A NOTE ON THE EXHAUSTIVENESS OF
SLDNF-RESOLUTION FOR NORMAL PROGRAMS

Giuseppe De Giacomo

Dipartimento di Informatica e Sistemistica
Universita di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italia

Email: degiacom@assi.ing.uniromal.it

Abstract

We prove, by means of results on partial evaluation, that: given a normal program
P, whose completion comp(P) is consistent, and a normal goal G, if P U {G} has a
finite non-failing SLDNF-tree T', then the computed answers resulting from T are all
the correct answers for comp(P) U {G} (modulo instantiation).

1. Introduction

In this paper we present the following result: let P be a normal program such that comp(P)
is consistent, and let G be a normal goal; if P U {G} has a finite non-failing tree T', then the
answers computed by T are all the correct answers for comp(P)U{G} (modulo instantiation).

A full proof of this claim (first stated by Clark in [2]), has never been published. We prove
it here by using the machinery for partial evaluation developed by Lloyd and Shepherdson
(14).

Such an exhaustiveness result has been somewhat disregarded in the classical literature
on SLDNF-resolution. For example, Lloyd does not report it at all in [3]. Shepherdson just
mentioned it in connection with completeness results for SLDNF-resolution, ([5] and [6]),
pointing out that it is not very useful by itself because it is not easy to decide whether a
goal has a finite SLDNF-tree (actually such a property is tightly bound with the termination
problem for SLDNF-resolution, which is undecidable).

From a practical point of view the result has its own importance. In fact, as a consequence
of it we have that every time an SLDNF-resolution interpreter (e.g. asound Prolog) terminates
while evaluating a goal, it provides a complete logical characterization of the goal. Indeed, if
the goal fails, by Clark’s theorem on soundness of negation as failure, the goal is false. On
the other hand, if any answer is actually computed, by the result proved here, the computed
answers are all the correct answers for it (modulo instantiation).

1

The the paper is organized as follows: after summarizing some well-known definitions of
logic programming in Section 2, we introduce partial evaluation in Section 3, and finally we
prove the result in Section 4.

2. Preliminaries

We assume the reader familiar with the standard theoretical results of logic programming,
which are contained in [3]. The basic definitions are briefly recalled here.

Definition A normal program is a finite set of program clauses of the form
AFLl,...,Ln,

where A is an atom and L., ..., L, are literals. The definition of a predicate symbol p in a
normal program P is the set of all program clauses in P which have p in their head. A normal
goal < W is a clause of the form

— L,...,L,,

where Ly, ..., L, are literals. O

As usual, the completion of a program P, denoted as comp(P), is the collection of completed
definitions of the predicate symbols in P together with Clark’s Equality Theory.

Definition Let P be a normal program and <— W a normal goal. A correct answer for
comp(P) U {<- W} is a substitution 6 for the free variables in W such that comp(P) implies

the universal closure of W#:
comp(P) = YW.

3. On partial evaluation

In view of the literature on partial evaluation (cf. [4], [1]) it is convenient to use slightly more
general definitions of SLDNF-derivation and SLDNF-tree here than those given in [3]. In [3],
an SLDNF-derivation is either infinite, successful or failed. We also allow it to be incomplete,
in the sense that at any step we are allowed to simply not select any literal and terminate the
derivation. Likewise in SLDNF-tree we may neglect to unfold a goal.

A concept that is needed to define partial evaluation is that of resultant.

Definition A resultant is a first order formula of the form

Q1 < Qq,

where Q; (i = 1,2), either is missing, or (if present) is a conjunction of literals. Any variables
in @1 or ()7 are assumed to be universally quantified at the front of the resultant. a

Notice that, a resultant is not a clause, in general, because (); stands for a conjunction
and not a disjunction of literals.

Definition Let P be a normal program, G a normal goal < @, and Gy = G,G4,...,G,
an SLDNF-derivation P U {G}, where the sequence of substitutions is 6,...,6, and G, is
< @,. Let 6 be the restriction of 8y, ...,#6, to the variables in G. Then we say the derivation
has length n with computed answer 6 and resultant Q0 < Q,. (Notice that, if n = 0, then
the resultant is @ + Q.) a

It can be shown that the resultant Q8 + @, of an SLDNF-derivation from) down to
the goal @), is a logical consequence of the completed definition of the predicate symbols in
the heads of the (input) clauses used in the derivation together with the associated Clark’s
Equality Theory.

Now, we give the definition of partial evaluation (shortly PE). Note that the definition
refers to three kinds of PE: the PE of an atom in a program, of a set of atoms in a program,
and of a program wrt a set of atoms.

Definition Let P be a normal program, A an atom, and 7 a (not necessarily complete)
SLDNF-tree for P U {<— A}. Let Gy,...,G, be (non-root) goals in T" chosen so that each
non-failed branch of T' contains exactly one of them. Let R; (¢ =1,...,7) be the resultant of
the derivation from < A down to G; associated with the branch leading to Gj;.

e The set of resultants # = {R;, ..., R} is a PE of A in P. These resultants have the
following form:

where we have assumed G; =« Q;

o Let A = {A;,..., A} be a finite set of atoms, and 7; (i = 1,...,s) a PE of 4; in P.
Then [I=m U...Ursis a PE of A in P.

e Let P' be the normal program resulting from P when the definitions therein of the
predicate symbols in A are replaced by a PE of A in P. Then P’ is a PE of P wrt A.

O

The next theorem is the main result on the declarative semantics. First we report the
definition of closedness condition to be used in the theorem.

Definition Let S be a set of first order formulas and A a finite set of atoms. We say S is
A -closed if each atom in S containing a predicate symbol occurring in A is an instance of an
atom in A. 0O

The reason we need this condition is, intuitively, that if we “specialize” the definition of a
predicate symbol p wrt an atom A containing p, then we can not expect to be able to correctly
answer calls to p that are not instances of A.

Theorem 1 (Lloyd Shepherdson) Let P be a normal program, W a closed first order
formula, A a finite set of atoms, and P' a PE of P wrt A such that P' U {W} is A-closed.
If W is a logical consequence of comp(P'), then is a logical consequence of comp(P).

The converse of this theorem does not hold, as the following classical example shows.

Example By partially evaluating wrt A= {r, s} the following stratified normal program P

p<~q
qr,~S
TS
s 4T,

we can obtain the program P’
p<~q
g r,~s
T
8 4 s.

Now p is a logical consequence of comp(P), but not of comp(P’). O

4. An exhaustiveness theorem

Here we arrive at the core of this paper:

Theorem 2 Let P be a normal program such that comp(P) is consistent, and let G be a
normal goal. If P U {G} has a (complete) non-failing finite SLDNF-tree T, then for every
correct answer 0 for comp(P) U {G} there exists an SLDNF-refutation in T with computed
answer o, and a substitution vy such that 8 = o+y.

Proof Let G be < W, ans a predicate symbol not occurring in P defined as
ans(X) < W,
where X are the free variables occurring in W, and P*** is the normal program
PU{ans(X) < W}.

Let 7" be the SLDNF-tree obtained from 7' adding an arc leading from < ans(X) to - W
(notice that, every SLDNF-tree for P U {ans(X)} has the goal <— W at depth 1). Consider
the following PE of ans in P* obtained from the non failing leaves of T

ans(X)b,

ans(X)0, +,

4

where 0; = {X/Ti(Y;)}, T;(Y;) are tuples of terms, and Y; are the free variables therein. Let
P be the corresponding PE of P* wrt A = {ans(X)}. The completed definition for ans
in Pone’ is

VX (ans(X) < IV (X = T1) V...V 3IV(X = T)).

The above formula is A-closed, hence by Theorem 1 we have
comp(P*™*) =VX(ans(X) > V(X =Ty) V... V3V (X =T,)).

Considering the completed definition for ans in P**, i.e. VX (ans(X) <> W), we can replace
ans(X) by W, getting

comp(P**) EVX(W « V(X =T1) Vv...vIV(X =T,)).

Now, since the predicate symbol ans does not appear in VX (W <« Y1 (X = T1)V...VIY, (X =
T.)) or in comp(P) we can drop the axiom VX (ans(X) <> W) from comp(P***) arriving at

comp(P) EVX(W V(X =Ty) v...VIV (X =T,)).
Therefore, the thesis follows. O

By the theorem above, we have that: every time an SLDNF-resolution interpreter (e.g.
a sound Prolog) terminates after providing a finite set of computed answers, we have got
a complete set of correct answers. Actually, we have characterized the set of all ground
correct answers. On the other hand, if P U {G} has a finitely failed SLDNF-tree, then by
Clark’s theorem on soundness of negation as failure (cf. [2]) we have that G is a logical
consequence of comp(P) (i.e., assuming G =< W, we have that comp(P) =~ 3IW, where
W is the existential closure of W). Hence, as anticipated in the Introduction, every time an
SLDNF-resolution interpreter terminates while evaluating a goal, we get a complete logical
characterization of the goal.

As an easy consequence of the theorem above, we get the following corollary, which ensures
that we are totally free in the choice of the non-failing finite SLDNF-tree to be used in the
generation of the computed answers.

Corollary 3 Let P be a normal program such that comp(P) is consistent, and let G be a
normal goal. Then, every (complete) non-failing finite SLDNF-tree for P U {G} returns the
same computed answers.

Acknowledgments

I would like to thank Eugenio Omodeo for stimulating discussions and helpful suggestions.

References

[1] K. Benkerimi, J. W. Lloyd, A Partial Evaluation Procedure for Logic Programs,

Proc. of North American Conf. on Logic Programming, S. K. Derbray , M. Hermenegildo,
eds., MIT Press, 1990.

[2] K. L. Clark, Negation as Failure, Logic and Data Bases, H. Gallaire, J. Minker, eds,
Plenum Press, New York, 1978.

[3] J. W. Lloyd, Foundations of Logic Programming (2nd edition), Springer-Verlag, 1987.

[4] J. W. Lloyd, J. C. Shepherdson, Partial Evaluation in Logic Programming, The
Journal of Logic Programming, 11(3&4), October/November 1991.

[5] J. C. Shepherdson, Negation as Failure II, The Journal of Logic Programming, 2(3),
October 1991.

[6] J. C. Shepherdson, Negation in Logic Programming, Foundations of Deductive

Database and Logic Programming, J. Minker, ed., Morgan Kaufmann, 1988.

