SAPIENZA Università di Roma – MSc. in Engineering in Computer Science

Formal Methods - January 12, 2016

(Time to complete the test: 2 hours)

Exercise 1. Express the following UML class diagram in FOL.

Exercise 2. Consider the above UML class diagram and the following (partial) instantiation.

- 1. Check whether the above instantiation, once completed, is correct, and explain why it is or it is not.
- 2. Express in FOL the following queries and evaluate them over the completed instantiation:
 - (a) Return the sailors that have been on board of a boat which has been in a harbor where a tag boat works in.
 - (b) Check whether there exists a harbor in which there have been at least two tag boats.
 - (c) Return the sailors that have been in all harbors.

Exercise 3. Model check the Mu-Calculus formula $\nu X.\mu Y.((a \wedge [next]X) \vee ([next]Y))$ and the CTL formula $EF(AG(a \supset EXEX \neg a))$ (showing its translation in Mu-Calculus) against the following transition system:

Exercise 4. Check whether the following Hoare triple is correct, using as *invariant* $(0 \le i \land 0 \le j \land i + j \le 5)$.

$$\{i=0 \text{ AND } j=5\}$$
 while $(i<5)$ do $(j=j-1; i:= i+1)$ $\{j=0\}$

Exercise 5. Given the following boolean conjunctive queries (with a constant):

$$q1() := e(a,y), e(y,y), e(y,a)$$

 $q2() := e(a,y), e(y,z), e(z,w), e(w,w), e(w,z), e(z,y), e(y,a)$

check whether q1 is contained into q2, explaining the technique used and, in case of containment, showing the homomorphism between the canonical databases.