
Modeling Knowledge and Deliberation in the

Situation Calculus

Yves Lespérance

Department of Computer Science
York University

Toronto, Canada

Ph.D. Seminar, Univ. of Rome, May 2002

Motivation

To do planning in IndiGolog, user provides non-deterministic program/plan
skeleton, which is put in a “search block”. Interpreter must find plan/strategy
that ensures successful execution of search block.

This is a very general version of the problem of planning under incom-
plete information with sensing actions.

Need specification. When is a plan a solution?

Can’t be just any program that achieves goal or reaches a final situa-
tion of the user supplied program. Should not require deliberation to
execute.

Often, specifications require planner to return a program of a syntacti-
cally restricted form.

1

Our Approach To Formalizing Planning/Deliberation

Have developed account of planning under incomplete information that
is more abstract, semantically-motivated.

Requires planner to return an epistemically feasible program, i.e., a
program for which the agent always knows what step to take next no
matter how sensing turns out.

Account framed as semantics for IndiGolog search/deliberation opera-
tor.

To characterize epistemically feasible plans, we will use an explicit
model of knowledge within the action theory.

Before going over our semantics of search, we will look at how knowl-
edge is modeled in logic, and in particular in the situation calculus.

2

E.g. Getting on Flight at Airport [Levesque 96]

Agent wants to board flight. Does not know gate in advance; must
sense at airport.

To do planning to get on flight, execute IndiGolog program:

GetOnF lightSketchy
def
= Σ(achieve(On plane(Flight123), T rue))

where

achieve(Goal, GoodSit)
def
=

while ¬Goal do
π a[a;GoodSit(now)?]

endWhile

3

E.g. Getting on Flight (cont.)

A fully detailed plan (user defined or returned by planner):

GetOnF lightDetailed
def
=

go(Airport);

check departures; % sensing action
if Parked(Flight123, GateA) then

go(GateA); board plane(Flight123)

else
go(GateB); board plane(Flight123)

endIf

Without sensing, goal cannot be achieved!

4

Lecture Outline

• Introduction

• Modeling Knowledge

• Formalization of Epistemically Feasible Programs

• Semantics of IndiGolog Deliberation Operator

• Cases where Syntactically Restricted Programs Are Sufficient

• Conclusion

5

Modal Logic of Knowledge

The first thing that logicians noticed about mental attitudes like knowl-
edge, belief, desire, etc. is that they are not “truth-functional” like the
propositional connectives (¬, ∧, etc.); whether Know (Person, φ) is
true or false does not depend (mainly) on the truth-value of φ.

Reasoning about such notions has been formalized in modal logics.
Sentence forming operators like Know are called modal operators.

Because modal operators are not truth-functional their semantics can-
not be specified like that of the propositional connectives. Instead, the
most common approach used is possible world semantics, which was
developed by Kripke in the late ’50s.

The basic intuition behind possible world semantics as applied to knowl-
edge is to model what someone knows by enumerating the possible
ways he or she thinks the world might be.

6

Modal Logic of Knowledge (cont.)

So for e.g. we might model an agent that knows that P is true but does
not know whether Q is true or false as follows:

"!

#Ã

&%

'$

&%

'$

h
h

h h
h

h
h

h
h

h h

h

J
J
J

��HH

P , Q P , ¬Q
w1

w2

The “worlds” that the agent thinks are possible are said to be accessi-
ble. When an agent has more knowledge, he/she has fewer accessible
worlds.

7

Modal Logic of Knowledge (cont.)

Mathematically, we model this with an accessiblilty relation K over
worlds, e.g.:

��
��
��
��
��
���1

PPPPPPPPPPPPPq

P ,Q

P ,Q

P ,¬Q

w1

w2
w0

K

K

Then, the agent knows that φ in w iff φ is true in all w′ that are acces-
sible in w, i.e.,

w |= Know (φ) iff
for all w′ such that K(w, w′), w′ |= φ

8

Modal Logic of Knowledge (cont.)

Another e.g., an agent that knows that P is false and does not know
the truth value of Q and R:

��
��
��
��
��
���1

XXXXXXXXXXXXXz

Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
ZZ~

S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
SSw

w1

w0

K

w2

K

K

K

w3

w4

¬P, Q,¬R

¬P, Q, R

¬P,¬Q, R

¬P,¬Q,¬R

¬P, Q,¬R

Note that the number of possible worlds needed can grow exponen-
tially with the number of atomic propositions.

9

Modal Logic of Knowledge (cont.)

One can also model nested attitudes in this approach. E.g., an agent
that knows that P is true, but does not realize that this is the case:

-
��
��
��
��
��*

HHHHHHHHHHj

w2

w3

w0

P

¬P

P

PK

K

K

w1

Know (P) ∧ ¬Know (Know (P))

10

Modal Logic of Knowledge (cont.)

One of the main contributions of Kripke semantics is that one can force
the model to satisfy certain interesting properties by imposing some
constraints on the accessiblilty relation.

For e.g., by requiring that the accessiblilty relation K be transitive, we
ensure that the following is valid:

|= Know (φ) ⊃ Know (Know (φ))

This is called the positive introspection principle.

11

Knowing Who/Knowing What

E.g. the bank manager knows what the combination of the bank’s safe
is; most other agents know that there is a combination for the safe but
don’t know what it is.

Knowing who/what can be represented by quantifying into the knowl-
edge operator.

E.g. for the bank manager, we have

∃c Know (combination(BankSafe) = c).

For most other agents, have

Know (∃c combination(BankSafe) = c) ∧
¬∃c Know (combination(BankSafe) = c).

12

Knowledge in the Situation Calculus

Now, want to model how knowledge changes as actions are performed.

Can use the situation calculus to model action. First need to adapt the
“possible world” model to the situation calculus [Moore].

Introduce accessibility relation as a fluent:

K(s′, s) holds
iff

in s, the agent thinks that s′ may be the actual situation

Then treat knowledge as abbreviation:

Know (φ, s)
def
=∀s′[K(s′, s) ⊃ φ(s′)]

13

Knowledge in the Situation Calculus (cont.)

E.g.

'

&

$

%

'

&

$

%
µ´
¶³

µ´
¶³

.

A
A

���
���

���
���

���
�:

XXXXXXXXXXXXXXXXz

K

K

B2

B2

B1

B1

Know (OnTable(b), s)
def
=

∀s′[K(s′, s) ⊃ OnTable(b, s′)]

14

Knowledge and Action

Introduce primitive knowledge-producing actions

These affect agent’s mental state, not the external world, e.g., after
checking his sonars, a robot knows whether it is close to an obstacle.

Possible to extend solution to frame problem and obtain successor
state axiom for knowledge fluent.

15

Knowledge and Action (cont.)
[Scherl & Levesque 93, Levesque 96]

Here, binary sensing actions only.

Information provided by sensing action represented by SF (a, s). Have
axioms:

SF (senseφ, s) ≡ φ(s)

SF (nonSensingAct, s) ≡ True

Knowledge dynamics specified by successor state axiom for K:

K(s′′, do(a, s)) ≡
∃s′[K(s′, s) ∧ s′′ = do(a, s′) ∧ Poss(a, s′) ∧

(SF (a, s′) ≡ SF (a, s))]

16

Knowledge and Action (cont.)

For non-sensing action act1:

½¼

¾»

½¼

¾»

½¼

¾»

½¼

¾»

½¼

¾»

½¼

¾»

½¼

¾»

'

&

$

%

6

.

6

'

&

$

%
6

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BBM

�

�

s1 s2 s

a1a1a1a2

K

K

17

Knowledge and Action (cont.)

For sensing action sensep:

½¼

¾»

½¼

¾»

½¼

¾»

½¼

¾»

½¼

¾»

½¼

¾»

½¼

¾»

½¼

¾»

'

&

$

%

6

.

6

'

&

$

%
66

�

�

s1 p s2 ps3 ¬p s p

sensepsensepsensepsensep

K

K

18

Lecture Outline

• Introduction
√

• Modeling Knowledge
√

• Formalization of Epistemically Feasible Programs

• Semantics of IndiGolog Deliberation Operator

• Cases where Syntactically Restricted Programs Are Sufficient

• Conclusion

19

Epistemically Accurate Theories

We use epistemically accurate theories, i.e., theories where what is
known accurately reflects what the theory says about the system. See
paper for formal details.

For epistemically accurate theories we have:

Theorem 1 For any objective sentence about situation s, φ(s),
Axioms ∪ {Sensed[σ]} |= φ(end[σ]) if and only if
Axioms ∪ {Sensed[σ]} |= Know (φ, end[σ]).

i.e., if some objective property of the system is entailed, then it is also
known and vice-versa.

20

Epistemically Feasible Deterministic Programs

Programs that are deterministic and for which executor always has
enough information to continue the execution, always knows what next
step is. Formally:

EFDP(dp, s)
def
= ∀dp′, s′.T rans∗(dp, s, dp′, s′) ⊃ LEFDP(dp′, s′).

i.e., a program is an EFDP in a situation if all reachable configurations
involve a locally epistemically feasible deterministic program (LEFDP).

21

Epistemically Feasible Deterministic Programs (cont.)

Locally epistemically feasible deterministic programs:

LEFDP(dp, s)
def
=

Know (Final(dp, now), s) ∨
∃dp′.Know (UniTrans(dp, now, dp′, now), s) ∨
∃dp′, a.Know (UniTrans(dp, now, dp′, do(a, now)), s)

UniTrans(dp, s, dp′, s′) def
=Trans(dp, s, dp′, s′) ∧

∀dp′′, s′′.T rans(dp, s, dp′′, s′′) ⊃ dp′′ = dp′ ∧ s′′ = s′

i.e., a program is a LEFDP in a situation if the agent knows that it is
currently Final or knows what unique transition it can perform next.

22

Epistemically Feasible Det. Programs — Examples

Our original detailed plan to get on a flight is an EFDP :

GetOnF lightDetailed
def
=

go(Airport);

check departures;

if Parked(Flight123, GateA) then
go(GateA); board plane(Flight123)

else
go(GateB); board plane(Flight123)

endIf

But if delete the check departures sensing action, no longer an EFDP .
Agent does not know what to do next at the test.

23

Epistemically Feasible Det. Programs — Properties

An EFDP need not always terminate.

But if it is entailed that an EFDP will terminate, then it can be success-
fully executed online whatever the sensing outcomes may be:

Theorem 2
Let dp be such that Axioms ∪ {Sensed[σ]} |= EFDP(dp, end[σ]).
Then, Axioms ∪ {Sensed[σ]} |= ∃sf .Do(dp, end[σ], sf) if and only
if all online executions of (dp, σ) are terminating.

24

Epistemically Feasible Det. Programs — Examples
(cont.)

For GetOnFlightDetailed program, have the online executions:

-

-

-

J
J

J
J

J
J

J
JĴ

­
­

­
­

­
­

­
­­Á

-

-

Ax

go(Airport). . .

Ax

checkDep. . .

if . . .

Ax ∪ FlAtB

if . . .

Ax ∪ FlAtA Ax ∪ FlAtA

Ax ∪ FlAtB

Ax ∪ FlAtA

Ax ∪ FlAtB

0

1

go(GateA)

go(GateB)

board

board

25

Deliberation Operator — Semantics

Trans(∆e(p), s, dp′, s′) ≡
∃dp.EFDP(dp, s) ∧

∃sf .T rans(dp, s, dp′, s′) ∧Do(dp′, s′, sf) ∧Do(p, s, sf).

F inal(∆e(p), s) ≡ Final(p, s).

(∆e(p), s) can make a transition iff there is an EFDP dp that reaches
a Final situation of the program provided p.

Thus Axioms∪{Sensed[σ]} |= Trans(∆e(p), end[σ], dp′, s′) iff ax-
ioms entail that there is some EFDP dp that reaches a Final situation
of the given program p no matter how sensing turns out (i.e., in every
model).

Note: commits to the selected EFDP .
26

Deliberation Operator — Properties

Theorem 3 If Axioms∪{Sensed[σ]} |= Trans(∆e(p), end[σ], p′, s′),
then

1. given program p can reach a Final situation in every model, i.e.,
Axioms ∪ {Sensed[σ]} |= ∃sf .Do(p, end[σ], sf),

2. ∆e(p) reaches a Final situation in every model, i.e.,
Axioms ∪ {Sensed[σ]} |= ∃sf .Do(∆e(p), end[σ], sf), and

3. All online executions from (∆e(p), σ) terminate,i.e., ∆e(p) can
be successfully executed online whatever the sensing results are.

27

Syntax-Based Accounts of Deliberation

In general, search/deliberation is very hard; amounts to planning where
class of potential plans is very general.

Two interesting restricted classes:

• programs that do not perform sensing, i.e., conformant plans, and

• programs that are guaranteed to terminate in a bounded number
of steps, i.e., conditional plans.

Have shown that for these 2 classes, one can restrict attention to sim-
ple syntactically-defined classes of programs without loss of generality.

28

Tree Programs

Class of (sense-branch) tree programs TREE defined by:

dpt ::= nil | False? | a; dpt1 | True?; dpt1 |
senseφ; if φ then dpt1 else dpt2

where a is non-sensing action, and dpt1, dpt2 ∈ TREE .

Includes conditional programs where tests only involve conditions that
have just been sensed (or trivial tests).

29

Tree Programs — Properties

Theorem 4 Let dpt be a tree program, i.e., dpt ∈ TREE . Then, for
all histories σ, if Axioms ∪ {Sensed[σ]} |= ∃sf .Do(dpt, end[σ], sf)

then Axioms ∪ {Sensed[σ]} |= EFDP(dpt, end[σ]).

Whenever a tree program is executable, it is also epistemically feasible
— agent will always know what to do next.

Finding a tree program that yields an execution of a program in a
search block is our analogue of conditional planning (under incomplete
information).

30

Tree Programs Can Express Any Bounded Strategy

Theorem 5 For any program dp that is

1. an epistemically feasible deterministic program, i.e.,
Axioms ∪ {Sensed[σ]} |= EFDP(dp, end[σ]) and

2. such that there is a known bound on the number of steps it needs
to terminate, i.e., where there is an n such that Axioms∪{Sensed[σ]} |=
∃p′, s′, k.k ≤ n ∧ Transk(dp, end[σ], p′, s′) ∧ Final(p′, s′),

there exists a tree program dpt ∈ TREE such that
Axioms∪{Sensed[σ]} |= ∀sf .Do(dp, end[σ], sf) ≡ Do(dpt, end[σ], sf).

31

Tree Programs Can Express Bounded Strategy (cont.)

So if restrict attention to EFDPs that terminate in bounded number of
steps, then can further restrict attention to programs of very specific
syntactic form, without any loss in generality.

Can be used to simplify implementation of deliberation.

32

Linear Programs

Also look at class of linear programs, i.e., sequences of primitive ac-
tions. Show that:

• Whenever a linear programs is executable, it is also epistemically
feasible.

• Linear programs can express any strategy that does not involve
sensing.

33

E.g. Implementation:
Search Operator Looking for Tree Program

trans(search_t(P),H,DPT1,H1):-
buildTree(P,DPT,H), trans(DPT,H,DPT1,H1).

buildTree(P,[],H):- final(P,H).
buildTree(P,[(true)?|DPT],H):-

trans(P,H,P1,H), buildTree(P1,DPT,H).
buildTree(P,[A,if(F,DPT1,DPT2)]):-

trans(P,H,P1,[(A,_)|H]), senses(A,F),
buildTree(P1,DPT1,[(A,1)|H]),
buildTree(P1,DPT2,[(A,0)|H]).

buildTree(P,[A|DPT],H):-
trans(P,H,P1,[(A,_)|H]), not senses(A,_),
buildTree(P1,DPT,[(A,1)|H]).

buildTree(P,(false)?,H):- inconsistent(H).

Sound, but not complete wrt semantics.

34

Dealing with Non-Binary Sensing Actions

Formalization of EFDP and deliberation handles sensing actions with
any number of sensing outcomes.

Results about tree programs still hold for sensing actions with non-
binary, but finitely many outcomes.

But with more than a few sensing outcomes, conditional planning be-
comes impractical without advice from programmer as to what condi-
tions the plan should branch on.

[Sardiña 01] develops an implementation of deliberation in IndiGolog
that uses such information.

35

Execution Monitoring

∆e commits to a particular EFDP . Bad idea if exogenous actions can
make the selected EFDP impossible to execute.

We also define another deliberation operator that monitors the execu-
tion of the selected EFDP and replans when necessary.

36

Conclusion

New formal account of planning/deliberation with incomplete informa-
tion; abstract and semantic-based.

Deliberator must produce epistemically feasible deterministic program,
program for which agent, given initial knowledge and subsequent sens-
ing, always knows what step to take next.

Characterized deliberation in IndiGolog in terms of this notion.

Shown that for certain classes of problems — conformant planning and
conditional planning — search for epistemically feasible programs can
be limited to programs of a simple syntactic form.

Much earlier work on epistemic feasibility. Ours is first to deal with
expressive agent programming language and integrate with transition
semantics.

37

Further Research

Relating 1st and 3rd person accounts of deliberation; compositional
development of MAS.

Implementation of search/planning with non-binary sensing actions.

Representing and reasoning with incomplete knowledge.

More general accounts of sensing and knowledge change.

Multiagent planning.

Etc.

38

References

Hector J. Levesque and Gerhard Lakemeyer, The Logic of Knowledge
Bases, MIT Press, 2001.

Raymond Reiter, Knowledge in Action: Logical Foundations for Speci-
fying and Implementing Dynamical Systems. MIT Press, 2001.

G. De Giacomo, Y. Lespérance, H.J. Levesque, and S. Sardiña. On the
Semantics of Deliberation in IndiGolog - From Theory to Implementa-
tion. In D. Fensel, F. Giunchiglia, D. McGuiness, and M.-A. Williams
(Eds.), Principles of Knowledge Representation and Reasoning, Proc.
of the 8th Int. Conf. (KR2002), Toulouse, France, April 22-25, 2002,
603-614, Morgan Kaufmann, 2002.

39

