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Abstract. This paper presents a prefixed tableaux calculus for Proposi-
tional Dynamic Logic with Converse based on a combination of different
techniques such as prefixed tableaux for modal logics and model checkers
for mu-calculus. We prove the correctness and completeness of the calcu-
lus and illustrate its features. We also discuss the transformation of the

tableaux method (naively NEXPTIME) into an EXPTIME algorithm.

1 Introduction

Propositional Dynamic Logics (PDL) were used in [4] to describe the properties
of states reached by programs during their execution, and to model the evolution
of the computation process [10, 16]. Over the years, propositional dynamic logics
have been proved to be a valuable theoretical tool in Computer Science, Logic,
Computational Linguistics, and Artificial Intelligence (e.g. [1, 6, 9, 10, 16, 18,
15]). Many inference procedures, decidability and complexity results, rely on
research done within PDLs.

In this paper we present a tableaux calculus for the propositional dynamic
logic Converse-PDL (CPDL) [4], obtained from the basic logic PDL by adding
the converse of a program whose running is obtained by “running the original
program backwards”. Typically, the converse is used for preconditions e.g. [77]p
can be interpreted as “before running program m, property ¢ must hold”.

There are several applications of PDLs where the ability of denoting converse
programs is essential. For instance using PDLs as a core reasoning paradigm of
Knowledge Representation Systems. Several recent papers (starting from [15])
point out a strong correspondence between PDLs and a family of class-based
knowledge representation formalisms, Description Logics [20]. These logics rep-
resent the world in terms of objects grouped into classes, relations between classes
and a number of constructs for properties of classes and relations. The correspon-
dence is based on a mapping between the models of a description logic knowledge
base, and the models of a particular formula of a propositional dynamic logic, so
that classes correspond to propositional letters, relations correspond to atomic
programs, instances of classes correspond to states, and instances of relations



correspond to state transitions. Thus, inference procedures for CPDL can be
exploited as the reasoning core of very expressive description logics (and PDLs)
by using polynomial reductions from the inference problem of such logics to the
inference problem of CPDL [2, 3]. This was one of the main motivation that
has led us to look into inference procedures for CPDL.

CPDL shares many characteristics with the basic PDL, and many results
for PDL extend to C'PDL without difficulties. For instance the proofs of finite
model property for PDL in [4] are easily extended to CPDL, as well as the
proof of EXPTIME-completeness in [13]. However, efficient — in practical cases
— inference procedures have been successfully developed for PDL, but their
extension to C'PDL has proved to be a difficult task and unsuccessful till now
(to the best of our knowledge).

To be more precise, inference procedures based on models enumeration [4, 13]
or on automata on infinite trees [19] have been extended to accommodate con-
verse of programs. Yet, these procedures are better suited for proving theoretical
results than for being used in applications. Tableau procedures for PDL [12, 14],
which are much more efficient in practice, have never been extended.

The key point is that a tableau procedure for PDL can be organised so that,
once the successors a state have been generated, no more reasoning involving this
state is necessary. In the case of a CPDL direct extensions of PDL procedures
may require reasoning with the whole piece of model built so far. In [12] Pratt
says “We do not have a practical approach to this difficulty with converse, and
our “practical” procedure therefore does not deal with converse”.

Our solution is to use labelled deduction [7] to develop modal prefixed tableaux
[5, 8, 11] for CPDL. In particular we use Single Step Tableaux [11, 8] since they
make it possible to reason locally both in “forward” and “backward” directions
to accommodate the converse. The presence of the iteration operator imposes
further constraints which lead to the notion of ignorable branches: branches
which are modally consistent but where some iterated eventualities are never
fulfilled.

The difficulties due to the combination of iteration and converse are solved
by singling out few additional formulae that “anticipate” the properties that a
state may require from its predecessors at a later stage of the computation.

The next section introduces preliminaries and proof theory in presented in
Sect. 3. Examples are shown in Sect. 4, soundness and completeness are given in
Sect. 5 and the transformation of NEXPTIME tableaux into EXPTIME algo-
rithm is sketched in Sect. 6. Finally Sect. 7 concludes the paper.

2 Preliminaries

We briefly present the basic notions on CPDL (see [10, 16] for surveys).
Let A be a set of atomic programs and P a set of propositional letters, the
language of CPDL is constructed as follows, where P € P and a € A:

e, =Pl leny | (p)e
pox =alpix [ pUx e |p” [9?



Other connectives, such as ¢ V 1) and [p]¢ can be seen as abbreviations — e.g.
[ple = —{(p)—p. Without loss of generality, we restrict the application of the
converse operator to atomic programs by using equivalences such as (p;x)” =
(x75p7)or (p*)” = (p7)* etc. We use the metavariable A to denote either an
direct or converse atomic program, assuming that (¢~ )~ = a. In the sequel P, Q
are propositional variables and ¢, ¢ formulae whereas a,b, ¢ atomic programs
and p, y programs. @ or ¥ are the formulae to be proved valid or satisfiable.

CPDL semantics is based on transition systems (Kripke structures) [10]: a
model is a pair {S,Z) where S is a non empty set of states and Z an interpretation
such that for every atomic program a € A it is a> C S x S and for every
propositional letter P € P it is PZ C S.

The interpretation 7 1s extended to C'P DL formulae and programs as follows:

(p)p)* —{5|E|5 € Sst. (s,s') € pf and s’ Egpz}
:x)? _{55 ) | 3s”(s,s") € pF and (s EXI}
ux)t =, ux?
= reflexive transitive closure of p
Pt = 8) [ (s,8) € 07}

oo ={lss) [ see’)

In the sequel we write sf=¢ for s € .

Definition1. A CPDL formula @ is satisfiable iff there is a model (S, 7} where
(@)? is not empty. A formula @ is valid if for every model (S, 7) it is (#)F = S.

The Fisher-Ladner closure of a formula @ [4, 10] is defined inductively as:

- @ CL(P);

— if p € CL(P) then —p € CL(@
— if =, o Ap or {p)p are in C'L

~if () € CL(@) then () () € CL(®),

— if {(pUx)e € CL(®P) then both {p)p and {x)¢ are in CL(P);
— i (7)€ CL(®) then ¢ € CL(®);

— if {p")p € CL(®) then (p){p")p € CL(®P).

The notion of Fisher-Ladner closure is closely related to the notion of set of
subformulae in modal logics: to establish the truth value of a formula @ in a
model it is sufficient to check the value of the formulae in C'L(®) for every state
of the model [4, 10]. Both number and size of the formulae in C'L(P) are linearly
bounded by the size of @.

rovided ¢ does not start with —;
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3  Proof Theory

Prefixed tableaux for CPDL use prefized formulae, i.e. pairs (o : ¢) where ¢ is
an alternating sequence of integers and atomic (direct or converse) programs
called prefiz and ¢ is a CPDL formula.
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Fig. 1. Propositional tableaux rules
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Fig. 2. Rules for sequence, choice, and test

Definition2. The set of prefixes X is the least set such that 1 € X, and if
ce X, Ae AUA and n is an integer, then o{A)n € X.

Intuitively o “names” the sequence of atomic programs (or path) to reach the
state where ¢ holds. For instance the prefix 1{a=)2(b}3(a)5{¢™}4 corresponds to
the transition s; <= s LN S5 — 85 <= s4.

We use the standard initial subsequence ordering C —i.e. impose ¢ C o(A4)n
for every o, A and n, and take the transitive and reflexive closure.

The definition of branch and tableau are similar (but the rules) to prefixed
tableaux for modal logics [5, 8, 11]. A tableau is a rooted (binary) tree where
nodes are labelled with formulae, and a branch is path from the root to a leaf.
A prefix 18 present in a branch, if there is a prefixed formula with that prefix
already in the branch, and it is new if it is not already present. In the sequel B
denotes a branch and 7 a tableau. Intuitively a branch is a (tentative) model
for the initial formula. Propositional rules are also standard (Fig.1).

The rules for sequence, choice, and test are also simple (see Fig. 2).

Prefixed C'P DL formulae starting with an atomic program a or a~ must take
into account not only the classical division of possibility-like formulae {a)¢ and
necessity-like formulae [a]e but also the presence of the converse operator. Thus
we use both forward and backward rules for necessity like subformula, as shown
in Fig.3 (where the subscript F' stands for forward and B for backward).

The rules for iteration combine prefixed tableaux with the techniques de-
veloped by [17] for model checking in modal mu-calculus, based on the intro-
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Fig. 3. Transitional rules for CPDL
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Fig.4. Rules for *-iteration operator

duction of constants for fixpoints® (Fig.4). Intuitively the procedure works as
follows: when an iterated eventuality {p*)¢ is found, introduce a new propo-
sitional constant X;, set a side condition X; = {p*)¢p, and use the X;-rule
for further reductions. Thus we need two sets of propositional letters distinct
from the set P: X for iterated eventualities and ) iterated necessities*. The
use of ¢ : —p in the right part of the X; rule is semantically motivated by
the definition of {p*)¢ as a least fixpoint. Such a definition implies that p-steps
are performed while —¢ is true, stopping as soon as ¢ becomes true. Indeed
(p*Yo = (=975 p)*Yp = (while —p do p) T is valid in CPDL [4].

These constants are introduced to detect the presence of p loops which never
fulfill (p*)¢, i.e. where ¢ never holds. In this way we can eliminate the = (and its
transitive closure) introduced by Pratt’s tableaux [12], to relate pseudo models
to actual models.

Remark. The presence of the converse operator -~ combined with the -* operator
is harder than the simple combination of the two operators: although vp is
enough for C'P DL without iteration and X;/Y; rules are enough for PDL, their
combination is not enough for full CPDL.

® A formula (p*) can be expressed in modal mu-calculus as pX.¢ V (p)X while a
formula [p*]¢ can be expressed as v X.oA[p]X, where p X ¥ (X) and v X.¥(X) denote
the least fixpoint and the greatest fixpoint of the open formulae ¥(X).

* Indeed the last one is not really necessary.
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Fig. 5. Look behind analytic cut

Intuitively one can use -* to construct events which take place after unbounded
delays such as {a*)P. The operator -~ can be used for late discoveries which
impose a property on the current state after the execution of a program: such
as {a}[a”]-P. The combination of -~ and -* can create “bombs” which, after an
unbounded number of iterations, tell us that the initial state was inconsistent.
A simple unsatisfiable formula is P A (a*}[(a™)*]-P.

So, we use a restricted analytic cut LB (“look behind”) which is presented in
Fig.5, where @ is the formula to be proved valid or satisfiable.

Since the cut is analytic and its application strongly restricted, its introduc-
tion does not destroy the decidability of the calculus (although its naive and not
necessary application may lead to an explosion of the search space).

Once we have set the rules, we focus on three kinds of branches: contradictory
(we found a states where P and =P are supposed to hold), ignorable (we didn’t
find contradictions but we couldn’t fulfill some iterated eventualities) and open.

In the sequel, if B is the branch of a tableau we indicate with B/¢ the set of
prefixed formulae in 5 labelled with the prefix o, i.e. :

Bjo={¢|{o:¢) € B}

Definition3. A prefix o is reduced if m-rules are the only rules which have not
been applied to formulae of B/c. It is fully reduced if all rules have been applied.

Definition4. A prefix ¢’ is a copy of a prefix o if (i) B/o = B/¢’, and (ii)
both have the form og{A)n and o,{A)n’ for the same atomic program (direct or
converse) A. In case two X;, X; are present in both prefix we assume them equal
if they stand for the same iterated eventuality i.e. X; = (p*)p and X; = (p*)e.

This definition of a copy is more restrictive than the corresponding definition
one needs for simple PDL [14]. Intuitively a copy is “a different name for the
same state” since they (i) have the same properties (dynamic formulae) and (ii)
can be reached by the same program. This requirement is not necessary for PDL
(one only looks forward) whereas in C'PDL the past does matter.

Definition5. A tableau branch B is w-completed if (i) all prefixes are reduced,
and (ii) for every ¢’ which is not fully reduced there is a (shorter) copy ¢ which
1s fully reduced.

The intuition behind 7 completeness is that we use w-rule to create a new state
only if we have not seen it before.



Definition 6. A tableau branch B is contradictory if it contains both & : P and
o . =P, for some propositional variable P and some prefix o.

Definition7. A branch B is tgnorable if and only if

1. it 18 w-completed,
2. it contains a prefixed formula (o : X;) where X; = (p* )¢,
3. for every prefix ¢’ such that (¢’ : X;) is in B, then (¢’ : =¢) is also in B.

This definition can be better explained by the following property:

Proposition8. If a branch B is ignorable due to some X; = {p*)p, then there
1s a prefiz o, in B such that o, : X; is i B, 0y, : - s B and o, s a copy
of a shorter prefiz oy.

Intuitively one may describe this property has follows: we found an eventuality
(p*}y in the branch; we tried to fulfill it with X;-rules; however the left hand
branches (those with o : ¢) were always discarded; finally we met a prefix o,
with the same formulae of a previously seen prefix; so we concluded that we
could never fulfill the eventuality in this branch and gave up.

This is clearly the critical stage of the proof procedure (discarding bad
branches) and in CPDL we must be sure that two prefixes are identical also
for what regard the past. This is the only place where we need to use cut:

Criterion. The rule LB(A) is applicable iff the prefixed formula o{A)n : X;
occurs already in the branch for some X; = (p*)¢, o(A)n : = occurs, and
a{A)n is a copy of some other prefix.

So before discarding a branch with Defn.7 we must be sure that cut has been
already applied to o, and oy of Prop. 8. Thus also their past is identical (at least
wrt the Fisher-Ladner closure).

Definition9. A branch is open if it is m-completed and neither contradictory
nor ignorable.

Definition10. A tableau is closed if all branches are either contradictory or
ignorable. A tableaux is open if at least one branch is open.

Definition11. A wvalidity tableaux proof for the formula @ in the logic CPDL,
i.e. Feppr @ is the closed tableau starting with (1 : ~®).

In a dual way one can define a satisfiability proof.

Remark. For satisfiable formulae a model can be easily extracted from the open
branch of the tableau, with the same procedure of the completeness proof.



(1) 1:= ((a)Q A={aUb){(a™)")P) — —|P) negated formula
(2) 1:{a)QA={aUbd){(a™)"})P)A =P boolean simplification
(3) 1:(a)@Q from (2) by «

(4) 1:={aubdl{(a™)*)P

(5) 1:==P R

(6) 1:P from (5) by dneg
(1) 1:~{a){(a™)")P from (4) by [U]

(8) 1:={b){(a™)")P

(9) L{a)2:Q from (3) by n(a)
(10) {a)2 : ={(a™)*}P from (8) by vr(a)
(11) 1{a}2:Y Y = =((a” )"} P from (10) by [x]
(12) 1{a)2 : =P from (11) by ¥
(13) 1{a}2 : ={a” )Y

(14)1:Y from (13) by v5(a)
(15) 1: =P from (1) by ¥

(16) 1: ={a=)=Y
1 Contradiction between(15) and (6)

Fig. 6. Tableaux proof of (a)Q A ~{(a U b){(a7)*)P) — =P

4 Examples and Intuitions

A simple example of a tableaux proof for CPDL of the valid formula (a)@ A
—{aUb){(a™)*}P) — =P is shown in Fig.6 (numbers are for references).

The intuitions behind “copied prefixes” and ignorable branches can be ex-
plained with model theoretic concepts, by comparing tableau rules expansions to
a visit of a (counter) model and prefixes to booking devices (names for states).

Whenever we find two prefixes oy and o, which have the same formulae
(i.e. the same properties) we may conclude that they are essentially identical
(model M in Fig. 7). Thus, there is no need to expand the formulae of ¢, we

M e - - o= -
O = Rl Ny SR oy S SS Ny
™ A
Mpaa A

Fig.7. Bad and good models



have already done it for oy (by Defn.5) and if we didn’t find a contradiction
before we will not find it now. We can avoid the visit of the potential infinite
path starting from ¢, by changing the model, according whether the branch is
ignorable or not.

If the branch is not ignorable then we introduce a loop back to og, thus
dropping the infinite path starting from o, (model Mgqooq in Fig. 7).

If the branch is ignorable then there is an eventuality {p*)¢ on ¢ that, after a
certain number {p)-steps where ¢ always holds, arrives to an “identical” state
0w. So we can change the model to Mpaq (Fig.7), and conclude that we cannot
fulfill the eventuality in any number of p-steps.

These are the ideas behind the correctness theorem (model Mypaq) and the
completeness theorem (model Mgqoq). In the tableaux for PDL by Pratt [12, 14]
these two cases where called successful and unsuccessful loop.

Question 12. Why different X; are introduced each time the same (p*)¢ is met
with a different prefix if later on we identify them in the loop checking?

We use the propositional constant X; = (p*)¢ as an automatic bookkeeping
system: if we introduce o : X; at a certain stage and, later on, we find another
o' . X; for a longer ¢’ we already know, without further checks that there
is some {p)-steps from ¢ to ¢’. Thus, if ¢/ : ¢ is present in the branch, we
can immediately conclude that the initial occurrence of the eventuality (p*)¢ is
fulfilled. If we reused the same variable X; for a different prefix ¢” : (p*}¢, then
we could not anymore detect whether ¢’ follows from & or from ¢''. Detecting
if two prefixes are connected by some {p)-steps has the same complexity of the
original problem since p may be extremely complicated.

If we find out that X; = (p*)¢ = X this means that they are just different
names for the same property: if a state oy fulfils the same formulae of ¢, plus
X; then it clearly can also fulfill the X; occurring in o, and thus we can identify
the two states (model Myooq of Fig. 7).

For instance try the following (without LB(A), since there is no converse):

DPsar = P A [b*](<b>P A <a*>—|P) Puynsar = Psar N [b*, a*]P
Question 13. Is cut really necessary?

The difficulty is [(p7)*] which imposes constraints on past computations. For
instance check the following formulae without using cut:

Yynsar = P A{a*)[(a”)*]-P
Ugar = PA{a*) (=P Ala"]mPAfa";a"]=P...Al(a”)"]-P)

;...;a” for n times with (a7)”. The second formula
is satisfiable, while the first is not. In both cases, if one expands the tableau
without using cut, after the first n applications of the X; rule the resulting
tableau will be ignorable. However, after n 4+ 1 steps, the tableau for Ws 47 has
one non-ignorable branch whereas the one for ¥y ysar remains ignorable.

where we abbreviate a~;



This problem disappear if one uses the uneven version of tableau rules for
digjunctive formulae (usually called lemma generation). For instance using o :
@V implies 0 : ¢ or o : = A . So we propose the following conjecture:

Conjecture. Look behind cut is eliminable for the validity checking of CPDL
of lemma generation s used.

Remark. Tt 1s easy to prove that cut can be eliminated if the initial formula @
contains either only the converse operator or only the iteration operator.

5 Soundness and Completeness

The correctness proof of prefixed tableaux [5, 11] follows an established path:

1. devise an mapping between “names” (prefixes) and “things” (states) so that
relations between states are preserved;

2. prove a safe extension lemma, i.e. that any tableau rule applied to a satis-
fiable formula preserve satisfiability with the above mentioned mapping;

3. prove a safe closure lemma, i.e. that the calculus correctly ignores branches
which do not correspond to models either because they are contradictory or
because do not fulfill some iterated eventuality {(p*)e.

Remark. For modal logics safe closure is immediate (a branch must only be non
contradictory) whereas it is the hardest part for (C)PDL: we have to verify,
with a finite computation, that an eventuality will never be fulfilled.

Definition14. Let B be a set of prefixed formulae and {S,7) a model, a map-
ping is a function ¢() : & — S such that for all ¢ and o{A)n present in B it is
(o(a),2(a(A)n)) € AT where A is either a direct or converse atomic program.

Definition15. A tableaux branch B is satisfiable (SAT for short) in the model
(S, ) if there is a mapping #() such that for every (o :¢) present in B it is
1(o)Ep. A tableau is SAT if one branch is such for some model {S,7).

Theorem 16. If T is a SAT tableau, then the tableau T' obtained by an appli-
cation of a tableau rule is also SAT.

Proof. By induction on the rules applied as in [5, Chapter 8] or [8, 11].

Now we prove that that ignorable branches can be safely discarded (the key
point of the proof). The following preliminary result is useful:

Lemma17. Let B be a w-completed branch and Path(X;) be the set of prefizes
o such that (o : X;) is present in BB then

1. Path(X;) is totally ordered wrt C;
2. the prefix oy where X; has been firstly introduced s the minimum element;



3. if the branch is not ignorable then the prefiz o, such that both (o, : X;) and
the corresponding (o, : ) are present is the mazimum element.

Proof. By simple induction on the number of applied tableaux rules: the reduc-
tion of (¢ : {p)X;) can only introduce prefixes longer (or equal) to o. a

Theorem 18. If T is a SAT tableau, then one SAT branch is not ignorable.

Proof. Suppose the contrary: 7 is SAT with all SAT branches ignorable (clearly
SAT branches cannot be contradictory). It is worth noting that each branch can
be ignorable due to a different unfulfilled X; = {(p})¢; (or even more than one).
Then let B be an ignorable branch for X;. It is easy to prove the following

Proposition19. For every model {S,T) and for every mapping +() such that B
is SAT for it, if o is in Path(X;) then o(o)fEep.

Proof. By definition of ignorable branch (Defn. 7)if (¢ : X;) isin B then (¢ : =¢;)
is alsoin B. So if B is SAT on the model (S, 7) with mapping () then, by Defn. 15,

it is o(0) =y O

Since B is SAT, there must be a model (S,7) and an mapping +() on which B is
SAT with a certain mapping ().

So let o, = ol,(A)ny be the longest prefix such that ¢ : X; is present. Since
B is m-completed there must be a shorter copy o¢ = o {A)ng which satisfies the
same formulae and which has been fully expanded (Prop.8). Hence the prefixed
formula {og : {p) X;) also occurs in B and, since B is SAT, #(cog)={p) X;. Therefore
an integer N and a state sV in (S, 7) exist such that (2(cp), sV ) is in (p™V)? and
sN .

By Lemma 17 each ¢’ : X; can only be introduced by reducing the immediate
predecessor ¢’ : {p) X;. Hence, by a simple induction on the structure of p, there
are R p-step from oq to o, for some integer R > 1.

By Prop. 19 N must be strictly greater than R since ¢ cannot be fulfilled by
any remapping j() of the ¢ in Path(X;) on the states of (S,Z). Hence there are
N — R p-steps from o, to fulfill ¢ in the model {S,7) under ().

Now we construct a new model by duplicating the original model {S,7)as in
Fig.7: 5’ = {s. | s € S} and P7 = {s. | s € PZ} and also for atomic program
we have a? = {(s.,s.) | (s,s') € a’}. The only difference is the atomic (direct
or converse) program A in g and o, modify J so that:

AT ={{se,50) | (s.5") € AT} U{{u(0),, 2(0w).)}

The key point is to prove that this new A-arc can be safely added.

Since B is w-completed, all possible instances of LB(A) have been applied and
therefore for every ¢ € C'L(®) we have that either (cq : =(A)¢) or {(og : (A))
is present on the branch. The prefix o, is a copy of oy by hypothesis, so
(0 : 7(A)¢) is present in the branch iff {og : ={A)¢)) is present. Since the branch
is SAT on the original model {S,Z), it is ¢(cg)=—{A) ¢ iff ¢(o,, ) E-{A) ¢ for every
¢ € CL(P).



Consider now the state (o, ), the only difference with the original state (o)
is the incoming A-arc. But, as we have seen above, the two states see exactly
the same formulae of C'L(®) going back through A. By the filtration Lemma
[4, 10], these are the only formulae necessary for establishing the truth value of
&. Hence, by induction, we have that ¢(c,,), satisfies {p*)¢ in N — R p-steps in
the new model (and indeed also in the old one).

Then we construct a new mapping j() on the duplicated model as follows:
map every prefix shorter or unrelated with ¢ in the same way as #() does and
J(o0) on (o, ),. This make the branch still satisfiable: the formulae are the same
for both oy and o, and the incoming arc does not affect them. By Thm. 16. we
can expand the tableau and still preserve SAT.

In the new model the state (o) fulfils the eventuality (p*}oin N—R < N p-
steps. We can repeat the process until we reach an N’ < R but this is impossible
due to Prop. 19. Contradiction. O

The correctness theorem follows with a standard argument:
Theorem 20. If @ has a validity proof then @ is valid.
To prove completeness, we also have an established path:

1. apply a systematic procedure to the tableau;

2. if 1t does not close, choose an open branch to build a model for the initial
formula —¢ 1.e. a counter-model for ¢;

3. for this construction identify prefixes present in the branch with states and
show that if (¢ : ¢) occurs in the branch then also (¢} [=¢. For PDL the hard
part of the proof is to show that iterated eventualities are indeed fulfilled.

Then we can prove a strong model existence theorem using open branches.
Theorem 21. If B is an open branch then it is SAT on a {S,T).

Proof. Construct the model as follows:

S = {0 | ois present in B
at = {{o,0{a)n) | o and o{a)n are present in B} U
{{c{a")n,o) | o and o{a")n are present in B}

Pl={s|0o:PeB}

To take loops and repetitions into account, we modify slightly the above
definition: if ¢” is a copy of some shorter prefix ¢’ then we delete ¢” from S,

replace ¢/ with o’ in all transitions a, and construct the mapping ().

(o) = o' if o 1s a copy of a shorter o’
~ | o otherwise

Next we need to prove that if (¢ : ¢) € B then «(o)[=¢ by induction on the
construction of ¢. We focus on modal connectives and iteration operators.



Suppose that ¢ is not a copy of another prefix and (o : {(a)p) € B then, by
m-saturation, (o{a)n :¢) € B for some o{a)n. Hence «(c{a)n)=p by inductive
hypothesis and (x(c),2(o{a)n)) € a? by construction. Therefore 2(c)=(a)e. If
o 1s a copy there must be a shorter prefix ¢’ present in B which has the same
formulae and which has been fully reduced. In this case the mapping () will
map o on ¢’ and the above reasoning applies. Similarly for a~.

For the necessity operator we show the case for ™. Suppose that (o : ={a")¢)
is in B. By construction the only prefixes ¢/ such that (" o) € a® are:

1. o{a™ )n for some n;
2. ¢/ where ¢’ is a repeated copy of a longer prefix of the form o{a™)m;
3. og if ¢ has the form og{a)m

For case (1) we have that for every o{a™)n present in B it is (c{a”)n : —p) €
B by m-completion wrt vp(a™). Hence, ¢(o{a™ Yn)[E—¢ by inductive hypothesis.
For case (2) the shorter prefix ¢’/ must have the same formulae of the copy
o{a”)m and, by m-completion (again the forward rule), we have that o(a”)m :
- is present and therefore (it is a copy) also ¢’ : —¢. By induction hypothesis we
have that ¢(¢’)=—¢. For case (3) consider m-completion w.r.t. the rule vg(a™):
the prefixed formula (o : =) occurs in B. So #(g)E=—¢ by inductive hypothesis.
Therefore, by definition of =, it is (o) =—{a™ ).

For the iteration operator the case of [p*] is simple. For (p*}¢ we have to
prove that whenever the corresponding X; appears then (p”)¢p is satisfied. The
proof is by double induction: on the formula size and on the length of the prefixes
in Path(X;). One chooses as a base for the latter induction the top prefix o, such
that (o, : ¢) is present. By induction hypothesis it is ¢(c, )= and by definition
it is (0w )= (p* ). For the induction step consider a pair ¢; T 0,41 such that
o; is the immediate predecessor of o;41 in Path(X;) and that «(c;41)E{(p*)e.
Note that, since X; was new on the branch, the only way to introduce it for ;41
is to reduce completely o; : (p)X;. By induction on the construction of p (by
using a techniques from [2]) it is possible to verify that (oj,0;41) is in p? and
therefore the claim follows by definition of |=. For instance if p = x; 7 then by
m-completion o; : {(x)}{r)X; is on the branch and therefore, by induction, there
must be o/ such that (¢;,¢') € xZ and (¢/,0;4;) € 77 and the claim follow by
semantics of sequence operator. a

A completeness theorem follows with standard argument:

Theorem 22. If @ is valid then @ has a validity proof.

6 From NEXPTIME Tableaux to EXPTIME Algorithms

Our tableau leads to the following “naive” algorithm: select a formula from
the branch and reduce it; if the reduction requires branching, then choose one
branch and add the other to the stack; repeat until the branch is contradictory,
ignorable or open; in the first two cases discard the branch and backtrack. This



algorithm compute each time from scratch without keeping track of discarded
branches, i.e. the naive implementation does not learn from failures. This makes
sense for logics in PSPACE [9] but not for (C)PDL. In fact the algorithm works
in NEXPTIME, while (C)PDL is EXPTIME complete [4, 13].

A smart algorithm can be developed with the techniques of [14]: use a suitable
data structure where all possible subsets of the formulae that may appear in the
tableau are listed. As soon as our expansion procedures introduces a new formula
with a certain prefix, we collect the formulae with the same prefix and look in
our database: if this set is already present then we do not expand it further,
otherwise we introduce it in the database, marked with the last atomic (direct or
converse) program used to reach it. This is the difference with [14]: for CPDL
two sets must also be equal wrt the “arriving program” (Defn.5 and Thm. 18).
Last we start a marking algorithm which marks bad prefixes as in [14]. A key
difference 1s that we discard at once all prefixes which contains a X; which makes
the branch ignorable. This is more effective than [14] also for PDL since we do
not compute the transitive closure of = but just look for X; locally.

Marking each set with the “arriving programs” and “using cut” implies that,
for each atomic programs A, our database could contain all propositionally con-
sistent subsets of {t, (A)¢, 7{A)¢ | ¢ € C'L(P)}. This gives an upper bound for
the database size exponential in O(] Act(P)| x |@|), where Act(P) are the direct
or converse atomic programs in @, and hence the desired EXPTIME bound.

As a further optimisation, prefixed formulae which branch the tableau or
introduce new states are not expanded if one of their reduct i1s already present
in the same branch. For instance if o : =¢ is already present then o : =(¢ A ) is
not expanded. Similarly if for ¢(A)n : ¢ is present then ¢ : (4)¢ is not reduced.

7 Discussion and Conclusion

Known decision procedures for CPDL are based either on the enumeration of
models [4, 13] or on automata on infinite trees [19]. However, these are often
inherently exponential. So that the best procedures for PDL are the tableaux
methods in [12, 14]. Yet they have not been extended till now.

One characterising feature of (C')PDL is the presence of fizpoint operators
(the *). In comparison with tableaux for modal logics [5, 8, 9, 11], the tableaux
for modal fixpoint logics are conceptually divided in two: (1) build a (pseudo)
model expanding the modal part; (2) check this model for the satisfiability of
fixpoint formulae. The notion of ignorable branches stems out from the idea of
merging the second step into the first one.

Such a merging requires to keeps track, during the expansions phase, of
iterated eventualities and of their fulfillment. The necessity of (successful and
unsuccessful) loop checking for eventualities has been pointed out in [12, 14] for
PDL, and is even stronger for the modal mu-calculus [17]. For instance in [12]
a model checker is run on the final pseudo-model whereas in [14] a new relation
symbol = 1s introduced and some properties of its transitive closure verified.



We think that the use of constants for iterated eventualities, taken from
model checking techniques in [17], improves efficiency and readability of the
calculus. In this setting our tableaux calculus is a first step towards effective
decision procedures for C' P DL and the corresponding description logics.
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