
Course on Automated Planning: Introduction

Hector Geffner
ICREA & Universitat Pompeu Fabra

Barcelona, Spain

Hector Geffner, Course on Automated Planning, Rome, 7/2010 1

Plan for the Course (6 days)

1. Intro to AI and Automated Problem Solving

2. Classical Planning as Heuristic Search and SAT

3. Beyond Classical Planning: Transformations

. Soft goals, Conformant Planning, Finite State Controllers, Plan Recognition

4. Planning with Uncertainty: Markov Decision Processes (MDPs)

5. Planning with Incomplete Information: Partially Observable MDPs (POMDPs)

6. Open Challenges in the field; Wrap up

Hector Geffner, Course on Automated Planning, Rome, 7/2010 2

First Lecture

• Some AI history

• The Problem of Generality in AI

• Models and Solvers

• Planning

Hector Geffner, Course on Automated Planning, Rome, 7/2010 3

Darmouth 1956

“The proposal (for the meeting) is to proceed on the basis of the conjecture that
every aspect of . . . intelligence can in principle be so precisely described that a
machine can be made to simulate it”

Hector Geffner, Course on Automated Planning, Rome, 7/2010 4

Computers and Thought 1963

An early collection of AI papers and programs for playing chess and checkers,
proving theorems in logic and geometry, planning, etc.

Hector Geffner, Course on Automated Planning, Rome, 7/2010 5

Importance of Programs in Early AI Work

In preface of 1963 edition of Computers and Thought

We have tried to focus on papers that report results. In this collection, the
papers . . . describe actual working computer programs . . . Because of the
limited space, we chose to avoid the more speculative . . . pieces.

In preface of 1995 AAAI edition

A critical selection criterion was that the paper had to describe . . . a running
computer program . . . All else was talk, philosophy not science . . . (L)ittle
has come out of the “talk”.

Hector Geffner, Course on Automated Planning, Rome, 7/2010 6

AI, Programming, and AI Programming

Many of the key AI contributions in 60’s, 70’s, and early 80’s had to to with
programming and the representation of knowledge in programs:

• Lisp (Functional Programming)

• Prolog (Logic Programming)

• Rule-based Programming

• Interactive Programming Environments and Lisp Machines

• Frame, Scripts, Semantic Networks

• ’Expert Systems’ Shells and Architectures

Hector Geffner, Course on Automated Planning, Rome, 7/2010 7

AI methodology: Theories as Programs

• For writing an AI dissertation in the 60’s, 70’s and 80’s, it was common to:

. pick up a task and domain X

. analyze/introspect/find out how task is solved

. capture this reasoning in a program

• The dissertation was then

. a theory about X (scientific discovery, circuit analysis, computational
humor, story understanding, etc), and

. a program implementing the theory, tested over a few examples.

Many great ideas came out of this work . . . but there was a problem . . .

Hector Geffner, Course on Automated Planning, Rome, 7/2010 8

Methodological Problem:

Theories expressed as programs cannot be proved wrong: when a program
fails, it can always be blamed on ’missing knowledge’

Three approaches to this problem

• narrow the domain (expert systems)

. problem: lack of generality

• accept the program is just an illustration, a demo

. problem: limited scientific value

• fill up the missing knowledge (intuition, commonsense)

. problem: not successful so far

Hector Geffner, Course on Automated Planning, Rome, 7/2010 9

AI in the 80’s

The knowledge-based approach reached an impasse in the 80’s, a time also of
debates and controversies:

• Good Old Fashioned AI is ”rule application” but intelligence is not (Haugeland)

• Situated AI: representation not needed and gets in the way (Brooks)

• Neural Networks: inference needed is not logical but probabilistic (PDP Group)

Many of these criticisms of mainstream AI partially valid then; less valid now.

Hector Geffner, Course on Automated Planning, Rome, 7/2010 10

AI Research in 2010

Recent issues of AIJ, JAIR, AAAI or IJCAI shows papers on:

1. SAT and Constraints

2. Search and Planning

3. Probabilistic Reasoning

4. Probabilistic Planning

5. Inference in First-Order Logic

6. Machine Learning

7. Natural Language

8. Vision and Robotics

9. Multi-Agent Systems

I’ll focus on 1–4: these areas often deemed about techniques, but more accurate
to regard them as models and solvers.

Hector Geffner, Course on Automated Planning, Rome, 7/2010 11

Example: Solver for Linear Equations

Problem =⇒ Solver =⇒ Solution

• Problem: The age of John is 3 times the age of Peter. In 10 years, it will be
only 2 times. How old are John and Peter?

• Expressed as: J = 3P ; J + 10 = 2(P + 10)

• Solver: Gauss-Jordan (Variable Elimination)

• Solution: P = 10 ; J = 30

Solver is general as deals with any problem expressed as an instance of model

Linear Equations Model, however, is tractable, AI models are not . . .

Hector Geffner, Course on Automated Planning, Rome, 7/2010 12

AI Solvers

Problem =⇒ Solver =⇒ Solution

• The basic models and tasks include

. Constraint Satisfaction/SAT: find state that satisfies constraints

. Bayesian Networks: find probability over variable given observations

. Planning Problems: find action sequence that produces desired state

. Planning with Feedback: find strategy for producing desired state

• All of these models are intractable, and some extremely powerful (POMDPs)

• The challenge is computational: how to scale up

• For this, solvers must recognize and exploit structure of the problems

• Methodology is empirical: benchmarks and competitions

• Significant progress in recent years

Hector Geffner, Course on Automated Planning, Rome, 7/2010 13

SAT and CSPs

• SAT: determine if there is a truth assignment that satisfies a set of clauses

x ∨ ¬y ∨ z ∨ ¬w ∨ · · ·

• Problem is NP-Complete, which in practice means worst-case behavior of SAT
algorithms is exponential in number of variables

• Yet current SAT solvers manage to solve problems with thousands of variables
and clauses, and used widely (circuit design, verification, planning, etc)

• Key is efficient (poly-time) inference in every node of search tree: unit
resolution, conflict-based learning, . . .

• Many other ideas logically possible, but do not work (don’t scale up).

• Same for Constraint Satisfaction Problems (CSPs)

Hector Geffner, Course on Automated Planning, Rome, 7/2010 14

Related Tasks: From SAT to Bayesian Networks

• Weighted MAX-SAT: find assignment σ that minimizes total cost w(C) of
violated clauses ∑

C:σ 6|=C

w(C)

• Weighted Model Counting: Adds up ’weights’ of satisfying assignments:∑
σ:σ|=T

∏
L∈σ

w(L)

SAT methods extended to these other tasks, closely connected to probabilistic
reasoning tasks over Bayesian Networks (and Neural Networks):

• Most Probable Explanation (MPE) easily cast as Weighted MAX-SAT

• Probability Assessment P (X|Obs) easily cast as Weighted Model Counting

Current best BN solvers built over this formulation (ACE, Weighted Cachet)

Hector Geffner, Course on Automated Planning, Rome, 7/2010 15

Further ties between Deductive and Probabilistic Inference

• Underlying structure of SAT, CSPs, and BNets can be expressed by graph G

X1 X2 X3

X4

• A parameter called the (induced) treewidth w(G) measures then how ’close’ is
G to a Tree, w(G) = 2 for G above, and w(G) = 1 if G is a tree.

• All SAT, CSP, and BN tasks are exponential in w(G), and thus solvable in
polynomial time for bounded w(G) (e.g., trees)

• These models often referred to as graphical models (Dechter 03)

• Resolution methods for all these models closely related

Hector Geffner, Course on Automated Planning, Rome, 7/2010 16

Planning Models: Producing States by Applying Actions

• (Classical) Planning concerned with finding a sequence of actions that trans-
forms an initial state into a goal state. This is called a plan

• States are truth assignments as before, represented by the atoms that are true

• Actions add certain atoms and delete others, provided their preconditions hold

• A planner is a solver that takes a planning problem (initial and goal states, and
actions) and outputs a plan

• The cost of a plan is given by the number of actions

Init, Actions, Goals =⇒ Planner =⇒ Plan

Hector Geffner, Course on Automated Planning, Rome, 7/2010 17

Example

B C
A

C
A
B A B C

B
A
C

B
C
A

A
B
C

C
A B A

B
C

C
BA

A B CA
B
C

B
C
A

.........

GOAL

GOALINIT

.....
.....

....

....

• Given the actions that move a ’clear’ block to the table or onto a another ’clear’
block, find a plan to achieve the goal

• Problem becomes finding a path in a directed graph

Hector Geffner, Course on Automated Planning, Rome, 7/2010 18

How planning problems are solved?

• How do we find a route in a map from Barcelona to Madrid?

• Need sense of direction: whether an action takes us towards the goal or not

• In AI, this is captured by heuristic functions: functions h(s) that provide an
estimate of the cost (number of actions) from any state s to the goal

• Key new idea in planning is that useful heuristics h(s) can be obtained
automatically from the problem encoding

• How? Solving a relaxed problem where deletes are dropped

• Heuristic h(s) is cost of solution found for relaxed problem in poly-time

Hector Geffner, Course on Automated Planning, Rome, 7/2010 19

How is our problem solved?

B C
A

C
A
B A B C

B
A
C

B
C
A

A
B
C

C
A B A

B
C

C
BA

A B CA
B
C

B
C
A

.........

GOAL

h=3

h=3 h=2 h=3

h=1

h=0

h=2 h=2 h=2

h=2

GOALINIT

• Provided with the heuristic h, plan found without search by hill-climbing

• Actually, only states reached by actions in blue need to be evaluated

Hector Geffner, Course on Automated Planning, Rome, 7/2010 20

Summary: AI and Automated Problem Solving

• A research agenda that has emerged in last 20 years: solvers for a range of
intractable models

• Solvers unlike other programs are general as they do not target individual
problems but families of problems (models)

• The challenge is computational: how to scale up

• Sheer size of problem shouldn’t be impediment to meaningful solution

• Structure of given problem must recognized and exploited

• Lots of room for ideas but methodology empirical

• Consistent progress

. efficient but effective inference methods (derivation of h, conflict-learning)

. islands of tractability (treewidth methods and relaxations)

. transformations (compiling away incomplete info, extended goals, . . .)

Hector Geffner, Course on Automated Planning, Rome, 7/2010 21

