Moving a Robot:
The KR&R Approach at Work

Giuseppe De Giacomo, Luca Iocchi, Daniele Nardi, Riccardo Rosati
Dipartimento di Informatica e Sistemistica
Universita di Roma “La Sapienza”

Via Salaria 113, 00198 Roma, Italy

email: {degiacomo,iocchi,nardi,rosati}@dis.uniromal.it

Abstract

The paper describes an approach to reason-
ing about actions and plan generation within
the framework of description logics. From
an epistemological viewpoint, our approach
is based on the formalization of actions given
by dynamic logics, but we exploit their corre-
spondence with description logics to turn the
formalization into an actual implementation.
In particular, we are able to carefully weaken
the logical inference process, thus making the
reasoning of the robot computationally fea-
sible. From a practical viewpoint, we use a
general purpose knowledge representation en-
vironment based on description logics, and
its associated reasoning tools, in order to
plan the actions of the mobile robot “Tino”,
starting from the knowledge about the envi-
ronment and the action specification. The
robot’s reactive capabilities allow it to exe-
cute such plans in the real world.

1 INTRODUCTION

We present one attempt to reconcile the theoretical
work in knowledge representation with the implemen-
tation of real systems. The realm we address is that
of mobile robots, which has always been considered
central to Artificial Intelligence. Recent work in this
field (see for example [Brooks,1986]) has shown that,
in order to enable a mobile robot to cope with the un-
certainties and dynamics of real environments, some
kind of reactive behavior is necessary. However, a
mobile robot needs not only the ability to promptly
react and adjust its behavior based on the informa-
tion acquired through its sensors, but also to achieve
high-level goals. Therefore, it should also be able to
reason about the actions it can perform, find plans
that allow it to achieve its goals and check whether
the execution of actions leads to the accomplishment
of the goals. The integration of reactive and planning

capabilities has thus become a focus of the research in
mobile robots and planning systems (see for example
[Saffiotti et al.,1995; Kaelbling and Rosenschein,1995;
Simmons,1992; Gat,1992]).

In the present work, we provide a framework for rea-
soning about actions and discuss its implementation,
through a knowledge-based system, on a robot with
reactive capabilities. Our approach falls in the re-
search stream of logic-based approaches for reasoning
about actions (see [Lesperance et al.,1994]), however
it has been developed as a balance between theoreti-
cal and practical considerations. Specifically, the ba-
sis of our proposal for reasoning about actions is pro-
vided by Propositional Dynamic Logics (PDLs), fol-
lowing the work of [Rosenschein,1981; De Giacomo
and Lenzerini,1995b]. In this setting PDLs formulae
denote properties of states, and actions (also called
programs) denote state transitions from one state to
another. The dynamic system itself is described by
means of axioms. Two kinds of axioms are introduced,
“static axioms”, that describe background knowledge,
and “dynamic axioms”, that describe how the situa-
tion changes when an action i1s performed. As in the
deductive-planning tradition, a plan can be generated
by finding a constructive existence proof for the state
where the desired goal is satisfied. In a PDL setting a
plan consists of a sequence of transitions, which leads
to a state satisfying the goal.

The novel and fundamental step towards the imple-
mentation has been to rely on the tight correspondence
that exists between PDLs and Description Logics
(DLs) [Schild,1991; De Giacomo and Lenzerini, 1994].
By exploiting this correspondence we have been able
both to develop an interesting theoretical framework
for reasoning about actions and to obtain an imple-
mentation that uses a knowledge representation sys-
tem based on DLs.

The work on efficient reasoning methods in DLs shows
that the typical form of dynamic axioms is problem-
atic wrt efficiency (such axioms are “cyclic” in the DLs
terminology). Hence we have reinterpreted dynamic

axioms by means of the so-called procedural rules. By
relying on the epistemic interpretation of these rules
given in [Donini et al.,1994] we have defined a setting
which provides both an epistemic representation of dy-
namic axioms and a weak form of reasoning. In this
way, we obtain a computationally feasible and seman-
tically justified approach to deductive planning.

Indeed, there are several studies that propose to
use DLs as a basis for the development of plan-
ning systems (among them [Artale and Franconi,1994;
Borgida,1992; Koehler,1994]). These works extend the
DLs language with specific constructs that allow ac-
tions to be represented as concepts. The planning sys-
tem can thus reason about plans, by exploiting sub-
sumption in DLs. Our proposal takes a different per-
spective, derived from the correspondence with PDLs,
where actions are represented as roles, and properties
of states as concepts. In our case, plans are generated
through a combination of the propagation mechanism
for the procedural rules and taxonomic reasoning for
checking the static properties of states.

We have built an implementation on top of the mo-
bile robot Erratic, equipped with wheels and sonar,
which has the capability of integrating action exe-
cution and reactive behavior [Konolige,1995]. The
knowledge representation system used in the imple-
mentation is Crassic [Borgida et al.,1989], a well-
known, general-purpose knowledge representation sys-
tem based on DLs. One interesting feature of the im-
plementation is that it relies on the reasoning tools
provided by such a system, although in this way the
formalization is restricted to the subset of theories ex-
pressible in the CLASSIC representation language. We
named our mobile robot “Tino” and demonstrated it
at the 1995 Description Logic Workshop.

The paper is organized as follows. In Section 2, we
present the general framework for the representation
of dynamic systems we have adopted. In Section 3 we
introduce Epistemic DLs, and in Section 4 we address
our specific way of representing and reasoning about
actions in such a formalism. Finally, in Section b, we
describe the mobile robot “Tino”, which includes the
implementation in CLASSIC of the planning compo-
nent and a module for exchanging information between
high-level planning and the software implementing the
reactive capabilities of the robot.

2 REASONING ABOUT ACTIONS:
THE GENERAL FRAMEWORK

In this section we present the general framework for
representing dynamic systems on which our work is
based. Such a framework is essentially that of PDLs
[Rosenschein, 1981; De Giacomo and Lenzerini,1995a).

Dynamic systems are typically modeled in terms of
state evolutions caused by actions. A state represents a

situation the system can be in, and is characterized by
a set of properties which forms a complete description
(wrt some logic/language) of the represented situation.
Actions, which are typically considered deterministic,
cause state transitions, making the system evolve from
the current state to the next one.

In principle we could represent the behavior of a sys-
tem, i.e. all its possible evolutions, as a transition
graph, where each node denotes a state, and 1s labeled
with the properties that characterize the state, and
each arc denotes a state transition, and is labeled with
the action that causes the transition. Note, however,
that complete knowledge of the behavior of the sys-
tem is required to build its transition graph, while in
general one has only partial knowledge of such behav-
ior. In deductive planning this knowledge is phrased
in azioms of some logic (e.g. PDLs [Rosenschein,1981]
or Situation Calculus [Reiter,1993]). These axioms se-
lect a subset of all possible transition graphs. All the
selected graphs are similar, since they all satisfy the
same axioms, but yet different wrt those properties
not imposed by the axioms. Hence one has to con-
centrate on those properties that are true in all the
selected graphs, i.e. those properties that are logically
implied by the axioms.

Following [Rosenschein,1981] two kinds of axioms are
distinguished:

e Static azxioms, which are used for representing
background knowledge that i1s invariant with re-
spect to the execution of actions. In other words,
static axioms hold in any state and do not depend
on actions.

e Dynamic axrtoms, which are introduced to repre-
sent the changes actions bring about, and have
the form!:

C = (R)tt A[R]D
where R is an action, C' represents the precondi-
tions that must hold in a state, in order for the
action R to be executable; D denotes the postcon-
ditions that are true in the state resulting from the
execution of R in a state where preconditions C'
hold. Multiple axioms per action are allowed.

In deductive planning one is typically interested in an-
swering the following question: “Is there a sequence
of actions that, starting from an initial state, leads
to a state where a given property (the goal) holds?”.
Under the assumption of deterministic actions, this is
captured by the following logical implication (here we
phrase it in PDLs):

I'eS= ("G (1)
where: (i) T is the set of both static and dynamic
axioms representing the (partial) knowledge about the

! Actually in [Rosenschein,1981] the form of the dynamic
axioms is €' = [R]D, and for each action R the axiom
(R)tt is assumed to be valid.

I DLs | PDLs |
atomic concept A atomic proposition A
top T true tt
bottom L false f
conjunction cnbp conjunction CAD
disjunction cub disjunction cvD
negation -C negation -C
existential quantification dR.C diamond (“some runs ...”) | (R)C
universal quantification VR.C box (“all runs ...”) [R]C
inclusion assertion cCCD valid implication (axiom) | C'= D
Instance assertion Cla) | R(ag, as) — —
Figure 1: Correspondence between DLs and PDLs.

system; (ii) S is a formula representing the (partial)

knowledge about the initial situation (state); (iii) G T2 = A

is a formula representing the goal, which is, in fact, 1T = 9

a (partial) description of the final state one wants to AT c A

reach; (iv) (@*)}G (where {o*)G stands for any formula cnDY — oTnDT

of the form (R1){R2) ... (Ry)G with n > 0 and R; any (cnny” = n

action) expresses the existence of a finite sequence of (cuby: = c*ub*

actions leading to a state where (' is satisfied. -yt = A\C?

From a constructive proof of the above logical implica- VR.CT = {dieA|

tion one can extract an actual sequence of actions (a Vo (dv, d) € RT = d, e CI}

plan) that leads to the goal. .

on . . . JR.CT = [eA|

serve that in this setting one may have a very T T
sparse knowledge about the system — say a few laws - (i, dz) € RO N d2 € CT)

(axioms) one knows the system obeys — and yet be
able to make several non-trivial inferences. Unfortu-
nately, this generality incurs a high computational cost
(typically PDLs are EXPTIME-complete [Kozen and
Tiuryn,1990]).

Therefore, we make use of the correspondence between
PDLs and Description Logics (DLs) to take advantage
of the extensive studies of the computational aspects
of reasoning in DLs; and to exploit specific techniques
developed in DLs to lower the cost of reasoning. We
present our proposal using the notation of DLs, in or-
der to make it easier to relate our proposal both to
previous research in DLs, whose results are exploited
here, and to the actual implementation in CLASSIC.

3 EPISTEMIC DESCRIPTION
LOGICS

In this section we introduce description logics with
an epistemic operator, which constitute the techni-
cal background of our proposal. We focus on a well-
known DL, ALC, and its epistemic extension, ALCK,
obtained by adding a modal operator interpreted in
terms of minimal knowledge as in [Donini et al.,1992;

1994; 1995).

In Fig. 1 we present the constructs of the DL ALC
and the correspondence with PDLs. Such correspon-

Figure 2: Semantics of ALC

dence, first pointed in [Schild,1991], is based on the
similarity between the interpretation structures of the
two kinds of logics. At the extensional level, states
in PDLs correspond to individuals (members of the
domain of interpretation) in DLs, whereas state tran-
sitions correspond to links between two individuals.
At the intensional level, propositions correspond to
concepts, and actions correspond to roles. The cor-
respondence is realized through a (one-to-one and
onto) mapping from PDLs formulae to DLs concepts,
and from PDLs actions to DLs roles. For a de-
tailed presentation of such a mapping and more gen-
erally of the correspondence we refer to [Schild,1991;
De Giacomo and Lenzerini,1994]. For our purposes it
suffices to consider DLs concepts and roles as syntactic
variants of PDLs formulae and actions respectively.

In the following we shall refer to an ALC-interpretation
7 as a function mapping each concept expression into
a subset of some abstract interpretation domain A and
each role expression into a subset of A x A, such that
the equations of Fig. 2 are satisfied.

The basic reasoning service for DLs is subsumption:
C is subsumed by D if CZ C D? for every Z. In

TP = A
L5 =
(KC)I,W — ﬂ (CJ,W)
TEW
(C|_| D)I,W — CI,W N DI,W
(Cl_l D)I,W — CI,W U DI,W
(_‘C)I,W A \ CI,W
(VR.CY"W = {dieA|
Vdo. (dv,ds) € R*Y = dy € CTW)
(AR.CYYY = {dieA|
Ads. (d1,d2) € R™Y A dy € CTVY
(KP)Y"™Y = () (7™).
TEW

Figure 3: Semantics of ALCK

other words subsumption allows to establish a hierar-
chy among concept descriptions, which can be used to
reason on a specific problem instance. The complexity
of subsumption in DLs has been carefully studied for
different logics obtained by admitting different sets of
constructs.

ALCK is an extension of ALC with an epistemic op-
erator interpreted as knowledge. More precisely the
ALCK abstract syntax is as follows (C, D denote con-
cepts, R denotes a role, A denotes a primitive concept,
and P a primitive role):

C,D == A|T|L|COD|CUD|-C|
VR.C'|3R.C' | KC
R x= PJ|KP

Non-epistemic concepts and roles are given essentially
the standard semantics of DLs, conversely epistemic
sentences are interpreted on the class of Kripke struc-
tures where worlds are ALC-interpretations, and all
worlds are connected to each other, 1.e. the accessibil-
ity relation among ALC-interpretations is universal.

The semantics is based on the Common Domain As-
sumption: Every interpretation is defined over the
same, fixed, countable-infinite domain of individuals

Al

An ALCK-interpretation is defined as a pair (Z, W)
where W is a set of ALC-interpretations over the do-
main A, and 7 is a distinguished interpretation be-
longing to W (i.e. T € W), such that ATW C A,
PTW C A x A and the equations in Fig. 3 are satis-
fied.

Intuitively, an individual d € A is an instance of
a concept C iff d € CTW in the particular ALC-

interpretation Z € W. An individual d € A is an
instance of a concept KC (i.e. d € (KC)2W) iff
d € C7W for all possible ALC-interpretations J € W.
In other worlds, an individual 1s known to be an in-
stance of a concept if it belongs to the concept interpre-
tation of every possible world. Similarly, an individual
d € A is an instance of a concept IKR.T iff there is
an individual d’ € A such that (d,d’) € RTW for all
possible 7 € W.

DLs are typically used for representing the knowl-
edge about a problem domain by providing mecha-
nisms both for introducing concept definitions and
for specifying information about individuals. Accord-
ingly, an ALCK knowledge base ¥ is defined as a pair
¥ = (7,A), where 7, called the TBoz, is a finite
set of inclusion statements of the form C' C D, with
C,D e ALCK, and A, called the ABouz, is a finite set
of membership assertions of the form C(a) or R(a,b),
where C, R € ALCK and a,b are names of individu-
als. We assume that different names denote different
individuals, hence, we generally do not distinguish be-
tween individuals and their names.

The truth of inclusion statement is defined in terms of
set inclusion: C' C D is satisfied iff C7W C DTW,
Assertions are interpreted in terms of set membership:
C(a) is satisfied iff « € C7W and R(a,b) is satisfied
iff (a,b) € RZW. A model for an ALCK-knowledge
base W is a set of ALC-interpretations W such that for
each interpretation 7 € W, every sentence (inclusion
or membership assertion) of ¥ is true in the ALCK-
interpretation (Z, W).

The final step of the construction consists of defining
a preference semantics on universal Kripke structures,
which allows one to select only those model where the
knowledge 1s minimal. This is achieved by maximizing
in each epistemic model the number of possible worlds
(i.e. ALC-interpretations), which can also be explained
as maximizing ignorance.

A preferred model W for ¥ is a model for ¥ such
that W is a maximal set of ALC-interpretations, in
the sense that for each set W if W C W’ then W'
is not a model for W. ¥ is satisfiable if there exists a
preferred model for ¥, unsatisfiable otherwise. ¥ log-
ically implies an (inclusion or membership) assertion
o, written ¥ |= o, if o is true in every preferred model
for .

Using the epistemic operator, it is possible to formal-
ize in ALCK several interesting features provided by
frame systems, based on DLs [Donini et al.,1994]. In
particular, here we recall the so-called procedural rules
(or simply rules).

Procedural rules take the form:
C— D

(where C, D are concepts). Roughly speaking, their
meaning is “if an individual is proved to be an instance

of C', then conclude that it is also an instance of D”.
Therefore they can be viewed as implications for which
the contrapositive does not hold. A procedural rule
C +— D can be formalized in ALCK by the epistemic
sentence

KCCD

Notice that procedural rules can be regarded as a weak
form of concept definitions.

A knowledge base in which the epistemic operator oc-
curs only in rules of the above form has a unique pre-
ferred model; moreover, in such a case the entailment
problem can be solved by constructing a knowledge
base, called first-order extension [Donini et al.,1992;
1994]. Informally, the first-order extension is incre-
mentally built by applying the following procedure:
For each individual 7 explicitly mentioned in the ABox
of the knowledge base and for each rule C' — D, if C'(4)
is a consequence of the knowledge base, then add D(%)
to the knowledge base. The first-order extension thus
constructed can be used for answering queries in place
of the epistemic knowledge base.

4 REASONING ABOUT ACTIONS:
OUR PROPOSAL

In this section we present our framework for represent-
ing dynamic systems and reasoning about them. We
first introduce the representation and, subsequently,
address the reasoning method.

4.1 REPRESENTATION

Let us now describe how we use epistemic DLs to for-
malize dynamic systems. As we want to tackle the
computational cost of reasoning, two aspects must be
carefully considered:

1. The expressivity of the language, i.e. the set of
constructs allowed;

2. The form of the axioms, i.e. the form of the inclu-
sion assertions.

The research in DLs has shown that there is a trade-off
between expressivity and complexity of reasoning, and
has devised a number of languages for which reason-
ing without inclusion assertions is polynomial. How-
ever, adding general inclusions of the form C' C D
makes reasoning EXPTIME-hard even for a simple
language as FLg [McAllester,1991], which contains
only intersection M and universal quantification V.
Hence, restrictions on the form of the inclusions are
normally considered. In particular, cycles (recursive
inclusions) [Nebel,1991; Buchheit et al.,1993; 1994;
Calvanese,1996] are especially problematic from the
computational point of view, and typically are not al-
lowed.

Taking into account the above considerations, we
model static axioms as acyclic inclusion assertions, and
we model the dynamic axioms, for which the acyclic-
ity condition would be too restrictive, by making a
special use of procedural rules. In this way, the dy-
namic axioms cannot be used in the reverse direction
for contrapositive reasoning, and this weakening allows
for lowering the computational cost of reasoning in our
formalism.

Specifically, in our ontology, an agent is, at any given
point, in a certain state, represented by an individual
in the domain of interpretation. Properties of states
are represented as concepts of DLs. That is, a concept
denotes a property that may hold in a state. Actions,
which are assumed to be deterministic, are represented
as functional roles — i.e. roles interpreted as functions
instead of relations.

In fact, we distinguish two kinds of roles: Static-roles,
which represent the usual notion of role in DLs and
can be useful for structuring properties of states, and
action-roles, which are functional roles that denote ac-
tions and are used in a special way.

The behavior of the agent is described by means of
both static axioms and dynamic axioms. We formal-
ize static axioms as acyclic inclusion assertions, not
involving action-roles. Whereas, by exploiting the
epistemic interpretation of procedural rules [Donini et
al.,1994; 1995, we formalize dynamic axioms through
epistemic sentences of the form:

KC C IKR.TNVYR.D (2)

which can be intuitively interpreted as: For all possible
interpretations, if a state (individual) # is an instance
of C' in all possible interpretations, then there exists
a state y which is the (unique) R-successor of z in
all possible interpretations, and y is an instance of D.
In other words, for all possible transition graphs, if a
state x satisfies the property C' in all possible transi-
tion graphs, then there exists a state y which is the
R-successor of z in all possible transition graphs, and
y satisfies 1. From now on we refer to states whenever
the individuals are interpreted as states.

Notably, by using dynamic axioms of this special form,
we recover the ability of representing the behavior of
the system by means of a single graph — an ability
that is generally lost when using other forms of dy-
namic axioms. Such a graph, which we may call par-
teal transition graph, summarizes the common part of
all transition graphs that, by our (partial) knowledge
about the dynamic system, are considered possible.
The partial transition graph gives us a description of
a transition graph which is partial, in the sense that:

1. Certain states and transitions may be missing;

2. The properties of the states in the graph may be
only partially specified.

Given an initial state satisfying certain properties; a
plan exists for a specified goal if there exists a finite
sequence of actions that, from the initial state, leads
to a state satisfying the goal, regardless of which of
the possible interpretations corresponds to the actual
world. This condition is expressed by a logical impli-
cation similar to (1), namely:

(Is UTp, {S(init)}) | (IKa)" . KG)(init) (3)

where: (i) T's and T'p respectively indicate the sets
of static axioms and dynamic axioms; (ii) inét names
an individual representing the initial state, and S is a
concept describing our knowledge about such an initial
state; (iil) (IK«)* . KG stands for any concept expres-
sion of the form

JKR,.IKR,.3KR,.KG

in which n > 0 and each R; i1s an action-role, and it
expresses the fact that from the initial state init there
exists a sequence of successors (the same in every in-
terpretation) that terminates in a state (the same in
every interpretation) where G holds (in every interpre-
tation). Intuitively, condition (3) checks for the exis-
tence of a state of the partial transition graph, reach-
able from the initial one, in which the goal is satisfied.

Observe that condition (3) holds iff for each preferred
model W for & = (T's UTp, {S(init)}), there exists
a state # € A such that « € GTW for all 7 € W.
Indeed, by the special form of the dynamic axioms,
such a state exists iff it is linked to the initial state
by a chain of KR;, i.e. if there exists a sequence of
successors (the same in every possible interpretation)
that terminates in .

4.2 REASONING

Let us now turn our attention to the problem of com-
puting the entailment (3). We point out that in gen-
eral the ALCK-knowledge base X has many preferred
models, which are distinguishable even up to renaming
of individuals. Nevertheless, due to the special form of
the epistemic sentences corresponding to the dynamic
axioms in X, we can build the so-called first-order ex-
tension (FOE) [Donini et al.,1994] of the knowledge
base ¥ = (I's U T'p, {S(init)}), which consists of the
knowledge base (I'g, {S(init)}) augmented by the as-
sertions which are consequences (up to renaming of
individuals) of the epistemic sentences describing the
dynamic axioms. The FOE of X provides a unique
characterization of the knowledge that is shared by all
the preferred models of ¥. In fact, the notion of FOE
formalizes the concept of partial transition graph in-
troduced above, which describes all common proper-
ties of the possible behaviors of the system.

The FOE of X, written FOFE(X), is computed by the
algorithm shown in Fig. 4, in which
POST(E,R,s) =

{D; | (KC; CIKR.TNVR.D) € XAX = Ci(s)}

denotes the effect of the application of the rules of X
involving the action-role R to the state s, namely the
set of postconditions (concepts) of the rules which are
triggered by s, and

CONCEPTS(Z,i)={D | X E D(i)}
denotes the set of concepts verified by the state 7 in X.

Informally, the algorithm, starting from the initial
state init, applies to each named state the rules in
the set I'p which are triggered by such a state. A
new state is thus generated, unless a state with the
same properties had already been created. In this way
the effect of the rules is computed, obtaining a sort of
“completion” of the knowledge base.

It is easy to see that the FOE is unique, that is, every
order of extraction of the states from the set STATES
produces the same set of assertions, up to renaming
of states. Moreover, it 1s easy to see that the algo-
rithm terminates, that is, the condition STATES = {
is eventually reached, since the number of states gen-
erated is bounded to the number of different conjunc-
tions of postconditions of the rules, i.e. 27, where n 1s
the number of rules in ¥. Finally, the condition

CONCEPTS({T's, ABOX),l) =
CONCEPTS({l's, ABOX'), j)

can be checked by verifying whether for each con-
cept C, obtained as a conjunction of the postcon-
ditions of the rules in T'p, (T's, ABOX) = C(I) iff
(T's, ABOX') = C(j).

We point out that while the notion of minimization of
the properties of states, realized through the propaga-
tion of rules (i.e. only the properties which are nec-
essarily implied are propagated), is also correctly cap-
tured by the minimal knowledge semantics of ALCK,
the minimization obtained in the FOE by always gen-
erating a new successor state does not have a direct
counterpart in the semantics: This is the reason why
Y. has multiple preferred models, whereas the FOE is
unique.

The following property establishes that, wrt the entail-
ment problem (3), the first-order extension of X repre-
sents the information which must hold in any preferred
model for X.

Theorem 4.1 There exists a state x such that
POE(E) k= G(z) (4)

of and only if, for each preferred model W for X3, there
exists a state ¢ such that x € GTW for all 7 € W.

Sketch of the proof. If-part. Suppose that for each
model W for X there exists a state x such that z €
GIW for all J € W. Now, it is easy to see that
there exists a preferred model W’ for ¥ such that
for each state s in FOFE(X) there exists a state s

ALGORITHM FOE
INPUT: ¥ = (I'sUTI'p, {S(init)})
OUTPUT: FOE(Y)
begin
STATES = {init};
ALL-STATES = {init};
ABOX = {S(init)};
repeat
s = choose(STATES);
for each action-role R do
begin
s' = NEW state name;

else begin
ABOX = ABOX';

end
end;
STATES = STATES —{s}
until STATES = 0;
return (I's, ABOX)
end;

ABOX' =ABOX U{R(s, s")} U{D:(s")|Di € POST({I's UT p, ABOX), R, 5)}:
if there exists a state s” € ALL-STATES such that

CONCEPTS((T's, ABOX),s") = CONCEPTS((T's, ABOX"), s')
then ABOX = ABOX U R(s, s")

STATES = STATES U{s"}
ALL-STATES = ALL-STATES U{s"}

Figure 4: Algorithm computing FOE(X)

in W isomorphic to s, that is, for every concept C,
FOE(X) | C(s) iff s € CTW. Therefore, the exis-
tence of such a model W’ implies the existence of a

state y such that FOE(X) = G(y).

Only-if-part. Assume there exists a state = such that
FOE(X) |E G(x). Then, there is a finite sequence of
actions R;,,..., R;, (the plan) that generates x. Let
z1 be the R; -successor of init in FOE(X), and let W
be any preferred model for . Now, the properties that
tnit 1s known to verify in all worlds of W are at least
the properties stated in the initial situation. Conse-
quently, the set of epistemic sentences, corresponding
to the dynamic axioms whose antecedent is satisfied
by init in FOE(Y), implies the same set of proper-
ties on another state (say y1) that is the same in each
interpretation J of W. That is, y; satisfies at least
the same properties satisfied by xz;. Now, let x5 be
the R;,-successor of x1. The same kind of reasoning
can be applied, thus showing that there must exist
a state y, in W satisfying in each world at least the
same properties verified by z5. By iteration we con-
clude that there exists a state y, such that x € G7W
for all 7 € W, which concludes the proof. |

By the above property, we can solve the planning prob-
lem (3) by verifying whether there is an z in FOE(X)
that satisfies the goal G.

4.3 COMPLEXITY

As for the computational aspects of reasoning about
actions in the epistemic framework based on ALCK,
it turns out that the planning problem i1s PSPACE-
complete which 1s a direct consequence of Theorem
4.1 and of the following property.

Theorem 4.2 The problem of establishing whether
there exists a state x such that FOE(X) | G(x) is
PSPACE-complete.

Sketch of the proof. PSPACE-hardness follows from
the fact that the subsumption problem for acyclic ALC
TBoxes, which is PSPACE-complete [Calvanese,1996],
can be reduced (I'p = @) to the problem of es-
tablishing whether there exists a state z such that
FOE(X) E G(x). Membership in PSPACE is due
to the fact that the maximum number of states gen-
erated in FOE(X) is 2" (where n is the number of
dynamic axioms), therefore, if there exists a state »
in FOFE(X) such that G(z) holds, then such a state
can be generated through a sequence of actions whose
length is less or equal to 27. This property allows for
the generation of all the states, one at a time, using a
polynomial amount of space. |

Notice that the algorithm for computing FOFE(X) uses
exponential space, because FOFE(X) can be used to

find a plan, not only to know whether there exists a
plan. It is easy to modify the above algorithm in order
to answer to the plan existence problem using polyno-
mial space only.

Let us now compare our formalization with the one
we get leaving out the epistemic operator (i.e. Rosen-
schein’s formalization), hence using ALC instead of
ALCK. The difference between the two formalizations
lies in the different representation of the dynamic ax-
ioms I'p, which are formalized through epistemic sen-
tences in ALCK of the form (2), whereas they are ex-
pressed by ordinary axioms (implications) in ALC, of
the following form:

CC3IR.TOVR.D
corresponding to Rosenschein’s dynamic axioms

C = (R)ytt A [R]D

The planning problem (1) is expressed in such a setting
by the following entailment problem:

(Ts UTp, {S(init)}) | ((3a)".G)(init) (5)

We now show that the use of procedural rules in the
formalization of the dynamic axioms actually weak-
ens the deductive capabilities of the agent formalized.
This can be explained by the following simple example.
Suppose we have the following dynamic axioms:

C C3IR.TNVYR.D
~CC3IR.TNVYR.D

and suppose the goal 18 D and the initial situation
does not specify the truth value of C. It is easy to
see that in the ALC formalization (corresponding to
Rosenschein’s framework) the answer to the planning
problem is yes (the desired plan consists of the action
R), while in the ALCK framework the answer to the
planning problem is no.

This is precisely due to the different formalization of
the dynamic axioms: In the ALC setting, the agent
is able to conclude that he is able to perform action
R, since in the current state of the world either C' or
=C holds. Conversely, in the ALCK framework, in the
epistemic state of the agent neither C' nor =C' holds,
since the agent does not know the truth value of C,
therefore he concludes that he is not able to perform
action R.

Let us now slightly modify the above example. Sup-
pose we have the following dynamic axioms:

C C3R,.TNVYR,.D

~C' C3R..TNVYRs.D

and again suppose that the goal is D and the initial
situation does not specify the truth value of C'. Now,
there is no known sequence of actions leading to the
state satisfying the goal, yet in the ALC setting the

answer to the planning problem is yes, whereas it is
still no in the epistemic framework.

This example highlights the fact that in the ALCK
setting only constructive proofs are taken into consid-
eration, in the sense that the entailment (3) holds only
if there exists a known sequence of actions leading to
the state satisfying the goal. That is, if (3) holds then
we are always able to extract an effective plan.

Conversely, it 1s easy to see that, if in the epistemic for-
malization of actions the entailment (3) holds, then the
entailment (5) holds in the ALC setting. Therefore,
with respect to the planning problem, the epistemic
framework based on ALCK is a sound and incomplete
approximation of the non-epistemic one. That is, the
use of the epistemic operator in the formalization of
actions allows for a principled weakening of the deduc-
tive capabilities of the agent.

5 THE MOBILE ROBOT “TINO”

Our approach to reasoning about actions has been im-
plemented on the Erratic base [Konolige,1995]. The
robot, that, as mentioned, has been named Tino, has
been successfully tested on several real and simulated
office environments.

Tino i1s based on a two-level architecture, which com-
bines a reactive control mechanism with a planning
system. The idea dates back to the architecture of
the robot Shakey, in which the planning system was
STRIPS. However, the Erratic base allows for an ef-
fective combination of both horizontal and vertical
decomposition (see [Brooks,1986]). By a horizontal
decomposition the system can react immediately in
dynamic environments. While a vertical decomposi-
tion is in the relationship between the module which
is responsible for planning and the underlying fuzzy
controller. Each of these modules has 1ts own repre-
sentation of the environment and of the plan. The
communication between the two modules is realized
by a plan execution module. Thus, as in [Gat,1992],
we have a heterogeneous architecture, since we have
implemented our planning system and then we have
connected 1t with the existing controller.

Below we sketch the basic elements of the implemen-
tation of the planning component and of the plan ex-
ecution component.

5.1 PLAN GENERATION

One of the motivations underlying our proposal for
reasoning about actions is the possibility of relying
on a knowledge representation system based on DLs
for the implementation. In particular, we have chosen
Crassic [Borgida et al.,1989], a well-known system
based on DLs, to take advantage of an efficient and
reliable reasoning system. However, the language for

representing knowledge is less expressive than the DL
we have considered so far. Nonetheless, we obtain an
interesting setting where the plan can be generated in
polynomial time.

More specifically, we use a subset of the language
ALCK, corresponding to some of the constructs avail-
able in CrLaAssIC, that we write for ease of notation
using M for AND, V for ALL and 3R.{a} for FILLS.

Static axioms are expressed either as inclusion asser-
tions or as concept definitions, written = and inter-
preted as necessary and sufficient conditions (see for
example [Buchheit et al.,1994]). In both cases cycles
are not allowed. Dynamic axioms are represented as
CLaAsSSIC rules denoted with +—.

Each rule is thus written as
C— 3R{a} NVR.D

and can be read as follows: For each named individ-
ual ¢ classified under C', connect ¢ to the individual a
through the role R, and classify @ under 1. There-
fore @ is an individual denoting the state reached as a
result of the execution of action R.

Notice that we are forced to use the FILLS (written
dR.{a}) construct because we cannot express IKR. T
in Crassic. This gives us a sound implementation as
long as for each action R the preconditions C' in dy-
namic axioms involving R are disjoint from each other.
Indeed, this condition implies that in every state at
most one of the preconditions C' for each action R is
satisfied, consequently the only concept that holds in
an R-successor, obtained by applying the dynamic ax-
iom,is D.

With the above described representation, computing
the FOE is done in polynomial time, because the num-
ber of individuals is at most linear in the number of
rules, and the condition for the application of a rule
can be checked in polynomial time. Notice that we
cannot compute the FOE of a knowledge base ¥ in
the general case using CLASSIC, because there is no
other way to state the existence of a named individual
(representing a successor state) other than explicitly
naming it through the construct FILLS.

The plan is extracted by the explanation facility pro-
vided with the rule mechanism of the system, which
allows for an automatic generation of a graph (essen-
tially a part of the FOE) with all the paths from the
initial state to the states that satisfy the goal. The
plan to be sent to the robot i1s then selected by find-
ing the path (between the initial state and the states
that satisfy the goal) which is minimal in terms of the
number of transitions (actions).

Example 5.1 Given the map shown in Fig. 5, refer-
ring to an office environment constituted by rooms,
doors and corridors, we can describe it through the
following knowledge base:

I

I

I

I

I

I

I

77 NI
! | !
| I I
| Corridor 1 RN | |
| z \\ | |
: K CloseToDoorl ! J
N L ___ J e e e e e e e e N Vo _ -1
I I

;T T T T T T T Y | |

/ : 3 3

! Room1 | ! !

| ! | |

Doorl N __ / N)

Figure 5: A simple environment

Corridorl C Corridor

Corridor?2 C Corridor

Room1 C Room

CloseToDoor = Corridor MV NextDoor.DoormM
dNextDoor. T

CloseToDoorl = CloseToDoor M Corridorln

ANeztDoor.{z Doorl}

Corridorl — IFollowC1ToD1.{zCloseToDoorl}r
VFollowC1ToD1.CloseToDoorl

Corridorl — IFollowC1ToC2.{zCorridor2}r
VFollowC1ToC2.Corridor2

CloseToDoorl — TIEnter D1.{z Room1}M
VEnterD1.Rooml1

Rooml1 — JFzitD1.{zCloseToDoorl}n
VEzitD1.CloseToDoorl

Door(zDoorl)
Corridor1(zCorridorl)

Let us now highlight the use of static axioms for the
description of knowledge about environments and for
the classification of states. In the above example, the
concept CloseToDoor formalizes the property of being
in a corridor and close to a door, while the concept
CloseToDoorl represents the property of being close
to a particular door (Doorl). NextDoor, which is as-
sumed to be a functional role, is used to describe a
static property of a portion of a corridor.

The action graph relative to the above knowledge base
is given in Fig. 6. Notice that with the rule propaga-
tion mechanism we can produce many edges of the
graph with a single rule. In fact, suppose there are
many doors in Corridorl, with the only rule that
describes the action FollowC1ToC2, we can connect
in the graph all the states xCloseToDoor(i) to the
state zCorridor2 with edges labeled with the action
FollowC1ToC2. This 1s due to the fact that we
can write static axioms such that CloseToDoorl C
Corridorl.

Moreover, static axioms allow us to write postcondi-
tions of actions in a simple way. For example in the de-

FollowC1ToC2

xCorridorl xCorridor2

FollowC1ToD1 FollowC1ToC2

xCloseToDoorl

EnterD1

Figure 6: The action graph

scription of the action Fxit D1 we have only mentioned
CloseToDoorl as postcondition, instead of writing all
the postconditions (in this case also Corridorl) ex-
plicitly.

The ability to provide a taxonomic representation of
the environment not only provides a more compact
way to specify the knowledge about the problem do-
main, but also to have a more flexible and easy to
modify representation. In particular, we have taken
advantage of these features both in modeling different
environments and in the implementation of a module
that takes as input a topological representation of the
map and generates a CLASSIC knowledge base.

5.2 PLAN EXECUTION

The planning system is activated by a plan execution
module which provides the connection to the robot
software. The control of the robot is achieved by
means of a fuzzy controller [Saffiotti et al.,1995] which
takes care of obstacle avoidance while the robot is try-
ing to achieve a high-level goal such as reaching the
next door in the corridor.

More specifically, the plan execution module turns the
sequence of actions, expressed as CLASSIC roles, into a
specification for the control software. The control sys-
tem drives the robot low-level movement commands
by means of control schemata, called behaviors, which
specify both how to implement high-level actions and
how to perform several kinds of reactive control, such
as obstacle avoidance. Therefore, the simultaneous ac-
tivation of reactive behaviors, and of the ones imple-
menting actions is usually requested to perform a task.
For example, the activation of the behaviors Avoid Ob-
stacle, Keep Off and Follow Corr, is used to realize
navigation within a corridor. The actual execution
can be viewed as the blending of such behaviors, based
on the information acquired through the sensors (see

[Saffiotti et al.,1995] for further details). The idea is

related to the notion of plan-as-communication [Agre
and Chapman,1990], since the plan is not mechani-
cally executed, but is used to decide which behavior
to activate.

As each module has its own representation of infor-
mation, the exchange of information between the two
layers is a critical aspect. The planning system sends a
plan to the control system, the latter can detect a plan
failure and reply to the former with a justification for
the failure (such as “door closed”) so that the planning
system can re-plan after updating the knowledge base.

Example 5.2 We can describe the fact that the robot
can enter in a room only if it is close to an open door
by adding the following declarations to the knowledge
base in Example 5.1.

CloseToOpenDoor = CloseToDoormM
VNextDoor.Open

CloseToOpenDoorl = CloseToOpenDoorn
CloseToDoorl

CloseToOpenDoorl — FEnter D1.{z Room1}M

VEnterD1.Rooml

Door(zDoorl)
Open(z Doorl)

Now, in presence of a failure during a plan execution,
caused by the fact that door xDoorl 1s closed, it is
sufficient to update the knowledge base, by retracting
the assertion Open(zDoorl), so that the new rule in-
volving EnterD1 cannot be applied and the associated
edge will not be in the action graph. If there is another
door to access the room, it may be possible to select
an alternative plan to reach it.

6 CONCLUSIONS

The goal of our work was to devise a principled and
practically feasible realization of a KR&R approach to
reasoning about actions in the realm of mobile robots.
In the paper we have presented a formal setting for
reasoning about actions and its implementation on the
Erratic base, integrating reacting behavior with action
planning and execution.

We believe that the results of our work are twofold.
From the standpoint of the research on reasoning
about actions, the basis for our work has been the for-
mal correspondence between Propositional Dynamic
Logics and Description Logics. This has lead us not
only to a semantically justified implementation, but
also to the adaptation of the formal setting in new and
interesting directions. In particular, we have shown
that the use of rules instead of axioms both reduces
the computational complexity of the planning problem
and (under some restrictions) allows for the implemen-

tation of the theoretical framework for reasoning about
actions in an efficient KR system (Crassic).

As compared with other approaches to action plan-
ning for mobile robots, the choice of a Knowledge-
Representation System, together with the associated
methodology for representing the dynamic environ-
ment and reasoning about actions, has led to a very
flexible implementation of the planning component,
that can be easily adapted to new environments and
accommodate the changes in the environment. To this
end, the possibility of structuring the representation of
environments using the features of a DL representation
language plays a crucial role.

The implementation developed so far 1s mainly con-
cerned with the position of the robot and its move-
ment capabilities. We are currently working at several
extensions of the proposed framework, that will en-
able Tino to address more complex scenarios. To this
end, we can exploit the notion of epistemic state of the
agent, using it to address several issues arising in com-
plex dynamic domains. In particular, we are currently
focusing on the following aspects:

1. Frame problem. It turns out [Donini et
al.,1995] that a slight modification in the seman-
tics of the epistemic operator allows for the repre-
sentation of default rules in ALCK, thus allowing
for the formalization of the notion of default per-
sistence of knowledge, realized through the use
of defaults. This property, together with the no-
tion of default persistence of ignorance encoded
in the semantics, allows for a formalization of the
commonsense law of inertia, realized through a
“small” number of epistemic axioms (formalizing
default rules).

2. Sensing. The possibility of representing the epis-
temic state of the agent allows for a very simple
formalization of sensing (or knowledge-producing)
actions. Indeed, the semantic of the epistemic op-
erator in ALCK embodies the principle of mini-
mal learning, or default persistence of ignorance
[Scherl and Levesque,1993], thus allowing for a
simple treatment of actions whose execution only
changes the knowledge of the agent without af-
fecting the state of the world.

Acknowledgments

The work has been supported by Italian MURST. Ric-
cardo Rosati acknowledges the ATl Center of SRI Inter-
national, Menlo Park, for the support provided during
his visiting period.

References

[Agre and Chapman, 1990] Philip E. Agre and David

Chapman. What are plans for? Robotics and Au-
tonomous Systems, 6:17-34, 1990.

[Artale and Franconi, 1994] Alessandro Artale and
Enrico Franconi. A computational account for a
description logic of time and action. Proceedings of
the Fourth International Conference on the Prin-
ciples of Knowledge Representation and Reasoning

(KR-94), 1994.
[Borgida et al., 1989] Alexander Borgida, Ronald J.

Brachman, Deborah L. McGuinness, and Lori
Alperin Resnick. CLASSIC: A structural data
model for objects. In Proceedings of the ACM SIG-
MOD International Conference on Management of
Data, pages 5967, 1989.

[Borgida, 1992] Alex Borgida. Towards the systematic
development of description logic reasoners: Clasp
reconstructed. Proceedings of the Third Interna-

tional Conference on the Principles of Knowledge
Representation and Reasoning (KR-92), 1992.

[Brooks, 1986] Rodney A. Brooks. A robust layered
control system for a mobile robot. IEEE Journal of
Robotics and Automation, RA-2(1), 1986.

[Buchheit et al., 1993] Martin Buchheit, Francesco M.
Donini, and Andrea Schaerf. Decidable reasoning
in terminological knowledge representation systems.
Journal of Artificial Intelligence Research, 1:109-
138, 1993.

[Buchheit et al., 1994] Martin Buchheit, Francesco M.
Donini, Werner Nutt, and Andrea Schaerf. Termino-
logical systems revisited: Terminology = schema +
views. In Proceedings of the Twelfth National Con-
ference on Artificial Intelligence (AAAI-94), pages
199-204, Seattle, USA, 1994.

[Calvanese, 1996] Diego Calvanese. Reasoning with
inclusion axioms in description logics: Algorithms
and complexity. In W. Wahlster, editor, Proceedings
of the Twelfth European Conference on Artificial In-
telligence (ECAI-96), pages 303-307. John Wiley &
Sons, 1996.

[De Giacomo and Lenzerini, 1994] Giuseppe De Gia-
como and Maurizio Lenzerini. Boosting the cor-
respondence between description logics and propo-
sitional dynamic logics. In Proceedings of the 12th
National Conference on Artificial Intelligence, pages
205-212, 1994.

[De Giacomo and Lenzerini, 1995a] Giuseppe De Gia-
como and Maurizio Lenzerini. Enhanced proposi-
tional dynamic logic for reasoning about concurrent
actions (extended abstract). In Working notes of the
AAAT 1995 Spring Symposium on Ertending Theo-
ries of Action: Formal and Practical Applications,

pages 62-67, 1995.

[De Giacomo and Lenzerini, 1995b] Giuseppe De Gi-
acomo and Maurizio Lenzerini. PDL-based frame-
work for reasoning about actions. In Proceedings

of the Fourth Conference of the Italian Association
for Artificial Intelligence (AT*TA-95), number 992 in
Lecture Notes In Artificial Intelligence, pages 103—
114. Springer-Verlag, 1995.

[Donini et al., 1992] Francesco M. Donini, Maurizio
Lenzerini, Daniele Nardi, Werner Nutt, and Andrea
Schaerf. Adding epistemic operators to concept lan-
guages. In Proceedings of the Third International
Conference on the Principles of Knowledge Repre-
sentation and Reasoning (KR-92), pages 342-353.
Morgan Kaufmann, Los Altos, 1992.

[Donini et al., 1994] Francesco M. Donini, Maurizio
Lenzerini, Daniele Nardi, Werner Nutt, and Andrea
Schaerf. Queries, rules and definitions. In Founda-
tions of Knowledge Representation and Reasoning.
Springer-Verlag, 1994.

[Donini et al., 1995] Francesco M. Donini, Daniele
Nardi, and Riccardo Rosati. Non first-order features
in concept languages. In Proceedings of the Fourth
Conference of the Italian Association for Artificial
Intelligence (AI*IA-95), Lecture Notes In Artificial
Intelligence. Springer-Verlag, 1995.

[Gat, 1992] Erann Gat. Integrating planning and re-
acting in a heterogeneous asynchronous architecture
for controlling real-world mobile robots. Proceedings
of the 11th National Conference on Artificial Intel-
ligence, 1992.

[Kaelbling and Rosenschein, 1995] L. Kaelbling and
S. Rosenschein. A situated view of representa-
tion and control. Artificial Intelligence, 73:149-173,
1995.

[Koehler, 1994] Jana Koehler. An application of ter-
minological logics to case-based reasoning. Proceed-
wngs of the Fourth International Conference on the
Principles of Knowledge Representation and Rea-

soning (KR-94), 1994.

[Konolige, 1995] Kurt Konolige. Erratic competes
with the big boys. AAAI Magazine, Summer:61—
67, 1995.

[Kozen and Tiuryn, 1990] D. Kozen and J. Tiuryn.
Logics of programs. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science,
pages 790-840. Elsevier Science Publishers (North-
Holland), Amsterdam, 1990.

[Lesperance et al., 1994] Y. Lesperance, H.J.
Levesque, F. Lin, D. Marcu, R. Reiter, and R.B.
Scherl. A logical approach to high-level robot pro-
graming. In AAAI FAlU Symposium on Control of
the Physical World by Intelligent Systems, 1994.

[McAllester, 1991] David McAllester, 1991. Unpub-
lished Manuscript.

[Nebel, 1991] Bernhard Nebel. Terminological cy-
cles: Semantics and computational properties. In
John F. Sowa, editor, Principles of Semantic Net-
works, pages 331-361. Morgan Kaufmann, Los Al-
tos, 1991.

[Reiter, 1993] R. Reiter. Proving properties of states
in the situation calculus. Artificial Intelligence,

64:337-351, 1993.

[Rosenschein, 1981] S. Rosenschein. Plan synthesis: a
logical approach. In Proc. of the 8th Int. Joint Conf.
on Artificial Intelligence, 1981.

[Saffiotti et al., 1995] A. Saffiotti, K. Konolige, and
E. Ruspini. A multivalued logic approach to inte-
grating planning and control. Artificial Intelligence,

76:481-526, 1995.
[Scherl and Levesque, 1993] Richard Scherl and Hec-

tor J. Levesque. The frame problem and knowl-
edge producing actions. In Proceedings of the
Eleventh National Conference on Artificial Intelli-
gence (AAAI-93), pages 689-695, 1993.

[Schild, 1991] Klaus Schild. A correspondence theory
for terminological logics: Preliminary report. In
Proceedings of the Twelfth International Joint Con-
ference on Artificial Intelligence (IJCAI-91), pages
466-471, Sydney, 1991.

[Simmons, 1992] Reid Simmons. An architecture for
coordinating planning, sensing and action. Proceed-
wngs of the 11th National Conference on Artificial
Intelligence, 1992.

