
Lecture 6: Controller Synthesis A. Pnueli

Lectures Outline

• Overview of System Synthesis.

• Fair Discrete Systems and their Computations.

• Model Checking Invariance and feasibility.

• Temporal Testers and general LTL Model Checking.

• Controller Synthesis via Games.

• Synthesis from Recurrence Specifications.

• Synthesis from Reactivity Specifications. – The general case.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 74

Lecture 6: Controller Synthesis A. Pnueli

The Control Framework

Classical (Continuous Time) Control

Environment
Plant

Controller

Required: A design for a controller which will cause the plant to behave correctly
under all possible (appropriately constrained) environments.

Discrete Event Systems Controller: [Ramadge and Wonham 89]. Given a
Plant which describes the possible events and actions. Some of the actions are
controllable while the others are not.

Required: Find a strategy for the controllable actions which will maintain a correct
behavior against all possible adversary moves. The strategy is obtained by
pruning some controllable transitions.
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Application to Reactive Module Synthesis: [PR88], [ALW89] — The Plant
represents all possible actions. Module actions are controllable. Environment
actions are uncontrollable.

Required: Find a strategy for the controllable actions which will maintain a
temporal specification against all possible adversary moves. Derive a program
from this strategy. View as a two-persons game.
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The Runner Blocker System

GoalR B

The runner R tries to reach the goal. The blocker B tries to intercept and stop the
runner.
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Win

Lose Lose

State Transitions Diagram

Win Win
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Is the Goal Reachable?

All of our algorithms will be computing sets of states out of the state-transition
diagram. Let ‖win‖ denote the set of states labeled by the win proposition.
Let ρ be the transition relation, such that ρ(s1, s2) holds whenever s2 is a direct
successor of the state s1 in the state-transition diagram.

For a state-set S, we introduce the predecessor operator Pre
∃

which computes
the set of all one-step predecessors of the states in S. That is,

Pre
∃
(S) = {s | s has a ρ-successor in S}

Recursively, we define a state s to be goal reaching if either s ∈ ‖win‖ or s has a
goal reaching successor. That is,

R = ‖win‖ ∪ Pre
∃
(R)

We may expect that the solution to this fix-point equation, will give us the set of all
states from which ‖win‖ is reachable.
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Problem: Not Every Solution is Satisfactory
Consider the diagram:

s0s1 s2 LoseWin

Both R0,1 = {s0, s1} and R0..2 = {s0, s1, s2} satisfy the equation
R = ‖win‖ ∪ Pre

∃
(R)

but only R0,1 = {s0, s1} captures the set of states from which ‖win‖ is reachable.
Conclusion: We should take the minimal solution of the fix-point equation
R = ‖win‖ ∪ Pre

∃
(R) which we denote by

μR. (‖win‖ ∪ Pre
∃
R)

This minimal solution can be effectively computed by the iteration sequence:
R0 = ∅
R1 = ‖win‖
R2 = R0 ∪ Pre

∃
R0

R3 = R1 ∪ Pre
∃
R1

. . .

Consequently, the goal is reachable from an initial state s0 iff
s0 ∈ μR. (‖win‖ ∪ Pre

∃
R).
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Computing μR. ‖win‖ ∪ Pre
∃
(R)

Win Win Win

LoseLose

R1

R2

R3

R4

R5

R0
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Controller Synthesis

Distinguishing between the two players, we define

Pre
∃
(S) = {s | Some red successor of s is in C}

Pre
∀
(S) = {s | All black successors of s are in C}

The two operators can be combined, and the expression
Pre

C
(C) = Pre

∃
(Pre

∀
(C)) denotes the set of states s which have at least one

red successor s1 all of whose black successors belong to C. If we think about
the moves as taken in turn by two players, then Pre

C
(C) denotes the states from

which the red player can force the game after a complete round (each player
making one move) into a C-state.

The expression control(win) = μC. ‖win‖ ∪ Pre
C
(C) characterizes all the states

from which the red player can force a visit to a win state in a finite number of
moves.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 82

Lecture 6: Controller Synthesis A. Pnueli

Computing μC. ‖win‖ ∪ Pre
C
(C)

Win Win Win

LoseLose
C0

C1

C2
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Conclusions

The runner and the blocker can cooperate to reach a winning state for R.

However, R cannot force a win.
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The Modified Runner Blocker System

GoalR B

Additional transitions have been added to the runner.
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Win

Game Tree for the Modified System

Win Win

Lose Lose
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Computing μR. ‖win‖ ∪ Pre
∃
(R)

Win Win Win

LoseLose

R5

R0

R1

R2

R3

R4
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Computing μC. ‖win‖ ∪ Pre
C
(C)

Win Win Win

LoseLose

C2

C3

C0

C1
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WinWin

Lose Lose

A Winning Strategy

Win
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Apply to Programs

Let us apply the controller synthesis paradigm to synthesis of programs (or
designs, in general).
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Example Design: Arbiter

Consider a specification for an arbiter.

gn

r1 g1

Arbiter

rn

The protocol for each client:

ri gi

ri giri gi

ri gi

Required to satisfy
∧
i �=j

¬(gi ∧ gj) ∧
∧
i

(gi = ri)
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Start by Controller Synthesis
Assume a given platform (plant), identifying controllable (system) and
uncontrollable (environment) transitions:

r1r2; g1g2

r1r2; g1g2 r1r2; g1g2

r1r2; g1g2 r1r2; g1g2 r1r2; g1g2

r1r2; g1g2

r1r2; g1g2

r1r2; g1g2

r1r2; g1g2 r1r2; g1g2 r1r2; g1g2r1r2; g1g2

r1r2; g1g2 r1r2; g1g2 r1r2; g1g2

By default every node is connected to itself by both green and red transitions. A
complete move consists of a red edge followed by a green edge, visiting at most
two different states. Also given is an LTL specification (winning condition):

ϕ : ¬(g1 ∧ g2) ∧ (g1 = r1) ∧ (g2 = r2)
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Synthesis Via Game Playing

A game is given by G : 〈V = X ∪ Y,Θ, ρ1, ρ2, ϕ〉, where

• V = X ∪ Y are the state variables, with X being the environment’s (player 1)
variables, and Y being the system’s (player 2) variables. A state of the game
is an interpretation of V . Let Σ denote the set of all states.

• Θ — the initial condition. An assertion characterizing the initial states.

• ρ1(X,Y,X ′) — Transition relation for player 1 (Environment).

• ρ2(X,Y,X ′, Y ′) — Transition relation for player 2 (system).

• ϕ — The winning condition. An LTL formula characterizing the plays which are
winning for player 2.

A state s2 is said to be a G-successor of state s1, if both ρ1(s1[V ], s2[X ]) and
ρ2(s1[V ], s2[V ]) are true.

We denote by DX and DY the domains of variables X and Y , respectively.
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Plays and Strategies
Let G : 〈V, Θ, ρ1, ρ2, ϕ〉 be a game. A play of G is an infinite sequence of states

π : s0, s1, s2, . . . ,

satisfying:

• Initiality: s0 |= Θ.

• Consecution: For each j ≥ 0, the state sj+1 is a G-successor of the state sj.

A play π is said to be winning for player 2 if π |= ϕ. Otherwise, it is said to be
winning for player 1.

A strategy for player 1 is a function σ1 : Σ+ 
→ DX, which determines the next set
of values for X following any history h ∈ Σ+. A play π : s0, s1, . . . is said to be
compatible with strategy σ1 if, for every j ≥ 0, sj+1[X ] = σ1(s0, . . . , sj).

Strategy σ1 is winning for player 1 from state s if all s-originated plays compatible
with σ1 are winning for player 1. If such a winning strategy exists, we call s a
winning state for player 1.

Similar definitions hold for player 2 with strategies of the form σ2 : Σ+×DX 
→ DY .
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From Winning Games to Programs

A game G is said to be winning for player 2 (player 1, respectively) if all (some)
initial states are winning for 2 (1, respectively).

We solve the game, attempting to decide whether the game is winning for player
1 or 2. If it is winning for player 1 the specification is unrealizable. If it is winning
for player 2, we can extract a winning strategy which is a working implementation.

When applying controller synthesis, the platform provides the transition relations
ρ1 and ρ2, as well as the initial condition.

Thus, the essence of synthesis under the controller framework is an algorithm for
computing the set of winning states for a given platform and specification ϕ.
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The Controlled Predecessor

As in symbolic model checking, computing the winning states involves fix-point
computations over a basic predecessor operator. For model checking the
operator is E p satisfied by all states which have a p-state as a successor.

For synthesis, we use the controlled predecessor operator p. Its semantics can
be defined by

p : ∀X ′ : ρ1(V,X ′) → ∃Y ′ : ρ2(V, V ′) ∧ p(V ′)

where ρ1 and ρ2 are the transition relations of the environment and system,
respectively.

In our graphic notation, s |= p iff s has at least one green p-successor, and all
red successors different from s satisfy p.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 96

Lecture 7: Application to Program Synthesis A. Pnueli

Solving p Games, Iteration 0

The set of winning states for a specification p can be computed by the fix-point
expression:

νY. p ∧ Y = p ∧ p ∧ p ∧ · · ·

We illustrate this on the specification ¬(g1 ∧ g2).

r1r2; g1g2

r1r2; g1g2 r1r2; g1g2

r1r2; g1g2 r1r2; g1g2 r1r2; g1g2

r1r2; g1g2

r1r2; g1g2

r1r2; g1g2

r1r2; g1g2 r1r2; g1g2 r1r2; g1g2r1r2; g1g2

r1r2; g1g2 r1r2; g1g2 r1r2; g1g2

Iteration 0, Y0 : 1
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Solving p Games, Iteration 1
The set of winning states for a specification p can be computed by the fix-point
expression:

νY. p ∧ Y = p ∧ p ∧ p ∧ · · ·

We illustrate this on the specification ¬(g1 ∧ g2).

r1r2; g1g2

r1r2; g1g2 r1r2; g1g2

r1r2; g1g2 r1r2; g1g2 r1r2; g1g2

r1r2; g1g2

r1r2; g1g2

r1r2; g1g2

r1r2; g1g2 r1r2; g1g2 r1r2; g1g2r1r2; g1g2

r1r2; g1g2 r1r2; g1g2 r1r2; g1g2

Iteration 1, Y1 : ¬(g1 ∧ g2) ∧ 1

Verification and Synthesis of Reactive Programs, Rome, June, 2006 98

Lecture 7: Application to Program Synthesis A. Pnueli

Solving q Games, Iteration 1
The set of winning states for a specification q can be computed by the fix-point
expression:

μY. q ∨ Y = q ∨ q ∨ q ∨ · · ·

We illustrate this on the specification (g1 = r1).

r1r2; g1g2

r1r2; g1g2 r1r2; g1g2

r1r2; g1g2 r1r2; g1g2 r1r2; g1g2

r1r2; g1g2

r1r2; g1g2

r1r2; g1g2

r1r2; g1g2 r1r2; g1g2

r1r2; g1g2

Iteration 1, Y1 : (g1 = r1)
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Solving q Games, Iteration 2
The set of winning states for a specification q can be computed by the fix-point
expression:

μY. q ∨ Y = q ∨ q ∨ q ∨ · · ·

We illustrate this on the specification (g1 = r1).

r1r2; g1g2

r1r2; g1g2 r1r2; g1g2

r1r2; g1g2 r1r2; g1g2 r1r2; g1g2

r1r2; g1g2

r1r2; g1g2

r1r2; g1g2

r1r2; g1g2 r1r2; g1g2

r1r2; g1g2

Iteration 2, Y2 : Y1 ∨ Y1
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Solving q Games, Iteration 3
The set of winning states for a specification q can be computed by the fix-point
expression:

μY. q ∨ Y = q ∨ q ∨ q ∨ · · ·

We illustrate this on the specification (g1 = r1).

r1r2; g1g2

r1r2; g1g2 r1r2; g1g2

r1r2; g1g2 r1r2; g1g2 r1r2; g1g2

r1r2; g1g2

r1r2; g1g2

r1r2; g1g2

r1r2; g1g2 r1r2; g1g2

r1r2; g1g2

Iteration 3, Y3 : Y2 ∨ Y2
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Solving q Games, Iteration 4 (Final)
The set of winning states for a specification q can be computed by the fix-point
expression:

μY. q ∨ Y = q ∨ q ∨ q ∨ · · ·

We illustrate this on the specification (g1 = r1).

r1r2; g1g2

r1r2; g1g2 r1r2; g1g2

r1r2; g1g2 r1r2; g1g2 r1r2; g1g2

r1r2; g1g2

r1r2; g1g2

r1r2; g1g2

r1r2; g1g2 r1r2; g1g2

r1r2; g1g2

Iteration 4, Y4 : Y3 ∨ Y3
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Solving q Games

A game for a winning condition of the form q can be solved by the fix-point
expression:

νZμY. q ∧ Z ∨ Y

This is based on the maximal fix-point solution of the equation

Z = μY. (q ∧ Z) ∨ Y

This nested fix-point computation can be computed iteratively by the program:

Z := 1
Fix (Z)⎡

⎢⎢⎢⎢⎣

G := q ∧ Z

Y := 0
Fix (Y )

[Y := G ∨ Y ]
Z := Y

⎤
⎥⎥⎥⎥⎦
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Solving (g1 = r1) for the Arbiter Example

Applying the above fix-point iterations to the Arbiter example, we obtain:

r1r2; g1g2

r1r2; g1g2 r1r2; g1g2

r1r2; g1g2 r1r2; g1g2

r1r2; g1g2 r1r2; g1g2

r1r2; g1g2

Note that the obtained strategy, keeps g2 = 0 permanently. This suggests that we
will have difficulties finding a solution that will maintain

(g1 = r1) ∧ (g2 = r2)
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Generalized Response (Büchi)
Solving the game for q1 ∧ · · · ∧ qn.

ϕ = ν

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z1

Z2

...

...
Zn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

μY
(
(q1 ∧ Z2) ∨ Y

)

μY
(
(q2 ∧ Z3) ∨ Y

)
...
...

μY
(
(qn ∧ Z1) ∨ Y

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Iteratively:

For (i ∈ 1..n) do [Z[i] := 1]
Fix (Z[1])⎡

⎢⎢⎢⎢⎢⎣

For (i ∈ 1..n) do⎡
⎢⎢⎢⎣

Y := 0
Fix (Y )[

Y := (q[i] ∧ Z[i ⊕n 1]) ∨ Y
]

Z[i] := Y

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎦

Return Z[1]
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Specification is Unrealizable

Applying the above algorithm to the specification

(g1 = r1) ∧ (g2 = r2)

we find that it fails. Conclusion:

The considered specification is unrealizable

Indeed, without an environment obligation of releasing the resource once it has
been granted, the arbiter cannot satisfy any other client.
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Property-Based System Design

While the rest of the world seems to be moving in the direction of model-based
design (see System-C, UML), some of us persist with the vision of property-based
approach.

Specification is stated declaratively as a set of properties, from which a design
can be extracted.

This is currently studied in the project PROSYD.

Design synthesis is needed in two places in the development flow:

• Automatic synthesis of small blocks whose time and space efficiency are not
critical.

• As part of the specification analysis phase, ascertaining that the specification
is realizable.
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A Realizable Specification

ri gi

ri giri gi

ri gi

Assumptions (Constraints on the Environment)

A :
∧
i

(
ri ∧ (ri �= gi) ⇒ ( ri = ri) ∧ ri ∧ gi ⇒ ri

)

Guarantees (Expectations from System)

G :
∧
i �=j

¬(gi ∧ gj) ∧
∧
i

⎛
⎝gi ∧

⎧⎪⎪⎪⎪⎪⎪⎩
ri = gi ⇒ gi = gi ∧
ri ∧ gi ⇒ gi ∧
ri ∧ gi ⇒ gi

⎫⎪⎪⎪⎪⎪⎪⎭
⎞
⎠

Total Specification

ϕ : A → G

Verification and Synthesis of Reactive Programs, Rome, June, 2006 108

Lecture 7: Application to Program Synthesis A. Pnueli

Program Sythesis from LTL Specification

Assume we are given a set of LTL specifications. We construct a game as follows:

• As Θ we take all the non-temporal specification parts which relate to the initial
state.

• As ρ1 and ρ2, we can take True. A more efficient choice is to include in ρ1

(similarly ρ2) all local limitations on the next values of X (resp. Y ), such as

ri ∧ ¬gi → r′i

• We place in ϕ all the remaining properties that have not already been included
in Θ, ρ1, and ρ2.

We solve the game, attempting to decide whether the game is winning for player
1 or 2. If it is winning for player 1 the specification is unrealizable. If it is winning
for player 2, we can extract a winning strategy which is a working implementation.
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The Game for the Sample Specification

For the specification

∧
i

(
ri ∧ (ri �= gi) ⇒ ( ri = ri) ∧ ri ∧ gi ⇒ ri

)
→

∧
i �=j ¬(gi ∧ gj) ∧

∧
i

⎛
⎝gi ∧

⎧⎪⎪⎪⎪⎪⎪⎩
ri = gi ⇒ gi = gi ∧
ri ∧ gi ⇒ gi ∧
ri ∧ gi ⇒ gi

⎫⎪⎪⎪⎪⎪⎪⎭
⎞
⎠

We take the following game components:

X ∪ Y : {ri | i = 1, . . . , n} ∪ {gi | i = 1, . . . , n}

Θ :
∧

i (ri ∧ gi)

ρ1 :
∧

i ((ri �= gi) → (r′i = ri))

ρ2 :
∧

i �=j ¬(g′i ∧ g′j) ∧
∧

i ((ri = gi) → (g′i = gi))

ϕ :
∧

i (ri ∧ gi ⇒ ri) →
∧

i ((ri ∧ gi ⇒ gi) ∧ (ri ∧ gi ⇒ gi))
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Solving in Polynomial Time a Doubly Exponential Problem

In [1989] Roni Rosner provided a general solution to the Synthesis problem. He
showed that any approach that starts with the standard translation from LTL to
Büchiautomata, has a doubly exponential lower bound.

One of the messages resulting from the work reported here is

Do not be too hasty to translate LTL into automata. Try first to locate the
formula within the temporal hierarchy.

For each class of formulas, synthesis can be performed in polynomial time.
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Hierarchy of the Temporal Properties

Safety
p

Obligation
k∧

i=1

( pi ∨ qi)

Guarantee
p

Response
p

Persistence
p

Reactivity
k∧

i=1

( pi ∨ qi)

Progress

where p, pi, q, qi are past formulas.
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Solving Games for Generalized Reactivity[1] (Streett[1])

Following [KPP03], we present an n3 algorithm for solving games whose winning
condition is given by the (generalized) Reactivity[1] condition

( p1 ∧ p2 ∧ · · · ∧ pm) → q1 ∧ q2 ∧ · · · ∧ qn

This class of properties is bigger than the properties specifiable by deterministic
Büchiautomata. It covers a great majority of the properties we have seen so far.

For example, it covers the realizable version of the specification for the Arbiter
design.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 113



Lecture 7: Application to Program Synthesis A. Pnueli

The Solution

The winning states in a Streett[1] game can be computed by

ϕ = ν

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z1

Z2

...

...

Zn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μY

⎛
⎝ m∨

j=1

νX(q1 ∧ Z2 ∨ Y ∨ ¬pj ∧ X)

⎞
⎠

μY

⎛
⎝ m∨

j=1

νX(q2 ∧ Z3 ∨ Y ∨ ¬pj ∧ X)

⎞
⎠

...

...

μY

⎛
⎝ m∨

j=1

νX(qn ∧ Z1 ∨ Y ∨ ¬pj ∧ X)

⎞
⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

ϕ : ∀X ′ : ρ1(V,X ′) → ∃Y ′ : ρ2(V, V ′) ∧ ϕ(V ′)
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Results of Synthesis

The design realizing the specification can be extracted as the winning strategy for
Player 2. Applying this to the Arbiter specification, we obtain the following design:

r1 r2 ; g1 g2 r1 r2 ; g1 g2 r1 r2 ; g1 g2

r1 r2 ; g1 g2 r1 r2 ; g1 g2 r1 r2 ; g1 g2 r1 r2 ; g1 g2 r1 r2 ; g1 g2

r1 r2 ; g1 g2

r1 r2 ; g1 g2

r1 r2 ; g1 g2 r1 r2 ; g1 g2

r1 r2 ; g1 g2

There exists a symbolic algorithm for extracting the implementing design/winning
strategy.
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Execution Times and Programs Size for Arbiter(N)

Execution Time

0 10 20 30 40 50 60 70 80 90

25

50

75

100

150

50

100

150

200

250

300

125

T
im

e
(s

ec
on

ds
)

Pr
og

ra
m

si
ze

(x
10

00
) Program Size

Verification and Synthesis of Reactive Programs, Rome, June, 2006 116
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Conclusions

• It is possible to perform design synthesis for restricted fragments of LTL in
acceptable time.

• The tractable fragment (React(1)) covers most of the properties that appear in
standard specifications.

• It is worthwhile to invest an effort in locating the formula within the temporal
hierarchy. Solving a game in React(k) has complexity N (2k+1).
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Lecture 8: Tree Interpretation A. Pnueli

The Semantics of Game Analysis

We can always consruct the game tree

r g

r g

r g

r g

r g r g r g r g

r g r g r g r g r g r g r g r g

r g r g r g r g r g
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Strategies

All strategies can be represented as pruning of the tree at the controllable levels.
For example, a strategy for the specification

(r ⇒ g) ∧ (r ⇒ g)

r g

r g

r g

r g r g r g r g

r g r g r g r g r g r g r g r g

r g r g r g r g r g

r g
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Folding the Tree Into a Finite Graph

In order to be algorithmically tractable, we need to perform the pruning process
over the finite graph which generated the game tree. In many cases, this is
possible (and leads to memory-less strategy).

r g

r g

r g

r g

r g

r g

r g

r g

r g

r g

r g

r g

Verification and Synthesis of Reactive Programs, Rome, June, 2006 120

Lecture 8: Tree Interpretation A. Pnueli

Folding not Immediate
r1 r2 g1 g2

r1 r2 g1 g2

r1 r2 g1 g2

r1 r2 g1 g2

r1 r2 g1 g2

r1 r2 g1 g2

r1 r2 g1 g2

There are cases in which the
pruning must depend on the path
leading to the current state.

Folding is still possible but may
need a longer period.
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Lecture 9: Design Extraction A. Pnueli

Controller (Design) Extraction

It remains to show how to extract a winning strategy for the case that a game is
winning for player 2.

Let G : 〈V = X ∪ Y,Θ, ρ1, ρ2, ϕ〉 be a given game. A controller for G is an FDS

Gc : 〈Vc,Θc, ρc, ∅, ∅〉, such that:

• Vc ⊇ V . That is, Vc extends the set of variables of G.

• Θc ⇓V = Θ. That is, when projecting the initial states of Gc on the variables of
G, we obtain precisely the initial states of G.

• ρc → ρ, where ρ = ρ1 ∧ ρ2. That is, if s2 is a ρc successor of s1, then s2 is also
a ρc successor of s1.

• Player-1 Completenss — ρc ⇓V,X′ = ρ1. That is, a state s1 ∈ Σc has a ρ1-
successor s2 iff s1 has a ρc-successor which agrees with s2 on the valuation of
X .

• Every infinite run of Gc satisfies the winning condition ϕ.
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Example: Extracted Controller for Arbiter

Following is the controller extracted for the Arbiter example:

r1 r2 ; g1 g2 r1 r2 ; g1 g2 r1 r2 ; g1 g2

r1 r2 ; g1 g2 r1 r2 ; g1 g2 r1 r2 ; g1 g2 r1 r2 ; g1 g2 r1 r2 ; g1 g2

r1 r2 ; g1 g2

r1 r2 ; g1 g2

r1 r2 ; g1 g2 r1 r2 ; g1 g2

r1 r2 ; g1 g2
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Interpreting a Controller as a Program

A program (equivalently, a circuit) implementing the extracted controller follows
the states that are contained in Gc. It has a program counter which ranges over
the states of Gc.

Assume that control is currently at state S of Gc. Let the next values of the input
variables be X = ξ. Choose a state S′ which is a ρc-successor of S, and such
that S′[X ] = ξ. By the requirement of Player-1 Completenss, there always exists
such a successor.

The actions of the program is to output the values η such that S′[Y ] = η, and to
move to state S′.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 124

Lecture 9: Design Extraction A. Pnueli

Computing a Controller for the Winning Condition p

The winning states in a game with a winning condition p are given by:

win = νZ. p ∧ Z

The full contoller extraction algorithm can be given by the following program:

Z := 1
Fix (Z)[

Z := p ∧ Z
]

if (Θ ∧ ¬Z) �= 0 then
Print ”Specification is unrealizable”

else[
Θc := Θ
ρc := Z ∧ ρ ∧ Z ′

]

Claim 10. If s is a winning state of a ( p)-game, then s |= p, and player 2 can
force the game to move from s to a succesor which is also a winning state.
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Lecture 9: Design Extraction A. Pnueli

Computing A Controller for the Winning Condition q

The winning states in a game with a winning condition p are given by:

win = μY. q ∨ Y

The full contoller extraction algorithm can be given by the following program:

Y := q; r := 0; U [0] := q

Fix (Y )[
Y := q ∨ Y ; r := r + 1; U [r] := Y

]
if (Θ ∧ ¬Y ) �= 0 then

Print ”Specification is unrealizable”
else⎡

⎢⎢⎣
Θc := Θ
ρc := 0; prev := U [0]
for i ∈ 1 . . . r do[

ρc := ρc ∨ (U [i] ∧ ¬prev) ∧ ρ ∧ prev ′; prev := prev ∨ U [i]
]

⎤
⎥⎥⎦

Claim 11. Every winning state s in a ( q)-game is associated with a natural
rank r(s) ≥ 0, such that if r(s) = 0 then s |= q, and if r(s) > 0, then player 2 can
force the game to move from s to a winning succesor with a lower rank.
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Computing A Controller for the Winning Condition q
The winning states in a game with a winning condition p are given by:

win = νZμY. (q ∧ Z) ∨ Y

The full contoller extraction algorithm can be given by the following program:
Z := 1
Fix (Z)⎡

⎣ Y := q ∧ Z; r := 0; U [0] := Y

Fix (Y )[
Y := q ∨ Y ; r := r + 1; U [r] := Y

]
⎤
⎦

if (Θ ∧ ¬Z) �= 0 then
Print ”Specification is unrealizable”

else⎡
⎢⎢⎣

Θc := Θ
ρc := U [0] ∧ ρ ∧ Z ′; prev := U [0]
for i ∈ 1 . . . r do[

ρc := ρc ∨ (U [i] ∧ ¬prev) ∧ ρ ∧ prev ′; prev := prev ∨ U [i]
]

⎤
⎥⎥⎦

Claim 12. Every winning state s in a ( q)-game is associated with a natural
rank r(s), such that player 2 can force the game to move from s to a winning
succesor s′ where either r(s) = 0 and s |= q, or r(s) > r(s′).
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