
Ranking Abstraction
as Companion to

Predicate Abstraction

Amir Pnueli

New York University and Weizmann Institute of Sciences

Taipei, October 2005

Joint work with

Ittai Balaban, Yonit Kesten, Lenore Zuck

Ranking as Companion, FORTE’05, ATVA’05, October 2005

Ranking as Companion A. Pnueli

AAV: Abstraction Aided Verification
An Obvious idea:

• Abstract system S into S
A

– a simpler system, but admitting more behaviors.

• Verify property for the abstracted system S
A
.

• Conclude that property holds for the concrete system.

Approach is particularly impressive when abstracting an infinite-state system into
a finite-state one.

Technically, Define the methodology of Verification by Finitary Abstraction
(VFA) as follows:

To prove D |= ψ,

• Abstract D into a finite-state system Dα and the specification ψ into a
propositional LTL formula ψα.

• Model check Dα |= ψα.

The question considered here is whether we can find instantiations of this general
methodology which are sound and (relatively) complete.

Ranking as Companion, FORTE’05, ATVA’05, October 2005 1

Ranking as Companion A. Pnueli

Finitary Abstraction

Based on the notion of abstract interpretation [CC77].

Let Σ denote the set of states of an FDS D – the concrete states. Let α : Σ �→ Σ
A

be a mapping of concrete into abstract states. α is finitary if Σ
A

is finite.

We consider abstraction mappings which are presented by a set of equations
α : (u1 = E1(V), . . . , un = En(V)) (or more compactly, V

A
= Eα(V)), where

V
A

= {u1, . . . , un} are the abstract state variables and V are the concrete
variables.

Ranking as Companion, FORTE’05, ATVA’05, October 2005 2

Ranking as Companion A. Pnueli

Lifting a State Abstraction to Assertions

For an abstraction mapping α : V
A

= Eα(V) and an assertion p(V), we can lift the
state abstraction α to abstract p:

• The expanding α-abstraction (over approximation) of p is given by

α(p): ∃V :V
A

= Eα(V) ∧ p(V) ‖α(p)‖ = {α(s) | s ∈ ‖p‖}

An abstract state S belongs to ‖α(p)‖ iff there exists some concrete state
s ∈ α−1(S) such that s ∈ ‖p‖.

Ranking as Companion, FORTE’05, ATVA’05, October 2005 3

Ranking as Companion A. Pnueli

Sound Joint Abstraction

For a positive normal form temporal formula ψ, we define ψα to be the formula
obtained by replacing every (maximal) state sub-formula p ∈ ψ by α(p) = ¬α(¬p).

For an FDS D = 〈V,Θ, ρ,J , C〉, we define the α-abstracted version
Dα = 〈V

A
,Θα, ρα,J α, Cα〉, where

Θα = α(Θ)
ρα = α(ρ)
J α = {α(J) | J ∈ J }
Cα = {(α(p), α(q)) | (p, q) ∈ C}

Soundness:

If α is an abstraction mapping and D and ψ are abstracted according to the recipes
presented above, then

Dα |= ψα implies D |= ψ.

Ranking as Companion, FORTE’05, ATVA’05, October 2005 4

Ranking as Companion A. Pnueli

Example: Program INCREASE

Consider the program

y : integer initially y = 0[
�0 : while y ≥ 0 do [�1 : y := y + 1]
�2 :

]

Assume we wish to verify the property (y > 0) for program INCREASE.

Introduce the abstract variable Y : {−1, 0,+1}.

The abstraction mapping α is specified by the defining expression:

α : [Y = sign(y)]

where sign(y) is defined to be −1, 0, or 1, according to whether y is negative,
zero, or positive, respectively.

Ranking as Companion, FORTE’05, ATVA’05, October 2005 5

Ranking as Companion A. Pnueli

The Abstracted Version

With the mapping α, we obtain the abstract version of INCREASE, called
INCREASEα:

Y : {−1, 0,+1} initially Y = 0⎡
⎢⎢⎣ �0 : while Y ∈ {0, 1} do

⎡
⎣�1 : Y :=

⎧⎪⎪⎪⎪⎪⎪⎩
if Y = −1
then {−1, 0}
else +1

⎫⎪⎪⎪⎪⎪⎪⎭
⎤
⎦

�2 :

⎤
⎥⎥⎦

The original invariance property ψ: (y > 0), is abstracted into:

ψα: (Y = +1),

which can be model-checked over INCREASEα, yielding
INCREASEα |= (Y = +1), from which we infer

INCREASE |= (y > 0)

Ranking as Companion, FORTE’05, ATVA’05, October 2005 6

Ranking as Companion A. Pnueli

Predicate Abstraction

Let p1, p2, . . . , pk be a set of assertions (state formulas) referring to the data (non-
control) state variables. We refer to this set as the predicate base. Usually, we
include in the base all the atomic formulas appearing within conditions in the
program P and within the temporal formula ψ.

Following [GS97], define a predicate abstraction to be an abstraction mapping of
the form

α: {Bp1
= p1, Bp2

= p2, . . . , Bpk
= pk}

where Bp1
, Bp2

, . . . , Bpk
is a set of abstract boolean variables, one corresponding

to each assertion appearing in the predicate base.

Ranking as Companion, FORTE’05, ATVA’05, October 2005 7

Ranking as Companion A. Pnueli

Example: Program BAKERY-2
local y1, y2 : natural initially y1 = y2 = 0

P1 ::

⎡
⎢⎢⎢⎢⎢⎢⎣

�0 :loop forever do⎡
⎢⎢⎢⎢⎣

�1 : Non-Critical
�2 : y1 := y2 + 1
�3 : await y2 = 0 ∨ y1 < y2
�4 : Critical
�5 : y1 := 0

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

P2 ::

⎡
⎢⎢⎢⎢⎢⎢⎣

m0 :loop forever do⎡
⎢⎢⎢⎢⎣

m1 : Non-Critical
m2 : y2 := y1 + 1
m3 : await y1 = 0 ∨ y2 ≤ y1
m4 : Critical
m5 : y2 := 0

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

The temporal properties for program BAKERY-2 are
ψexc : ¬(at−�4 ∧ at−m4)
ψacc : (at−�2 → at−�4),

Ranking as Companion, FORTE’05, ATVA’05, October 2005 8

Ranking as Companion A. Pnueli

Abstracting Program BAKERY-2
Define abstract variables By1=0, By2=0, and By1<y2

.

local By1=0, By2=0, By1<y2
: boolean

where By1=0 = By2=0 = 1, By1<y2
= 0

P1 ::

⎡
⎢⎢⎢⎢⎢⎢⎣

�0 :loop forever do⎡
⎢⎢⎢⎢⎣

�1 : Non-Critical
�2 : (By1=0, By1<y2

) := (0, 0)
�3 : await By2=0 ∨ By1<y2

�4 : Critical
�5 : (By1=0, By1<y2

) := (1,¬By2=0)

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

P2 ::

⎡
⎢⎢⎢⎢⎢⎢⎣

m0 :loop forever do⎡
⎢⎢⎢⎢⎣

m1 : Non-Critical
m2 : (By2=0, By1<y2

) := (0, 1)
m3 : await By1=0 ∨ ¬By1<y2

m4 : Critical
m5 : (By2=0, By1<y2

) := (1, 0)

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

The abstracted properties can now be model-checked.

Ranking as Companion, FORTE’05, ATVA’05, October 2005 9

Ranking as Companion A. Pnueli

The Question of Completeness

We have claimed above that the VFA method is sound. How about completeness?

Completeness means that, for every FDS D and temporal property ψ such that
D |= ψ, there exists a finitary abstraction mapping α such that Dα |= ψα.

At this point we can only claim completeness for the special case that ψ is an
invariance property.

Claim 1. [Completeness for Invariance Properties]
Let D be an FDS and ψ : p be an invariance property such that D |= p. Then
there exists a finitary abstraction mapping α such that Dα |= α(p).

In fact, the proof shows that there always exists a predicate abstraction validating
the invariance property.

Ranking as Companion, FORTE’05, ATVA’05, October 2005 10

Ranking as Companion A. Pnueli

Inadequacy of State Abstraction for Proving Liveness

Not all properties can be proven by pure finitary state abstraction.
Consider the program LOOP.

y: natural
�0 : while y > 0 do[

�1 : y := y − 1
�2 : skip

]

�3 :

Termination of this program cannot be proven by pure finitary abstraction. For
example, the abstraction α : IN �→ {0,+1} leads to the abstracted program

Y : {0,+1}

�0 : while Y = +1 do[
�1 : Y := if Y = +1 then {0,+1} else 0
�2 : skip

]

�3 :

This abstracted program may diverge!

Ranking as Companion, FORTE’05, ATVA’05, October 2005 11

Ranking as Companion A. Pnueli

Solution: Augment with a Non-Constraining Progress Monitor
y: natural⎡

⎢⎢⎢⎣
�0 : while y > 0 do[

�1 : y := y − 1
�2 : skip

]

�3 :

⎤
⎥⎥⎥⎦ ‖|

⎡
⎢⎢⎢⎢⎣

dec : {−1, 0, 1}
compassion

(dec > 0,dec < 0)
always do
m0 : dec := sign(y − y′)

⎤
⎥⎥⎥⎥⎦

− LOOP − − MONITOR My −

Forming the cross product, we obtain:

y : natural
dec : {−1, 0, 1}
compassion (dec > 0,dec < 0)

�0 : while y > 0 do[
�1 : (y, dec) := (y − 1, sign(y − y′))
�2 : dec := sign(y − y′)

]

�3 :

Ranking as Companion, FORTE’05, ATVA’05, October 2005 12

Ranking as Companion A. Pnueli

Abstracting the Augmented System

We obtain the program

Y : {0,+1}
dec : {−1, 0, 1}
compassion (dec > 0,dec < 0)

�0 : while Y = +1 do⎡
⎢⎢⎢⎢⎣
�1 : (Y,dec) :=

⎧⎪⎪⎪⎪⎪⎪⎩
if Y = +1
then ({+1, 0}, 1)
else (0, 0)

⎫⎪⎪⎪⎪⎪⎪⎭
�2 : dec := 0

⎤
⎥⎥⎥⎥⎦

�3 :

Which always terminates.

Ranking as Companion, FORTE’05, ATVA’05, October 2005 13

Ranking as Companion A. Pnueli

A More Complicated Case

Sometimes we need a more complex progress measure:

y: natural

�0 : while y > 1 do⎡
⎣ �1 : y := y − 2
�2 : y := {y + 1, y}
�3 : skip

⎤
⎦

�4 :

To prove termination of this program we augment it by the monitor:

define δ = y + at−�2
dec : {−1, 0, 1}
compassion (dec > 0, dec < 0)

m0 : always do
dec := sign(δ − δ′)

Ranking as Companion, FORTE’05, ATVA’05, October 2005 14

Ranking as Companion A. Pnueli

Complicated Case Continued

Augmenting and abstracting, we get:

Y : {0, one, large}
dec : {−1, 0, 1}
compassion (dec > 0,dec < 0)

�0 : while Y = large do⎡
⎣ �1 : (Y,dec) := (sub2(Y), 1)
�2 : (Y,dec) := {(add1(Y), 0), (Y, 1)}
�3 : dec := 0

⎤
⎦

�4 :

where,

sub2(Y) = if Y ∈ {0,one} then 0 else {0,one, large}

add1(Y) = if Y = 0 then one else large

This program always terminates

Ranking as Companion, FORTE’05, ATVA’05, October 2005 15

Ranking as Companion A. Pnueli

Verification by Augmented Finitary Abstraction - The AFA

Method

To verify that ψ is D-valid,

• Optionally choose a non-constraining progress monitor FDS M and let
A = D ‖| M . In case this step is skipped, let A = D.

• Choose a finitary state abstraction mapping α and calculate Aα and ψα

according to the sound recipes.

• Model check Aα |= ψa.

• Infer D |= ψ.

Claim 2. The AFA method is complete, relative to deductive verification [KP00].

That is, whenever there exists a deductive proof of D |= ψ, we can find a finitary
abstraction mapping α and a non-constraining progress monitor M , such that
Aα |= ψa. Constructs α and M are derived from the deductive proof.

Ranking as Companion, FORTE’05, ATVA’05, October 2005 16

Ranking as Companion A. Pnueli

Can Abstraction Replace Deduction?

Yes, as shown by the completeness theorems.

Ranking as Companion, FORTE’05, ATVA’05, October 2005 17

Ranking as Companion A. Pnueli

Can Abstraction Replace Deduction?

Yes, as shown by the completeness theorems.

Yes, but why bother?

Based on the completeness theorems, it appears as though we first construct
a deductive proof and then dress it up as abstraction.

Compare the efforts required for the application of the two methods:

Deduction Abstraction
Provide inductive assertion
strengthening candidate invariant.
For liveness, provide ranking
function.

Provide abstraction mapping.
For liveness, provide augmenting
monitor.

Establish validity of premises, using a
theorem prover

Compute abstraction of
system+property, using decision
procedures.

The right question to ask is:

Ranking as Companion, FORTE’05, ATVA’05, October 2005 18

Ranking as Companion A. Pnueli

Should Abstraction Replace Deduction?

or, in other words,

What do we gain by such a replacement?

In other Namely, what is the value added by abstraction?

Ranking as Companion, FORTE’05, ATVA’05, October 2005 19

Ranking as Companion A. Pnueli

For the Case of Predicate Abstraction

A possible answer is:

It is often the case that the user can identify (or conjecture) the possible
constituents of an inductive assertion, but does not know what is the precise
boolean combination of these constituents which may form such an inductive
assertion.

We leave it to the model checker to use BDD or SAT techniques in order to
identify the best boolean combination.

Ranking as Companion, FORTE’05, ATVA’05, October 2005 20

Ranking as Companion A. Pnueli

Part of the Message of This Talk

In perfect analogy,

It is often the case that the user can identify (or conjecture) a set of possible
constituents, but does not know how to combine them into an global ranking
function.

We leave it to the model checker to form the correct combination (or prove the
liveness property even without such explicit formation).

Ranking as Companion, FORTE’05, ATVA’05, October 2005 21

Ranking as Companion A. Pnueli

An Illustrative Example
Consider the following program NESTED-LOOPS:

x, y: natural

�0 : x :=?
�1 : while x > 0 do⎡

⎢⎢⎢⎢⎢⎢⎣

�2 : y :=?
�3 : while y > 0 do[

�4 : y := y − 1
�5 : skip

]

�6 : x := x− 1
�7 : skip

⎤
⎥⎥⎥⎥⎥⎥⎦

�8 :

A deductive termination proof of this program may be based on the ranking
function

(at−�0, 5 · x+ 4 · at−�7 + 3 · at−�1 + 2 · at−�2 + at−�3..5, 3 · y + 2 · at−�5 + at−�3)

whose core constituents are x and y.

Ranking as Companion, FORTE’05, ATVA’05, October 2005 22

Ranking as Companion A. Pnueli

The Augmented-Abstraction Version
We augment the system with monitors for the ranking functions x, y, and abstract
the domain of x, y into {0,+1}. This yields:

X,Y : : {0,+1}
decx ,decy : {−1, 0, 1}
compassion (decx > 0,decx < 0), (decy > 0, decy < 0)

�0 : (X,Y,decx , decy) := (?, Y, ?, 0)
�1 : while X = +1 do⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�2 : (X,Y,decx , decy) := (X, ?, 0, ?)
�3 : while Y = +1 do⎡

⎣�4 : (X,Y,decx ,decy) :=

⎧⎪⎪⎩if Y = 0 then (X, 0, 0, 0) else
{(X,+1, 0, 1), (X, 0, 0, 1)}

⎫⎪⎪⎭
�5 : decy := 0

⎤
⎦

�6 : (X,Y,decx , decy) :=

⎧⎪⎪⎩if X = 0 then (0, Y, 0, 0) else
{(+1, Y, 1, 0), (0, Y, 1, 0)}

⎫⎪⎪⎭
�7 : decx := 0;

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�8 :

Model checking this program, we find that it always terminates.

Ranking as Companion, FORTE’05, ATVA’05, October 2005 23

Ranking as Companion A. Pnueli

Main Features of Predicate Abstraction

Can be used for the automatic verification of some LTL (all invariance) properties
of infinite-state systems.

• Has a heuristic for an initial selection of a predicate base: Include all atomic
formulas appearing in the program and property.

• Has a heuristic for refining the abstraction (expanding the predicate base), as
a result of a spurious counter example.

• Does not require the specification of an inductive invariant. Sufficient to provide
the constituents from which such an invariant can be constructed by a boolean
combination.

• Can be used to derive the best inductive invariant expressible over the
predicate base: Abstract, compute Reach(P

A
), and then concretize.

Ranking as Companion, FORTE’05, ATVA’05, October 2005 24

Ranking as Companion A. Pnueli

In Comparison, Ranking Abstraction

Can be used, in conjunction with predicate abstraction, for the automatic
verification of all LTL properties (in particular, termination) of infinite-state
systems.

• Has a heuristic for an initial selection of a ranking core: Include all variables and
expressions which consistently increase (decrease) within loops. Specifically,
loop indices.

• Has a heuristic for refining the predicate or ranking abstraction (expanding the
predicate base or ranking core), as a result of a spurious counter example.

• Does not require the specification of a global ranking function. Sufficient to
provide the constituents from which such a function can be constructed by a
lexicographic tupling.

• Can be used to derive the best global ranking function expressible over the
ranking core: Use recursive SCC’s analysis.

Ranking as Companion, FORTE’05, ATVA’05, October 2005 25

Ranking as Companion A. Pnueli

A Counter-Example Guided Refinement of a Joint Abstraction
An abstract counter example of a liveness property has the form of a lasso:

SkS0 Sn

As a first step, we attempt to concretize this sequence into a program trace

σ : s0, . . . , sk, . . . , sn, sn+1

such that Si = α(si), for i ≤ n, and Sk = α(sn+1). There are three possible
outcomes to this attempt:

1. We succeed to find a concretization such that sn+1 = sk. In this case, there
exists a concrete counter example and the property is invalid over the original
system. In all other cases, the counter example is spurious.

2. The concretization is blocked at state si, i ≤ n, such that si has no concrete
successor belonging to α−1(Si+1). In this case, apply regular predicate
abstraction refinement (e.g. [BPR’02]).

3. The concretization completes, but sn+1 = sk. In this case, apply ranking
refinement. A loop has been concretized into a spiral.

Ranking as Companion, FORTE’05, ATVA’05, October 2005 26

Ranking as Companion A. Pnueli

Ranking Refinement

Recall the structure of the abstract counter example.

SkS0 Sn

Assume that the labels of states Sk, . . . , Sn are �k, . . . , �n. Form the (concrete)
transition relation ρk..n,k defined by

ρk..n,k : ρ(�k, �k+1) ◦ · · · ◦ ρ(�n−1, �n) ◦ ρ(�n, �k)

This transition relation relates the values of variables in states sk and sn+1 such
that there exists a computation segment sk, . . . , sn, sn+1 passing through the
sequence of labels �k, . . . , �n, �k, respectively.

Also form the assertion ϕk = Sk[(p1, . . . , pr)/(B1, . . . , Br)] obtained by viewing
abstract state Sk as a boolean expression over the abstract variables B1, . . . , Br

and then substituting the predicate pi for each occurrence of variable Bi. This
assertion characterizes all the concrete states which are abstracted into Sk.

Ranking as Companion, FORTE’05, ATVA’05, October 2005 27

Ranking as Companion A. Pnueli

Expanding the Ranking Core

A sufficient condition which guarantees that the obtained lasso cannot be
concretized into an infinite computation is that the relation ρk..n,k be well founded
over all ϕk-states. Hence we search for a variable or an expression δ, such that

ϕk ∧ ρk..n,k → δ > δ′

Heuristics such as the ones expounded in [PR’04] can be used in order to identify
such expressions δ.

Having found such a δ, we add it to the ranking core. Abstract and try again.

Ranking as Companion, FORTE’05, ATVA’05, October 2005 28

Ranking as Companion A. Pnueli

Example

Reconsider a version of program NESTED-LOOPS:

x, y: natural initially x = y = 0
�0 : x :=?

while x > 0 do⎡
⎢⎢⎣
�1 : y :=?

while y > 0 do[
�2 : y := y − 1

]
�3 : x := x− 1

⎤
⎥⎥⎦

�4 :

Apply joint abstraction with {X = sign(x), Y = sign(y), decy = sign(y−y′)}. Note
that the ranking core is incomplete.

Ranking as Companion, FORTE’05, ATVA’05, October 2005 29

Ranking as Companion A. Pnueli

The Abstracted program

With the abstraction {X = sign(x), Y = sign(y), decy = sign(y − y′)}, we obtain:

X,Y : : {0,+1} initially X = Y = 0
decy : {−1, 0, 1} initially decy = 0
compassion (decy > 0, decy < 0)

�0 : X := {0, 1}
while X = 1 do⎡
⎢⎢⎣
�1 : (Y,decy) := (?, ?)

while Y = 1 do[
�2 : (Y,decy) := if Y = 0 then (0, 0) else {(0, 1), (1, 1)}

]
�3 : X := if X = 0 then 0 else {0, 1}

⎤
⎥⎥⎦

�4 :

Model checking this program for termination, we obtain the following counter-
example lasso:

S0 :〈Π : �0,X : 0, Y : 0,Decy : 0〉,
S1 :〈Π : �1,X : 1, Y : 0,Decy : 0〉, S2 :〈Π : �2,X : 1, Y : 1,Decy : −1〉,
S3 :〈Π : �3,X : 1, Y : 0,Decy : 1〉, S4 = S1

Ranking as Companion, FORTE’05, ATVA’05, October 2005 30

Ranking as Companion A. Pnueli

Concretizing and Refining

Concretizing the abstract trace

S0 :〈Π : �0,X : 0, Y : 0,Decy : 0〉,
S1 :〈Π : �1,X : 1, Y : 0,Decy : 0〉, S2 :〈Π : �2,X : 1, Y : 1,Decy : −1〉,
S3 :〈Π : �3,X : 1, Y : 0,Decy : 1〉, S4 = S1

we obtain:

s0 :〈π : �0, x : 0, y : 0, decy : 0〉,
s1 :〈π : �1, x : 4, y : 0, decy : 0〉, s2 :〈π : �2, x : 4, y : 1, decy : −1〉,
s3 :〈π : �3, x : 4, y : 0, decy : 1〉, s4 :〈π : �1, x : 3, y : 0, decy : 0〉

We therefore compute ϕ1 : x > 0∧ y = 0 and ρ1..3,1 : x′ = x− 1∧x′ > 0. A natural
choice for additional rank is δ = x whose descent is implied by ρ1..3,1.

Ranking as Companion, FORTE’05, ATVA’05, October 2005 31

Ranking as Companion A. Pnueli

A Global Ranking Function From a Terminating Program

We will show how to extract a global ranking function from an abstract terminating
program. Assume that we constructed a state-transition graph containing all the
reachable states of the abstracted program.

The extraction algorithm can be described as follows:

• Decompose into MSCC’s, Sort topologically, and Rank sequentially.

• For each non-singular component:

Identify a compassion req. (decx i > 0, decx i < 0) violated by the
component.
Add xi to the ranking tuple.
Remove all edges entering (decx i > 0)-nodes.
Return to top for recursive processing of remaining subgraph.

Ranking as Companion, FORTE’05, ATVA’05, October 2005 32

Ranking as Companion A. Pnueli

Example

Analyzing abstracted program NESTED-LOOPS with ranking core consisting of
{x, y}, the program always terminates. The resulting state transition graph is:

Π : �4, X : 0, Y : 0,Dx : 1,Dy : 0

Π : �0, X : 0, Y : 0,Dx : 0,Dy : 0

Π : �1, X : 1, Y : 0,Dx : −1,Dy : 0

Π : �2, X : 1, Y : 1,Dx : 0,Dy : −1

Π : �2, X : 1, Y : 1,Dx : 0,Dy : 1

Π : �3, X : 1, Y : 0,Dx : 0,Dy : 1

Π : �1, X : 1, Y : 0,Dx : 1,Dy : 0

Ranking as Companion, FORTE’05, ATVA’05, October 2005 33

Ranking as Companion A. Pnueli

Decompose, Sort, and Rank

MSCC’s decomposition, topologically sorting, and sequentially ranking, yields:

1

Π : �4,X : 0, Y : 0,Dx : 1,Dy : 0 0

Π : �0,X : 0, Y : 0,Dx : 0,Dy : 0 3

Π : �1,X : 1, Y : 0,Dx : −1,Dy : 0 2

Π : �2,X : 1, Y : 1,Dx : 0,Dy : −1 1

Π : �2,X : 1, Y : 1,Dx : 0,Dy : 1 1

Π : �3,X : 1, Y : 0,Dx : 0,Dy : 1 1

Π : �1,X : 1, Y : 0,Dx : 1,Dy : 0

Non-singular component is unfair w.r.t (Dx > 0,Dx < 0).

Ranking as Companion, FORTE’05, ATVA’05, October 2005 34

Ranking as Companion A. Pnueli

Add x to Ranking

Add x to ranking, and remove edges entering (Dx > 0)-nodes.

(1, x)

Π : �4,X : 0, Y : 0,Dx : 1,Dy : 0 0

Π : �0,X : 0, Y : 0,Dx : 0,Dy : 0 3

Π : �1,X : 1, Y : 0,Dx : −1,Dy : 0 2

Π : �2,X : 1, Y : 1,Dx : 0,Dy : −1 (1, x)

Π : �2,X : 1, Y : 1,Dx : 0,Dy : 1 (1, x)

Π : �3,X : 1, Y : 0,Dx : 0,Dy : 1 (1, x)

Π : �1,X : 1, Y : 0,Dx : 1,Dy : 0

Note that component is no longer strongly connected.

Ranking as Companion, FORTE’05, ATVA’05, October 2005 35

Ranking as Companion A. Pnueli

Decompose, Sort, and Rank Subgraph

Applying the decomposition+ranking to the unraveled subgraph yields:

(1, x, 3)

Π : �4,X : 0, Y : 0,Dx : 1,Dy : 0 0

Π : �0,X : 0, Y : 0,Dx : 0,Dy : 0 3

Π : �1,X : 1, Y : 0,Dx : −1,Dy : 0 2

Π : �2,X : 1, Y : 1,Dx : 0,Dy : −1 (1, x, 2)

Π : �2,X : 1, Y : 1,Dx : 0,Dy : 1 (1, x, 1)

Π : �3,X : 1, Y : 0,Dx : 0,Dy : 1 (1, x, 0)

Π : �1,X : 1, Y : 0,Dx : 1,Dy : 0

Note that the non-singular component is unfair w.r.t (Dy > 0,Dy < 0).

Ranking as Companion, FORTE’05, ATVA’05, October 2005 36

Ranking as Companion A. Pnueli

Add y to the Ranking
Processing the 〈Π : �2,X : 1, Y : 1,Dx : 0,Dy : 1〉 component, we add y to its
ranking and remove all incoming edges. This yields:

(1, x, 3)

Π : �4, X : 0, Y : 0,Dx : 1,Dy : 0 0

Π : �0, X : 0, Y : 0,Dx : 0,Dy : 0 3

Π : �1, X : 1, Y : 0,Dx : −1,Dy : 0 2

Π : �2, X : 1, Y : 1,Dx : 0,Dy : −1 (1, x, 2)

Π : �2, X : 1, Y : 1,Dx : 0,Dy : 1 (1, x, 1, y)

Π : �3, X : 1, Y : 0,Dx : 0,Dy : 1 (1, x, 0)

Π : �1, X : 1, Y : 0,Dx : 1,Dy : 0

The resulting graph is acyclic, implying that the algorithm terminated.

Ranking as Companion, FORTE’05, ATVA’05, October 2005 37

Ranking as Companion A. Pnueli

The Final Global Ranking

Summarizing all that was accumulated, yields the following global ranking:

(1, x, 3)

Π : �4, X : 0, Y : 0,Dx : 1,Dy : 0 0

Π : �0, X : 0, Y : 0,Dx : 0,Dy : 0 3

Π : �1, X : 1, Y : 0,Dx : −1,Dy : 0 2

Π : �2, X : 1, Y : 1,Dx : 0,Dy : −1 (1, x, 2)

Π : �2, X : 1, Y : 1,Dx : 0,Dy : 1 (1, x, 1, y)

Π : �3, X : 1, Y : 0,Dx : 0,Dy : 1 (1, x, 0)

Π : �1, X : 1, Y : 0,Dx : 1,Dy : 0

Ranking as Companion, FORTE’05, ATVA’05, October 2005 38

Ranking as Companion A. Pnueli

Padding to the Right

If necessary, we can make all tuples to be of length 4, by adding zeros to the right.

(1, x, 3, 0)

Π : �4, X : 0, Y : 0,Dx : 1,Dy : 0 (0, 0, 0, 0)

Π : �0, X : 0, Y : 0,Dx : 0,Dy : 0 (3, 0, 0, 0)

Π : �1, X : 1, Y : 0,Dx : −1,Dy : 0 (2, 0, 0, 0)

Π : �2, X : 1, Y : 1,Dx : 0,Dy : −1 (1, x, 2, 0)

Π : �2, X : 1, Y : 1,Dx : 0,Dy : 1 (1, x, 1, y)

Π : �3, X : 1, Y : 0,Dx : 0,Dy : 1 (1, x, 0, 0)

Π : �1, X : 1, Y : 0,Dx : 1,Dy : 0

Ranking as Companion, FORTE’05, ATVA’05, October 2005 39

Ranking as Companion A. Pnueli

Conclusions

• Ranking abstraction should be considered as an inseparable companion to
predicate abstraction. Only their combination can verify the full set of LTL
properties.

• We call upon implementors of abstraction-based software verification systems,
such as SLAM and BLAST, to enhance the proving power of their systems by
adding the component of ranking abstraction.

• Like predicate abstraction, ranking abstraction is easier to apply than its
deductive counterpart, because it is sufficient to provide only the constituents
and let the model checker figure out their right combination.

• We should not consider abstraction as replacing deduction, but rather as
complementing and enhancing deduction.

• Never pay too much attention to completeness theorems. They may provide a
misleading view of the usefulness of a method.

Ranking as Companion, FORTE’05, ATVA’05, October 2005 40

