� dealt
with as follows� if a negative literal �p�T �� where T are terms� cannot be evaluated
during the PE of a certain atomA in a program P � then p�T � is separately partially
evaluated� returning a PE of fA� p�T �g in P instead of just a PE of A in P � the set
of atoms A� to be partially evaluated� is incrementally computed� starting from the
atomA� and adding in A the atoms in the negative literal that cannot be evaluated�
Notice that� this way to proceed strongly resembles how SLDNF�resolution works�
Similarly to what is shown in the previous section� given a query W � we can

generate a composite answer� constituted by a set SIA of intensional answers� and
a set of auxiliary de�nitions for predicate symbols marked unknown occurring in the
answer� partitioned into two subsets RD and ND� RD concerns recursive predicate
symbols occurring in either positive or negative literals of the answer� whereas ND
concerns those non�recursive occurring in negative literals�
Supposing IDB and W to be normal� partial evaluation can be used to generate

such an answer� Actually the procedure in Figure �� can be modi�ed to compute
SIA� RD and ND� The resulting procedure is shown in Figure
�
Within such an approach� however� in the formulas of SIA� RD and ND� the

�interaction� �i�e� possible simpli�cations� between the part of information in the
positive literals and the one in the negative literals is lost� because the latter is
embedded in separate de�nitions� We should try to recover any such interaction in
order to make the answer more e�ective�
Now� for each predicate symbol p in a negative literal there is an auxiliary def�

inition in ND to which corresponds a logical equivalence in comp��ND�AN of the
form�

��

Procedure IQA�
Input� A normal query W � and a normal intensional program IDB�
Output� A set SIA� two sets of atoms AR and AN � and two sets RD and ND�

�� De�ne a new predicate symbol q as q
X� � W � where X are the free variables in W � Let
IDBq 	 IDB 	 fq
X� �Wg�

�� Let A 	 fq
X�g� Aaux 	 fg� Aold 	 fg� D 	 fg�

�� Repeat

A� Select an atom A in A that has not been selected before
modulo variant��

B� Choose a PE of A in IDBq obtained by an LIDBq�selectable SLDNF�tree�

C� Put
or replace if it is already present� in D the de�nition D for the predicate symbol
in A�

D� Aaux �	 A 	 fp
T � j p
T � is in a literal of the body of a statement in D� and p is
marked unknown and either recursive� or non�recursive but appearing in a negative
literal g�

E� Aold �	 A�

F� A �	 f the msgs of Aauxg�

�� Until A 	 Aold�

�� Extract from the de�nition of q in D the set of intensional answers SIA�

�� Extract form A the two sets AR and AN� where AR is formed by the atoms of A in
which the recursive predicate symbols occur� and AN is obtained from A
AR� dropping
the atom containing q�

�� Extract form D the two sets RD and ND� where RD is formed by the de�nitions in D of
recursive predicate symbols� and ND is obtained from D
 RD� dropping the de�nition
of q�

End Procedure�

Figure �� Procedure to compute SIA� RD� and ND

�X�p�T �X�� �
Y �F �X�Y ���� ��	�

where T �X� denotes a tuple of terms� X the variables therein� and Y the variables�
other than those in X� which are free in F � We may negate both sides of such an
equivalence getting�

�X��p�T �X�� ��
Y �F �X�Y ���� ����

The literals of SIA�RD�ND in which p occurs must� by de�nition� be instances of
p�T �X��� so we may replace them with the proper instances of the right hand side
of ��	� or ����� Obviously� when such an expansion of a negative literal is applied�
the formulas obtained are logically equivalent to the original ones� but they may
not be procedurally equivalent� hence while no correct answers are lost or gained�
the same is not true for the computed answers� in general�
Such a treatment is tightly related to constructive negation ���
� 	�� ������ and

has been used to handle negation during the partial evaluation process in ���� Here

��

Procedure NegExp
Input� SIA� RD� ND�
Output� S�

IA and RD� with no references to predicates de�ned in ND�

For every formula in SIA and RD� apply the two�phase procedure below�

� Phase �� Recursively apply the following sequence of transformations until it is no longer
possible�

�� Replace atoms in the positive and negative literals of the formula� with the right hand
sides of the corresponding instances of the completed de�nitions in comp�
ND��

�� Simplify the equalities in the formula as follows�

A� Substitute equalities whose terms unify by the equality corresponding to their
mgu
if the mgu is the empty substitution then the equality is eliminated�� and
eliminate the conjunctions in which there is an equality whose terms do not
unify � the result of such a transformation is logically equivalent to the original
formula� by Clark�s Lemma
cf� ����� also Lemma ���� in ������

B� Eliminate the equalities in which one of the terms is an existentially quanti�ed
variable� by means of the following logical equivalence� �y

x 	 y� � B�

Bfy�xg�

�� Push the existential quanti�ers as far right as possible� eliminating the redundant
ones
those that quantify variables which do not occur free in the formula��

� Phase �� Move negation all the way inward
eliminating double negations�� stopping in
front of the existential quanti�ers�

End Procedure�

Figure
� A procedure for expanding negative literals

we want to apply such a treatment of negation o��line wrt the partial evaluation
process� so as to retain the notions and the results in �
��� Moreover� our aim is to
expand the negative literals in such a way as not to lose computed answers�

In Figure � we present a procedure for such an expansion�
Let us make some remarks on such a procedure� First� formulas obtained by

the procedure are logically equivalent to the original ones� Second such formulas
may contain existential quanti�ers �possibly negated�� but no universal quanti�
�ers� Third� the procedure always terminates� since the de�nitions in ND are non�
recursive� Fourth� after the procedure has terminated� ND is no longer needed and
can be eliminated� Furthermore� the next theorem states that a kind of procedural
containment holds�

Theorem
 Let SIA� RD� and ND be obtained by partial evaluation as shown
above� Let S�IA and RD� result from transforming these by the expansion procedure
in Figure � Finally� let S��IA be any set of intensional answers derived by any number
of SLDNF�resolution steps from S�IA using statements in RD�� Then for every
extensional program EDB� we have�

� If IDB � EDB � f�
W
Ai�SIA

Aig has an SLDNF�refutation with computed
answer �� then so does IDB �EDB � f�

W
A��

i
�S��

IA

A��i g�

��

�� If IDB � EDB � f�
W
Ai�SIA

Aig has a �nitely failed SLDNF�tree� then so
does IDB �EDB � f�

W
A��

i
�S��

IA
A��i g�

Proof� First of all notice that� by Theorem �� we can unfold the goal�
W
Ai�SIA

Ai
using the de�nitions in ND� preserving the procedural equivalence� Now� by induc�
tion on the number of nested expansions� it is easy to prove that Phase � corresponds
to such an unfolding�
Base case� If no expansions are performed� then it corresponds to performing no

unfolding�
Inductive case� Assume the correspondence to be de�ned for n nested expansions�

we now de�ne it for n � expansions� Consider the goal

� � � �AG � � �

and the completed de�nition A �
W
i
�Xi � Ti � Bi� of the predicate symbol in

AG� We �rst replace the atom AG by the right hand side of the instance of the
above completed de�nition corresponding to AG getting�

� � � �
�

i

��Xi � Ti�� �Bi�� � � � �

where mgu�AG� A� � � �notice that A��AG��
Then we simplify the equalities as in the step
 arriving at

� � � �
�

i

�Zi � Ri �Bi��i� � � �

Where the equalities Zi � Ri denote the result of the simpli�cation� and �i � fy�x j

y�x � y � � � ��g� Now we push the existential quanti�ers as far right as possible�
and we put the formula in normal form� Notice that last step has no in�uence on
the resulting normal form� We get�

IDB �EDBfAnew � Zi � Ri �Bi��i j i � �� � � �g � f� � � �Anew � � �g

Consider the SLDNF�derivation from � � � �Anew � � � which at the �rst step un�
folds Anew by using the statement Anew � Zi � Ri � Bi��i and then resolves all
the equalities in �Zi � Ri�� The following is the �nal goal of this derivation�

� � � �Bi��i
i � � �

where ��i
i � mgu�AG� AfXi�Tig��
��

Turning to Phase
� we prove that it preserves the computed answers and the
�nite failures of the original intensional answers� We proceed by induction on the
number of times a negation is pushed inward�
Base case� If no negations are pushed inward� then the result holds trivially�
Inductive case� Given that the result holds pushing negations inward n times�

we prove that it holds if negations are pushed inward n � times� We use the

��

following notation� for any formula W � we denote by W � the formula obtained
from W applying Step 	�
Let us assume that in a derivation from the original goal� we select a formula

F � ��
�

i

�

ji

Biji��

�to be precise we select the negative literal that arises transforming F in normal
form�� Note that in F no free variables can occur� otherwise the derivation would
�ounder���

Suppose F fails� It means that� for some k�
V
jk
Bkji succeeds� that is all Bkjk

�for all jk� succeed� Consider the transformed subgoal

F � �
�

i

�

ji

�B�iji �

In each of its conjuncts �once transformed in normal form� there is exactly one B�kjk
�for some jk� that occurs in it� By inductive hypothesis� such a B�kjk succeeds� so
�B�kjk fails� It follows that the whole �

V
i

W
ji
�B�iji � fails�

Suppose F succeeds� This means that� for every k�
V
jk
Bkjk fails� that is� for

every k� there is a Bkjk �for some jk� that fails� Let us denote this Bkjk by �k� It
follows that the transformed subgoal F � succeeds too� indeed there is a conjunction
C in F � formed exactly by all ���k �for all k�� Since by inductive hypothesis all �

�
k

fail� C succeeds�

If the intensional program of the knowledge base is not a normal program� then
by using Lloyd�Topor transformations to apply partial evaluation� we introduce
new predicate symbols�� that are obviously unknown �i�e� they are meaningless to
the user�� By the procedure presented here� such predicate symbols can always be
replaced by a meaningful formula�

Let us illustrate the treatment of negation with an example�

Example� Consider the following intensional program IDB�

should visit�x� y� � serves�y� z� � likes�x� z�
happy�x�� frequents�x� y� � should visit�x� y�
very happy�x�� �y�frequents�x� y� � should visit�x� y��
unhappy�x�� �y�frequents�x� y� ��should visit�x� y���

the following extensional program EDB �schema��

frequents�DRINKER�PUB�
serves�PUB�BEER�
likes�DRINKER�BEER��

and the query �Who are the drinkers that are neither unhappy nor very happy���
that is�

��

��unhappy�x� ��very happy�x��

First notice that the last two statements must be transformed into normal form�

unhappy�x���np��x�
np��x�� frequents�x� y� � should visit�x� y�
very happy�x���np
�x�
np��x�� frequents�x� y� � �should visit�x� y��

The only possible set of intensional answers computed by the basic method is the
one constituted by the query itself� To it we may add the following set ND of
auxiliary de�nitions�

unhappy�x���np��x�
np��x�� frequents�x� y� � serves�y� z� � likes�x� z�
very happy�x���np
�x�
np
�x�� frequents�x� y� � �should visit�x� y��

Now we proceed to the expansions� We expand �in parallel� for sake of brevity�
both �unhappy�x� and �very happy�x��

�unhappy�x� ��very happy�x� �original goal�

np��x� � np
�x� ��rst expansion�

y�frequents�x� y� � should visit�x� y���

y�frequents�x� y� � �
z�serves�y� z� � likes�x� z��� �second expansion�

y�frequents�x� y� �
z�serves�y� z� � likes�x� z����

y�frequents�x� y� � �
z�serves�y� z� � likes�x� z��� �third expansion�

Last formula is a nice intensional answer� i�e� �The drinkers who visit at least a
pub where a beer they like is served and a pub where no beer they like is served��

� Conclusions

In this paper we have presented a set of tools� based on PE� to generate intensional
answers in the SLDNF�resolution framework� allowing function symbols� recursion�
and negation� The techniques developed here have two main features wrt those
presented in the literature� e�g� ��� 	
� 	��� which are based on theorem proving�
First� we have a substantial increase of e�ciency� Indeed� PE and the procedures

proposed here� are much more e�cient than general theorem proving� Of course�
there is a price� it is possible that some interesting intensional answers cannot be
captured by PE� although we believe that a considerable number of them can in
fact be captured�

��

Second� in a logic programming setting where we use as a reasoning procedure
SLDNF�resolution which is not complete wrt the declarative semantics� we become
interested in making sure that the intensional answers characterize the extensional
answers not only theoretically �from a declarative point of view� but also in practice
�from a procedural point of view�� In such conditions PE� and more generally
program transformation techniques� which have been developed with such a duality
in mind� give us better adapted tools for generating e�ective intensional answers�
than general theorem proving�

Further extensions of the present work are possible along several directions� We
outline some of them below�

The PE process tends to destroy the structure of the program to which it is
applied� There are no reasons to preserve the structure of the original program�
In fact� such a structure is normally hidden from the user� and is too general� in
the sense that it does not re�ect the particular query asked� Nevertheless� if the
structure of the user�s knowledge is at hand� it could be used to re�express the
intensional answers in a language that is more familiar to the user� Hence� an
issue to investigate further is the use of additional components� usually considered
for modeling structural aspects of a knowledge base �e�g� taxonomies or integrity
constraints���� to improve the quality of intensional answers�

We remark that the techniques developed in this paper do not refer to any particu�
lar PE� So� in general� as the research on strategies and criteria to de�ne �intuitive�
intensional answers progresses� the new results can be re�ected in the particular
choices of PE�

This work may be considered a �rst step toward a program transformation ap�
proach to intensional answering� and it could be naturally extended using other
program transformation techniques� Moreover such an approach can be applied to
other kinds of non�conventional query answering� For instance� PE can be used for
both �Knowledge query answering� �	�� and� adding folding techniques� �Intelligent
query answering� �
���

Finally we want to mention the possibility of adopting di�erent declarative and
procedural semantics� For instance� sometimes we may want to interpret negation
as classical negation in contrast to negation as failure� The work �

�
	� can be
used as a starting point for investigation in this direction� Similarly we may want
to adopt the well�founded semantics as declarative semantics� PE in this setting as
been studied in ����

Acknowledgments

I am grateful to John W� Lloyd who supervised me during the early stages of this
research� and to Maurizio Lenzerini who gave me precious advice and supported
me throughout the work�

��

Notes

�� We mainly use the same notation as ���� except that we denote sequences of terms by a single
capital letter� The few other di�erences are pointed out as encountered�

�� In ���� a query is a goal� Let � W be such a query� we call �query� the �rst order formula
W �

�� Recently� in the context of logic programming� the name partial deduction has been proposed
to replace the name partial evaluation� leaving the original name to denote the optimization
orienteduse of such amachinery� In this paperwe continue to use to the name partial evaluation
in conformity with ���� and ��� whose results are extensively used�

�� Note� if n � �� the resultant is Q� Q�

�� T � is formed by the complete failed branches of T � and by the branches of T corresponding
to the derivations from the original goal to the goals in the cut that do not fail�

	� We consider the selection rule not as a function of the current goal alone �cf� ����
 but as a
function of the whole history of the derivation from the root goal to the current goal �cf� ����
�

�� We assume that the user knows a set of predicate symbols which includes those de�ned in the
extensional program of the knowledge base� and all constants and function symbols�

�� We may consider a predicate symbol to be marked unknown either generally �e�g� because its
meaning is not known by the user
 or more speci�cally� wrt the formulas in which it appears�

�� In very unfortunate cases� the set of de�nitions RD may almost coincide with the whole
intensional program�

��� We could have also assumed that an independent set of atoms corresponds to p� This would
entail that in comp��AD
AL

there would be a distinct logical equivalence involving p for each

such atom� therefore the idea of a single logical de�nition of p in the context of SIA and AD
should be replaced by the idea of a logical de�nition of p in the context of a single intensional
answer of SIA or statement of AD in which it appears� In this paper we stick to the �rst
assumption� nevertheless the results shown here can be immediately extended to the case
where the second assumption is adopted�

��� Incidentallywe observe that� intensional answers are syntactically similar to �equational formu

las� of ����� in which not only equalities but also extensional and possibly intensional predicates
are allowed�

���Note that this is identical to the goal obtained resolvingAG with the statementAfXi�Tig � Bi
in ND�

��� Obviously there may be existentially quanti�ed variables� but recall that we do not push
negation inside existential quanti�cations�

���New predicate symbols are introduced to eliminate the negated existentially quanti�ed �uni

versally quanti�ed
 formulas�

��� Integrity constraints can also be used by selection rules to prune away inconsistent goals�

References

�� C� Aravindan and P� M� Dung� Partial Deduction of Logic Programs wrt Well
Founded
Semantics� New Generation Computing� ����
������� �����

�� K� Benkerimi and P� Hill� Supporting transformation for partial evaluation of logic programs�
J� of Logic and Computation� ���
��	����	� �����

�� K� Benkerimi and J� W� Lloyd� A partial evaluation procedure for logic programs� In Proc�
of North American Conf� on Logic Programming� pages �������� MIT Press� �����

�� R� Bol� Loop checking in Partial Deduction� J� of Logic Programming �	��
�
������� �����

�� D� Chan� Constructive negation based on the completed database� In Proc� of �th Inter�
national Conference and Symposium on Logic Programming� pages �������� MIT Press�
�����

��

	� D� Chan� An extension of constructive negation and its application in coroutining� In Proc�
of North American Conf� on Logic Programming� pages �������� MIT Press� �����

�� D� Chan and M� Wallace� A treatment of negation during partial evaluation� In Meta�
Programming in Logic Programming �Proc� META�

�� pages �������� MIT Press� �����

�� L� Cholvy and R� Demolombe� Querying a rule base� In Proc� �st Int� Conf� on Expert
Database Systems� pages �	������ ���	�

�� W� W� Chu� Q� Chen� and R�
C� Lee� A pattern
based approach for deriving approximate
and intensional answers� In Proc� of the �st Int� Work� on Interoperability in Multidatabase
Systems� pages �	���	�� IEEE Comput� Soc� Press� �����

��� W� W� Chu� R�
C� Lee� and Q� Chen� Using type inference and induced rules to provide
intensional answers� In Proc� of IEEE Int� Conf� on Data Engineering� �����

��� K� L� Clark� Negation as failure� In Logic and Data Bases� pages �������� Plenum Press�
�����

��� F� Corella� Semantic retrieval and levels of abstraction� In Proc� �st Int� Workshop on Expert
Database Systems� pages �������� �����

��� F� Cuppens and R� Demolombe� Cooperative answering� A methodology to provide intelligent
access to databases� In Proc� �nd Int� Conf� on Expert Database Systems� pages ��������
�����

��� G� De Giacomo� Intensional query answering� an application of partial evaluation� In Logic
Program Synthesis and Transformation �Proc� of LOPSTR�	��� pages �������� Springer

Verlag� �����

��� R� Demolombe� A strategy for the computation of conditional answers� In Proc� of the ��th
Europ� Conf� on Arti�cial Intelligence� �����

�	� R� Demolombe� and T� Imielinski� editors� Nonstandard Queries and Nonstandard Answers�
Studies in Logic and Computation� Oxford Science Publications� �����

��� D� A� De Waal� The power of partial evaluation� In Logic Program Synthesis and Transfor�
mation �Proc� of LOPSTR�	��� pages �����	�� Springer
Verlag� �����

��� W� Drabent� What�s failure� An approach to constructive negation� Acta Informatica�
���
����	�� �����

��� M� M� Fonkam� Employing integrity constraints for querymodi�cationand intensionalanswer
generation in multi
database systems� In Advances in Database Systems �Proc� of the ��th
British Nat� Conf� on Databases�� pages �����	�� Springer
Verlag� �����

��� T� Imielinski� Intelligent query answering in rule based systems� J� of Logic Programming�
���
��������� �����

��� T� Imielinski and B� R� Badrinath� Data management for mobile computing� SIGMOD
RECORD� ����
������� �����

��� K� Inoue� Extending logic programs with default assumptions� In Proc� of the
th Int� Conf�
on Logic Programming� pages �������� �����

��� K� Inoue� Linear resolution for consequence �nding� Arti�cial Intelligence� �	��������� �����

��� Y� H� Kim and H�
Y� Kim� Applying intensional query processing techniques to object

oriented database systems� In Proc� of the �rd Int� Sym� on Database Systems for Advanced
Applications� pages �������� World Scienti�c� �����

��� H� J� Komorowski� A speci�cation of an abstract prolog machine and its application to
partial evaluation� Technical Report LSST 	�� Link�oping University� �����

�	� H� J� Komorowski� An introduction to partial deduction� In Proc� of the �rd Int� Work� of
Meta�Programming in Logic �META�	��� pages ���	�� Springer
Verlag� �����

��� J� W� Lloyd� Foundations of Logic Programming ��nd edition�� Springer
Verlag� �����

��� J� W� Lloyd and J� C� Shepherdson� Partial evaluation in logic programming� J� of Logic
Programming� ������
��������� �����

��� J� W� Lloyd and R� W� Topor� Making prolog more expressive� J� of Logic Programming�
���
��������� �����

��� B� Martens� D� De Schereye� and M� Bruynooghe� Sound and complete partial deduction
with unfolding based on well
founded measures� In Proc� of the International Conference on
Fifth Generation Computer Systems� pages �������� �����

�

��� B� Martens and D� De Schreye and T� Horv ath� Sound and complete partial deduction with
unfolding based on well
founded measures� Theoretical Computer Science� �����
�
��������
�����

��� A� Motro� Using integrity constraints to provide intensional answers to relational queries� In
Proc� ��th Int� Conf� on Very Large Data Bases� pages ������	� �����

��� A� Motro� Intensional answers to database queries� Technical report� Department of In

formation and Software Systems Engineering� George Mason University� Fairfax� Virginia�
�����

��� A� Motro� Responding with knowledge� In Advances in Databases and Arti�cial Intelligence�
Vol� �� The Landscape of Intelligence in Database and Information Systems� JAI Press� �����

��� A� Motro and Q� Yuan� Querying database knowledge� In Proc� of ACM SIGMOD�	�� pages
�������� �����

�	� A� Pirotte and D� Roelantes� Constraints for improving the generation of intensional answers
in a deductive database� In Proc� �th Int� Conf� on Data Engineering� pages 	���	��� �����

��� A� Pirotte� D� Roelantes� and E� Zimanyi� Controlled generation of intensional answers�
IEEE Trans� on Knowledge and Data Engineering� ���
�������	� �����

��� G� D� Plotkin� A note on inductive generalization� InMachine Intelligence� Vol� �� University
Press� ��	��

��� T� C� Przymusinski� On constructive negation in logic programming� In Proc� of North
American Conf� on Logic Programming� pages ���� �addendum
� MIT Press� �����

��� J� C� Reynolds� Transformational systems and algebraic structure of atomic formulas� In
Machine Intelligence� Vol� �� Edinburgh University Press� ��	��

��� J� C� Shepherdson� Negation as failure� a comparison of Clark�s completed data base and
Reiter�s closed world assumption� J� of Logic Programming� ���
������� �����

��� C� Shum and R� Muntz� Implicit representation for extensional answers� In Proc� �nd Int�
Conf� on Expert Database Systems� pages �������� �����

��� I�
Y� Song� H�
Y� Kim� and P� Geutner� Intensional query processing� a three
step approach�
In Proc� of the Int� Conf� on Database and Expert Systems Applications� pages ��������
Springer
Verlag� �����

��� F� Van Harmelen� The limitations of partial evaluation� In Logic�Based Knowledge Repre�
sentation� pages ������� MIT Press� �����

Received Date
Accepted Date
Final Manuscript Date

