
Verification and Synthesis of Reactive Programs

Amir Pnueli

Weizmann Institute of Sciences and New York University

Mini-Course, Universita’ di Roma La Sapienza June, 2006

Including Joint work with:

Yonit Kesten BGU
Elad Shahar Weizmann
Oded Maler, E. Asarin, Joseph Sifakis Verimag, Grenoble, France
Nir Piterman EPFL

Verification and Synthesis of Reactive Programs, Rome, June, 2006

Lecture 1: Overview of System Synthesis A. Pnueli

Lectures Outline

• Overview of System Synthesis.

• Fair Discrete Systems and their Computations.

• Model Checking Invariance and response.

• Temporal Testers and general LTL Model Checking.

• Controller Synthesis via Games.

• Synthesis from Recurrence Specifications.

• Synthesis from Reactivity Specifications. – The general case.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 1

Lecture 1: Overview of System Synthesis A. Pnueli

Motivation

Why verify, if we can automatically synthesize a program which is correct by
construction?

Verification and Synthesis of Reactive Programs, Rome, June, 2006 2

Lecture 1: Overview of System Synthesis A. Pnueli

Applying Mathematics to the Programming Problem
The mathematical paradigm considers a constraint C(x), e.g.

2 < x ≤ 10

and asks questions such as:

1. Does x = 5 satisfy the constraint?

2. Is the constraint satisfiable by some x?

3. Find an x which satisfies the constraint.

4. Find the best, say maximal, x which satisfies C.

Question: If x is the program, what is C?

Answer: C is the specification which the program should satisfy.

Program Verification solves Problem no. 1.

Program Synthesis solves Problems no. 2 and 3.

Why perform a post-facto Verification if you can synthesize a constructively
Correct program directly from the specification?

Verification and Synthesis of Reactive Programs, Rome, June, 2006 3

Lecture 1: Overview of System Synthesis A. Pnueli

A Brief History of System Synthesis

In 1965 Church formulated the following Church problem: Given a circuit interface
specification (identification of input and output variables) and a behavioral
specification,

• Determine if there exists an automaton (sequential circuit) which realizes the
specification.

• If the specification is realizable, construct an implementing circuit

The specification was given in the sequence calculus which is an explicit-time
temporal logic.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 4

Lecture 1: Overview of System Synthesis A. Pnueli

Example of a Specification: Arbiter

gn

r1 g1

Arbiter

rn

The protocol for each client:

ri gi

ri giri gi

ri gi

Verification and Synthesis of Reactive Programs, Rome, June, 2006 5

Lecture 1: Overview of System Synthesis A. Pnueli

The Behavioral Specification

ri gi

ri giri gi

ri gi

∧

i

∀t : (ri[t] = gi[t]→ gi[t+ 1] = gi[t]) ∧ (ri[t] 6= gi[t]→ ri[t+ 1] = ri[t]) ∧
∧

i 6=j

∀t : ¬(gi[t] ∧ gj[t]) ∧
∧

i

∀t : ri[t] 6= gi[t]→ ∃s ≥ t : ri[s] = gi[s]

Is this specification realizable?

The essence of synthesis is the conversion

From relations to Functions.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 6

Lecture 1: Overview of System Synthesis A. Pnueli

From Relations to Functions

Consider a computational program:

x y

• The relation x = y2 is a specification for the program computing the function
y =
√
x.

• The relation x |= y is a specification for the program that finds a satisfying
assignment to the CNF boolean formula x.

Checking is easier than computing.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 7

Lecture 1: Overview of System Synthesis A. Pnueli

Solutions to Church ’s Problem

In 1969, M. Rabin provided a first solution to Church’s problem. Solution was
based on automata on Infinite Trees. All the concepts involving ω-automata were
invented for this work.

At the same year, Büchi and Landweber provided another solution, based on
infinite games.

These two techniques (Trees and Games) are still the main techniques for
performing synthesis.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 8

Lecture 1: Overview of System Synthesis A. Pnueli

Synthesis of Reactive Modules from Temporal Specifications

Around 1981 Wolper and Emerson, each in his preferred brand of temporal
logic (linear and branching, respectively), considered the problem of synthesis
of reactive systems from temporal specifications.

Their (common) conclusion was that specification ϕ is realizable iff it is satisfiable,
and that an implementing program can be extracted from a satisfying model in the
tableau. A typical solution they would obtain for the arbiter problem is:

r1 r2 g1 g2

r1 r2 g1 g2

r1 r2 g1 g2

r1 r2 g1 g2 r1 r2 g1 g2

r1 r2 g1 g2r1 r2 g1 g2

r1 r2 g1 g2

Such solutions are acceptable only in circumstances when the environment fully
cooperate with the system.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 9

Lecture 1: Overview of System Synthesis A. Pnueli

Next Step: Realizability ⊏ Satisfiability

There are two different reasons why a specification may fail to be realizable.

Inconsistency

g ∧ ¬g

Unrealizability For a system

r g

Realizing the specification

g ←→ r

requires clairvoyance.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 10

Lecture 1: Overview of System Synthesis A. Pnueli

A Synthesized Module Should Maintain Specification Against
Adversarial Environment

In 1998, Rosner claimed that realizability should guarantee the specification
against all possible (including adversarial) environments.

To solve the problem one must find a satisfying tree where the branching
represents all possible inputs:

r1 r2

g1 g2

g1, g2 g1 g2

r1, r2 r1 r2

g1 g2

r1 r2

g1, g2 g1 g2

r1, r2 r1 r2

g1 g2

r1 r2 r1 r2

g1 g2

Can be formulated as satisfaction of the CTL∗ formula

Aϕ ∧ A (EX(r1 ∧ r2) ∧ EX(r1 ∧ r2) ∧ EX(r1 ∧ r2) ∧ EX(r1 ∧ r2))

Verification and Synthesis of Reactive Programs, Rome, June, 2006 11

Lecture 1: Overview of System Synthesis A. Pnueli

Bad Complexity

Rosner and P have shown [1989] that the synthesis process has worst case
complexity which is doubly exponential. The first exponent comes from the
translation of ϕ into a non-deterministic Büchiautomaton. The second exponent
is due to the determinization of the automaton.

This result doomed synthesis to be considered highly untractable.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 12

Lecture 1: Overview of System Synthesis A. Pnueli

Simple Cases of Lower Complexity

In 1989, Ramadge and Wonham introduced the notion of controller synthesis and
showed that for a specification of the form p, the controller can be synthesized
in linear time.

In 1998, Asarin, Maler, P, and Sifakis, extended controller synthesis to timed
systems, and showed that for specifications of the form p and q, the problem
can be solved by symbolic methods in linear time.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 13

Lecture 1: Overview of System Synthesis A. Pnueli

Lessons to be Learned from these Lectures

• Program (and design) synthesis is a tractable process.

• It can be solved using symbolic methods based on fixed-point iterations in a
way very similar to model checking.

• The complexity of the solution is always polynomial where, unlike model
checking, the degree of the polynomial depends on the structural complexity of
the specification ϕ.

• For a very large class of specifications, arising in practice, the degree is 3, i.e.,
the problem can be solved in time n3.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 14

Lecture 2: Preliminaries A. Pnueli

Lectures Outline

• Overview of System Synthesis.

• Fair Discrete Systems and their Computations.

• Model Checking Invariance and response.

• Temporal Testers and general LTL Model Checking.

• Controller Synthesis via Games.

• Synthesis from Recurrence Specifications.

• Synthesis from Reactivity Specifications. – The general case.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 15

Lecture 2: Preliminaries A. Pnueli

Fair Discrete Systems

As our computational model, we take fair discrete systems. An FDS

D = 〈V,Θ, ρ,J , C〉 consists of:

• V – A finite set of typed state variables. A V -state s is an interpretation of V .
Denote by ΣV – the set of all V -states.

• Θ – An initial condition. A satisfiable assertion that characterizes the initial
states.

• ρ – A transition relation. An assertion ρ(V, V ′), referring to both unprimed
(current) and primed (next) versions of the state variables. For example,
x′ = x+ 1 corresponds to the assignment x := x+ 1.

• J = {J1, . . . , Jk} A set of justice (weak fairness) requirements. Ensure that a
computation has infinitely many Ji-states for each Ji, i = 1, . . . , k.

• C = {〈p1, q1〉, . . . 〈pn, qn〉} A set of compassion (strong fairness) requirements.
Infinitely many pi-states imply infinitely many qi-states.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 16

Lecture 2: Preliminaries A. Pnueli

A Simple Programming Language: SPL

A language allowing composition of parallel processes communicating by
shared variables as well as message passing.

Example: Program ANY-Y

Consider the program

x, y : natural initially x = y = 0

ℓ0 : while x = 0 do
[ℓ1 : y := y + 1]

ℓ2 :

[

m0 : x := 1
m1 :

]

− P1 − − P2 −

Verification and Synthesis of Reactive Programs, Rome, June, 2006 17

Lecture 2: Preliminaries A. Pnueli

The Corresponding FDS

• State Variables V :

x, y : natural
π1 : {ℓ0, ℓ1, ℓ2}
π2 : {m0,m1}

.

• Initial condition: Θ : π1 = ℓ0 ∧ π2 = m0 ∧ x = y = 0.

• Transition Relation: ρ: ρ
I
∨ ρℓ0 ∨ ρℓ1 ∨ ρm0, with appropriate disjunct (transition)

for each statement. For example, the disjuncts ρ
I

and ρℓ0 are

ρ
I

: π′
1 = π1 ∧ π′

2 = π2 ∧ x′ = x ∧ y′ = y

ρℓ0 : π1 = ℓ0 ∧

x = 0 ∧ π′
1 = ℓ1

∨
x 6= 0 ∧ π′

1 = ℓ2

 ∧ π′
2 = π2 ∧ x′ = x ∧ y′ = y

• Justice set: J : {¬at−ℓ0,¬at−ℓ1,¬at−m0}. Usually, we have a justice
transition expressing the disableness of each just transition.

• Compassion set: C: ∅.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 18

Lecture 2: Preliminaries A. Pnueli

Computations
Let D be an FDS for which the above components have been identified. The state
s′ is defined to be a D-successor of state s if

〈s, s′〉 |= ρ
D
(V, V ′).

We define a computation of D to be an infinite sequence of states

σ : s0, s1, s2, ...,

satisfying the following requirements:

• Initiality: s0 is initial, i.e., s0 |= Θ.

• Consecution: For each j ≥ 0, the state sj+1 is a D-successor of the state sj.

• Justice: For each J ∈ J , σ contains infinitely many J-positions. This
guarantees that every just transition is disabled infinitely many times.

• Compassion: For each 〈p, q〉 ∈ C, if σ contains infinitely many p-positions,
it must also contain infinitely many q-positions. This guarantees that every
compassionate transition which is enabled infinitely many times is also taken
infinitely many times.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 19

Lecture 2: Preliminaries A. Pnueli

Examples of Computations

Identification of the FDS DP corresponding to a program P gives rise to a set of
computations Comp(P) = Comp(DP).

The following computation of program ANY-Y corresponds to the case that m0

is the first executed statement:

〈π1: ℓ0 , π2: m0 ; x: 0 , y: 0〉
m0−→ 〈π1: ℓ0 , π2: m1 ; x: 1 , y: 0〉

ℓ0−→

〈π1: ℓ2 , π2: m1 ; x: 1 , y: 0〉
τ
I−→ · · ·

τ
I−→ · · ·

The following computation corresponds to the case that statement ℓ1 is
executed before m0.

〈π1: ℓ0 , π2: m0 ; x: 0 , y: 0〉
ℓ0−→ 〈π1: ℓ1 , π2: m0 ; x: 0 , y: 0〉

ℓ1−→

〈π1: ℓ0 , π2: m0 ; x: 0 , y: 1〉
m0−→ 〈π1: ℓ0 , π2: m1 ; x: 1 , y: 1〉

ℓ0−→

〈π1: ℓ2 , π2: m1 ; x: 1 , y: 1〉
τ
I−→ · · ·

τ
I−→ · · ·

In a similar way, we can construct for each n ≥ 0 a computation that executes
the body of statement ℓ0 n times and then terminates in the final state

〈π1: ℓ2 , π2: m1 ; x: 1 , y: n〉.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 20

Lecture 2: Preliminaries A. Pnueli

A Non-Computation

While we can delay termination of the program for an arbitrary long time, we
cannot postpone it forever.

Thus, the sequence

〈π1: ℓ0 , π2: m0 ; x: 0 , y: 0〉
ℓ0−→ 〈π1: ℓ1 , π2: m0 ; x: 0 , y: 0〉

ℓ1−→

〈π1: ℓ0 , π2: m0 ; x: 0 , y: 1〉
ℓ0−→ 〈π1: ℓ1 , π2: m0 ; x: 0 , y: 1〉

ℓ1−→

〈π1: ℓ0 , π2: m0 ; x: 0 , y: 2〉
ℓ0−→ 〈π1: ℓ1 , π2: m0 ; x: 0 , y: 2〉

ℓ1−→

〈π1: ℓ0 , π2: m0 ; x: 0 , y: 3〉
ℓ0−→ · · ·

in which statementm0 is never executed is not an admissible computation. This
is because it violates the justice requirement ¬at−m0 contributed by statement
m0, by having no states in which this requirement holds.

This illustrates how the requirement of justice ensures that program ANY-Y

always terminates.

Justice guarantees that every (enabled) process eventually progresses, in spite
of the representation of concurrency by interleaving.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 21

Lecture 2: Preliminaries A. Pnueli

Justice is not Enough. You also Need Compassion

The following program MUX-SEM, implements mutual exclusion by semaphores.

y : natural initially y = 1

P1 ::

ℓ0 : loop forever do

ℓ1 : Non-critical
ℓ2 : request y
ℓ3 : Critical
ℓ4 : release y

P2 ::

m0 : loop forever do

m1 : Non-critical
m2 : request y
m3 : Critical
m4 : release y

The compassion set of this program consists of

C: {(at−ℓ2 ∧ y > 0, at−ℓ3), (at−m2 ∧ y > 0, at−m3)}.

Usually, with a compassionate transition τ , we associate the compassion
requirement

(En(τ), taken(τ))

Verification and Synthesis of Reactive Programs, Rome, June, 2006 22

Lecture 2: Preliminaries A. Pnueli

Program MUX-SEM

should satisfy the following two requirements:

• Mutual Exclusion – No computation of the program can include a state in
which process P1 is at ℓ3 while P2 is at m3.

• Accessibility – Whenever process P1 is at ℓ2, it shall eventually reach it’s
critical section at ℓ3. Similar requirement for P2.

Consider the state sequence:

σ: 〈ℓ0, m0, 1〉 −→ · · · −→ 〈ℓ2, m2, 1〉 m2−→
〈ℓ2, m3, 0〉 m3−→ 〈ℓ2, m4, 0〉 m4−→
〈ℓ2, m0, 1〉 m0−→ 〈ℓ2, m1, 1〉 m1−→ 〈ℓ2, m2, 1〉 m2−→
〈ℓ2, m3, 0〉 −→ · · · ,

which violates accessibility for process P1. Due to the requirement of compassion
for ℓ2, it is not a computation, and accessibility is guaranteed.
Conclusion: Justice alone is not sufficient !!!

Verification and Synthesis of Reactive Programs, Rome, June, 2006 23

Lecture 2: Preliminaries A. Pnueli

FDS Operations : Asynchronous Parallel Composition

The asynchronous parallel composition of systems D1 and D2, denoted by
D1 ‖D2, is given by D = 〈V,Θ, ρ,J , C〉, where

V = V1 ∪ V2

Θ = Θ1 ∧ Θ2

ρ = (ρ1 ∧ pres(V2 − V1)) ∨ (ρ2 ∧ pres(V1 − V2))
J = J1 ∪ J2

C = C1 ∪ C2
The predicate pres(U) stands for the assertion U ′ = U , implying that all the
variables in U are preserved by the transition.

Asynchronous parallel composition represents the interleaving-based concurrency
which is assumed in shared-variables models.

Claim 1. D(P1 ‖P2) ∼ D(P1) ‖D(P2)

Verification and Synthesis of Reactive Programs, Rome, June, 2006 24

Lecture 2: Preliminaries A. Pnueli

Synchronous Parallel Composition

The synchronous parallel composition of systems D1 and D2, denoted by
D1 ‖| D2, is given by the FDS D = 〈V,Θ, ρ,J , C〉, where

V = V1 ∪ V2

Θ = Θ1 ∧ Θ2

ρ = ρ1 ∧ ρ2

J = J1 ∪ J2

C = C1 ∪ C2
Synchronous parallel composition can be used for hardware verification, where it
is the natural operator for combining two circuits into a composed circuit. Here we
use it for model checking of LTL formulas.

Claim 2. The sequence σ of V -states is a computation of the combined D1 ‖| D2

iff σ ⇓V1 is a computation of D1 and σ ⇓V2 is a computation of D2.

Here, σ ⇓Vi
denotes the sequence obtained from σ by restricting each of the states

to a Vi-state.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 25

Lecture 3: Specification Language: LTL A. Pnueli

Feasibility and Viability of Systems

An FDS D is said to be feasible if D has at least one computation.

A finite or infinite sequence of states is defined to be a run of an FDS D if it
satisfies the requirements of initiality and consecution but not necessarily any of
the fairness requirements.

The FDS D is defined to be viable if any finite run of D can be extended to a
computation of D.

Claim 3. Every FDS derived from an SPL program is viable.

Note that if D is a viable system, such that its initial condition Θ
D

is satisfiable,
then D is feasible.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 26

Lecture 3: Specification Language: LTL A. Pnueli

Requirement Specification Language: Temporal Logic

Assume an underlying (first-order) assertion language. The predicate at−ℓi,
abbreviates the formula πj = ℓi, where ℓi is a location within process Pj.

A temporal formula is constructed out of state formulas (assertions) to which
we apply the boolean operators ¬ and ∨ and the basic temporal operators:

– Next – Previous
U – Until S – Since

Other temporal operators can be defined in terms of the basic ones as follows:
p = 1 U p – Eventually
p = ¬ ¬p – Henceforth

pW q = p ∨ (p U q) – Waiting-for, Unless, Weak Until
p = 1 S p – Sometimes in the past
p = ¬ ¬p – Always in the past

p B q = p ∨ (p S q) – Back-to, Weak Since

A model for a temporal formula p is an infinite sequence of states σ : s0, s1, ...,
where each state sj provides an interpretation for the variables of p.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 27

Lecture 3: Specification Language: LTL A. Pnueli

Semantics of LTL

Given a model σ, we define the notion of a temporal formula p holding at a position
j ≥ 0 in σ, denoted by (σ, j) |= p:

• For an assertion p,
(σ, j) |= p ⇐⇒ sj |= p

That is, we evaluate p locally on state sj.
• (σ, j) |= ¬p ⇐⇒ (σ, j) 6|= p

• (σ, j) |= p ∨ q ⇐⇒ (σ, j) |= p or (σ, j) |= q

• (σ, j) |= p ⇐⇒ (σ, j + 1) |= p

• (σ, j) |= p U q ⇐⇒ for some k ≥ j, (σ, k) |= q,

and for every i such that j ≤ i < k, (σ, i) |= p

• (σ, j) |= p ⇐⇒ j > 0 and (σ, j − 1) |= p

• (σ, j) |= p S q ⇐⇒ for some k ≤ j, (σ, k) |= q,

and for every i such that j ≥ i > k, (σ, i) |= p

This implies the following semantics for the derived operators:

• (σ, j) |= p ⇐⇒ (σ, k) |= p for all k ≥ j
• (σ, j) |= p ⇐⇒ (σ, k) |= p for some k ≥ j

Verification and Synthesis of Reactive Programs, Rome, June, 2006 28

Lecture 3: Specification Language: LTL A. Pnueli

If (σ, 0) |= p we say that p holds over σ and write σ |= p. Formula p is satisfiable if it
holds over some model. Formula p is (temporally) valid if it holds over all models.

Formulas p and q are equivalent, denoted p ∼ q, if p ↔ q is valid. They are
called congruent, denoted p ≈ q, if (p ↔ q) is valid. If p ≈ q then p can be
replaced by q in any context.

The entailment p⇒ q is an abbreviation for (p → q).

For an FDS D and an LTL formula ϕ, we say that ϕ is D-valid, denoted D |= ϕ, if
all computations of D satisfy ϕ.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 29

Lecture 3: Specification Language: LTL A. Pnueli

Reading Exercises

Following are some temporal formulas ϕ and a verbal formulation of the constraint
they impose on a state sequence σ : s0, s1, . . . such that σ |= ϕ:

• p → q — If p holds at s0, then q holds at sj for some j ≥ 0.

• (p → q) — Every p is followed by a q. Can also be written as
p⇒ q.

• q — The sequence σ contains infinitely many q’s.

• q — All but finitely many states in σ satisfy q. Property q eventually
stabilizes.

• q ⇒ p — Every q is preceded by a p — causality.

• (¬r) W q — q precedes r. r cannot occur before q — precedence. Note
that q is not guaranteed, but r cannot happen without a preceding q.

• (¬r)W (q ∧ ¬r) — q strongly precedes r.

• p⇒ (¬r)W q — Following every p, q precedes r.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 30

Lecture 3: Specification Language: LTL A. Pnueli

Classification of Formulas/Properties

A formula of the form p for some past formula p is called a safety formula.

A formula of the form p for some past formula p is called a response
formula.

An equivalent characterization is the form p⇒ q. The equivalence is justified
by

(p→ q) ∼ ((¬p) B q)

Both formulas state that either there are infinitely many q’s, or there there are no
p’s, or there is a last q-position, beyond which there are no further p’s.

A property is classified as a safety/response property if it can be specified by a
safety/response formula.

Every temporal formula is equivalent to a conjunction of a reactivity formulas, i.e.

k
∧

i=1

(pi ∨ qi)

Verification and Synthesis of Reactive Programs, Rome, June, 2006 31

Lecture 3: Specification Language: LTL A. Pnueli

Hierarchy of the Temporal Properties

Safety
p

Obligation
k
∧

i=1

(pi ∨ qi)

Guarantee
p

Response
p

Persistence
p

Reactivity
k
∧

i=1

(pi ∨ qi)

Progress

where p, pi, q, qi are past formulas.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 32

Lecture 3: Specification Language: LTL A. Pnueli

Temporal Specification of Properties
Formula ϕ is D-valid, denoted D |= ϕ, if all initial states of D satisfy ϕ. Such a
formula specifies a property of D.

Following is a temporal specification of the main properties of program
MUX-SEM.

y : natural initially y = 1

P1 ::

ℓ0 : loop forever do

ℓ1 : Non-critical
ℓ2 : request y
ℓ3 : Critical
ℓ4 : release y

P2 ::

m0 : loop forever do

m1 : Non-critical
m2 : request y
m3 : Critical
m4 : release y

• Mutual Exclusion – No computation of the program can include a state in
which process P1 is at ℓ3 while P2 is at m3. Specifiable by the formula

¬(at−ℓ3 ∧ at−m3)

• Accessibility for P1 – Whenever process P1 is at ℓ2, it shall eventually reach
its critical section at ℓ3. Specifiable by the formula

(at−ℓ2 → at−ℓ3)

Verification and Synthesis of Reactive Programs, Rome, June, 2006 33

Lecture 4: Model Checking Invariance and Response Properties A. Pnueli

Lectures Outline

• Overview of System Synthesis.

• Fair Discrete Systems and their Computations.

• Model Checking Invariance and response.

• Temporal Testers and general LTL Model Checking.

• Controller Synthesis via Games.

• Synthesis from Recurrence Specifications.

• Synthesis from Reactivity Specifications. – The general case.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 34

Lecture 4: Model Checking Invariance and Response Properties A. Pnueli

Model Checking
This is a process by which we algorithmically check that a given finite state FDS D

satisfies its temporal specification ϕ. There are two approaches to this process:

• Enumerative (explicit state) approach, by which we construct a graph
containing all the reachable states of the system, and then apply graph
theoretic algorithms to its analysis.
• Symbolic approach, by which we continuously work with assertions which

characterize sets of states.

Here, we consider the symbolic approach. Note that every assertion over a finite-
domain FDS can be represented as a boolean formula over boolean variables.
Assume that a finite-state FDS is represented by such formulas, including the
initial condition Θ and the bi-assertion ρ representing the transition relation.

We assume that we have an efficient representation of boolean assertions, and
efficient algorithms for manipulation of such assertions, including all the boolean
operations as well as existential and universal quantification. Note that, for a
boolean variable b,
∃b : ϕ(b) = ϕ(0) ∨ ϕ(1) ∀b : ϕ(b) = ϕ(0) ∧ ϕ(1)

Also assume that we can efficiently check whether a given assertion is valid, i.e.,
equivalent to 1.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 35

Lecture 4: Model Checking Invariance and Response Properties A. Pnueli

Successors and Their Transitive Closure

For an assertions ϕ(V) and a bi-assertion R(V, V ′), we define the existential
successor predicate transformer:

ϕ R = unprime(∃V : ϕ(V) ∧R(V, V ′))

Obviously

‖ϕ R‖ = {s | s is an R-successor of a ϕ-state}

For example

(x = 0) (x′ = x+ 1) = unprime(∃x : x = 0 ∧ x′ = x+ 1) ∼
unprime(x′ = 1) ∼ x = 1

The immediate successor transformer can be iterated to yield the eventual
successor transformer:

ϕ R∗ =
ϕ ∨ ϕ R ∨ (ϕ R) R ∨ ((ϕ R) R) R ∨ · · ·

Verification and Synthesis of Reactive Programs, Rome, June, 2006 36

Lecture 4: Model Checking Invariance and Response Properties A. Pnueli

Predecessors and Their Transitive Closure

For an assertions ϕ(V) and a bi-assertion R(V, V ′), we define the existential
predecessor predicate transformer:

R ψ = ∃V ′ : R(V, V ′) ∧ ψ(V ′)

Obviously

‖R ϕ‖ = {s | s is an R-predecessor of a ϕ-state}

For example

(x′ = x+ 1) (x = 1) = ∃x′ : x′ = x+ 1 ∧ x′ = 1 ∼ x = 0

The immediate predecessor transformer can be iterated to yield the eventual
predecessor transformer:

R∗ ϕ =
ϕ ∨ R ϕ ∨ R (R ϕ) ∨ R (R (R ϕ)) ∨ · · ·

Verification and Synthesis of Reactive Programs, Rome, June, 2006 37

Lecture 4: Model Checking Invariance and Response Properties A. Pnueli

Formulation as Fixed Points

Consider a recursive equation of the general form y = f(y), where y is an
assertion representing a set of states. Such an equation is called a fix-point
equation.

Not every fix-point equation has a solution. For example, the equation y = ¬y
has no solution.

The assertional expression f(y) is called monotonic if it satisfies the
requirement

‖y1‖ ⊆ ‖y2‖ implies ‖f(y1)‖ ⊆ ‖f(y2)‖

Verification and Synthesis of Reactive Programs, Rome, June, 2006 38

Lecture 4: Model Checking Invariance and Response Properties A. Pnueli

Solutions to Fix-point Equations
Every assertional expression f(y) which is constructed out of the assertion
variable y and arbitrary constant assertions, to which we apply the boolean
operators ∨ and ∧, and the predecessor operator ρ p is monotonic.

Consider a fix-point equation

y = f(y) (1)

It may have 0, one, or many solutions. For example, the equation y = y has many
solutions. A solution ym is called a minimal solution if it satisfies ‖ym‖ ⊆ ‖y‖ for
any solution y of Equation (1). A solution y

M
is called a maximal solution if it

satisfies ‖y
M
‖ ⊇ ‖y‖ for any solution y of Equation (1). We denote by µy.f(y) and

νy.f(y) the minimal and maximal solutions, respectively.

Claim 4. If f(y) is a monotonic expression, then the fix-point equation y = f(y)
has both a minimal and a maximal solution which can be obtained by the iteration
sequence

y1 = f(y0), y2 = f(y1), y3 = f(y2), . . .

where y0 = 0 for the minimal solution, and y0 = 1 for the maximal solution.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 39

Lecture 4: Model Checking Invariance and Response Properties A. Pnueli

Expressing the Eventual Predecessor

A generalized version of the eventual predecessor can be expressed by a minimal
fix-point expression:

(p ∧ ρ
D
)∗ q = µy.(q ∨ p ∧ ρ

D
y)

This is because the fix-point expression generates the following approximation
sequence:

y0 = 0
y1 = q ∨ 0 = q

y2 = q ∨ p ∧ ρ
D

y1 = q ∨ p ∧ ρ
D

q

y3 = q ∨ p ∧ ρ
D

y2 = q ∨ p ∧ ρ
D

q ∨ p ∧ ρ
D

(p ∧ ρ
D

q)
· · ·

Characterizing the set of all states which initiate a p-path leading to a q-state.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 40

Lecture 4: Model Checking Invariance and Response Properties A. Pnueli

A Symbolic Algorithm for Model Checking Invariance

Algorithm INV (D, p) : assertion — Check that FDS D satisfies Inv(p), using
symbolic operations

new : assertion
1. new := ¬p
2. Fix (new) do
3. new := new ∨ (ρ

D
new)

4. return Θ
D
∧ new

where

Fix (y) do S = old := ¬y; While (y 6= old) do [old := y; S]

The algorithm returns an assertion characterizing all the initial states from which
there exists a finite path leading to violation of p. It returns the empty (false)
assertion iff D satisfies Inv(p).

An equivalent formulation is

return Θ
D
∧ µy : ¬p ∨ ρ

D
y

Verification and Synthesis of Reactive Programs, Rome, June, 2006 41

Lecture 4: Model Checking Invariance and Response Properties A. Pnueli

Equivalent Iterations

There are several equivalent ways to compute the set of all eventual predecessors
of an assertion ϕ:

ρ∗ ϕ ∼

µX.(ϕ ∨ ρ X) ∼

X := 0; Fix(X) [X := ϕ ∨ ρ X] ∼

X := ϕ; Fix(X) [X := X ∨ ρ X] ∼

ϕ ∨ ρ ϕ ∨ ρ (ρ ϕ) ∨ ρ (ρ (ρ ϕ)) ∨ · · ·

Verification and Synthesis of Reactive Programs, Rome, June, 2006 42

Lecture 4: Model Checking Invariance and Response Properties A. Pnueli

Example: a Simpler MUX-SEM

Below, we present a simpler version of program MUX-SEM.

y: natural initially y = 1

N1

T1

request y

C1

release y

request y

N2

T2

C2

release y

The semaphore instructions request y and release y respectively stand for

〈when y = 1 do y := 0〉 and y := 1.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 43

Lecture 4: Model Checking Invariance and Response Properties A. Pnueli

Illustrate on MUX-SEM

We iterate as follows:

ϕ0 : π1 = C ∧ π2 = C

ϕ1 : ϕ0 ∨

· · ·
∨π1 = T ∧ y = 1 ∧ π′

1 = C ∧ y′ = 0
∨π2 = T ∧ y = 1 ∧ π′

2 = C ∧ y′ = 0

(π1 = π2 = C)

∼
π1 = π2 = C ∨ π1 = T ∧ π2 = C ∧ y = 1 ∨ π1 = C ∧ π2 = T ∧ y = 1
ϕ2 : ϕ1 ∨ π1 = N ∧ π2 = C ∧ y = 1 ∨ π1 = C ∧ π2 = N ∧ y = 1
ϕ3 : ϕ2 ∨ π1 = C ∧ π2 = C ∧ y = 0 ∼ ϕ2

The last equivalence is due to the general property p ∨ (p ∧ q) ∼ p.

If we intersect ϕ3 with the initial condition Θ : π1 = N ∧ π2 = N ∧ y = 1 we obtain
0 (false). We conclude that MUX-SEM satisfies Inv(¬(π1 = C ∧ π2 = C)).

Verification and Synthesis of Reactive Programs, Rome, June, 2006 44

Lecture 4: Model Checking Invariance and Response Properties A. Pnueli

Symbolic Exploration Progresses in Layers

C1, C2,−

T1, C2, 1 C1, T2, 1

N1, C2, 1 C1, N2, 1

ϕ0

ϕ1

ϕ2

Verification and Synthesis of Reactive Programs, Rome, June, 2006 45

Lecture 4: Model Checking Invariance and Response Properties A. Pnueli

Illustrate Forward Exploration on MUX-SEM
We iterate as follows:

ϕ0 : N1, N2, 1

Iteration 1:

ϕ1 :

N1, T2, 1

N1, N2, 1 T1, N2, 1

Iteration 2:

ϕ2 : N1, T2, 1 T1, T2, 1

N1, C2, 0

N1, N2, 1 T1, N2, 1 C1, N2, 0

Verification and Synthesis of Reactive Programs, Rome, June, 2006 46

Lecture 4: Model Checking Invariance and Response Properties A. Pnueli

Forward Exploration Continued
Iteration 3:

ϕ3 : N1, T2, 1 T1, T2, 1 C1, T2, 0

N1, C2, 0 T1, C2, 0

N1, N2, 1 T1, N2, 1 C1, N2, 0

Iteration 4 (Convergent):

ϕ4 : N1, T2, 1 T1, T2, 1 C1, T2, 0

N1, C2, 0 T1, C2, 0

N1, N2, 1 T1, N2, 1 C1, N2, 0

Since last iteration does not intersect C1 ∧ C2, we conclude ¬(C1 ∧ C2).

Verification and Synthesis of Reactive Programs, Rome, June, 2006 47

Lecture 4: Model Checking Invariance and Response Properties A. Pnueli

Checking for Feasibility
Before we discuss model checking response properties we discuss the problem
of checking whether a given FDS is feasible.

A run of an FDS is an infinite sequence of states which satisfies the requirements
of initiality and consecution but not necessarily any of the fairness requirements.

A state s of an FDS D is called reachable if it participates in some run of D.

A state s is called feasible if it participates in some computation. The FDS is called
feasible if it has at least one computation.

A set of states S is defined to be an F-set if it satisfies the following
requirements:

F1. All states in S are reachable.

F2. Each state s ∈ S has a ρ-successor in S.

F3. For every state s ∈ S and every justice requirement J ∈ J , there exists an
S-path leading from s to some J-state.

F4. For every state s ∈ S and every compassion requirement (p, q) ∈ C, either
there exists an S-path leading from s to some q-state, or s satisfies ¬p.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 48

Lecture 4: Model Checking Invariance and Response Properties A. Pnueli

F-Sets Imply Feasibility
Claim 5. [F-sets]
A reachable state s is feasible iff it has a path leading to some F-set.
Proof:
Assume that s is a feasible state. Then it participates in some computation σ. Let
S be the (finite) set of all states that appear infinitely many times in σ. We will
show that S is an F-set. It is not difficult to see that there exists a cutoff position
t ≥ 0 such that S contains all the states that appear at positions beyond t.

Obviously all states appearing in σ are reachable. If s ∈ S appears in σ at
position i > t then it has a successor si+1 ∈ σ which is also a member of S.

Let s = si ∈ σ, i > t be a member of S and J ∈ J be some justice requirement.
Since σ is a computation it contains infinitely many J-positions. Let k ≥ i one
of the J-positions appearing later than i. Then the path si, . . . , sk is an S-path
leading from s to a J-state.

Let s = si ∈ σ, i > t be a member of S and (p, q) ∈ C be some compassion
requirement. There are two possibilities by which σ may satisfy (p, q). Either σ
contains only finitely many p-positions, or σ contains infinitely many q positions.
It follows that either S contains no p-states, or it contains some q-states which
appear infinitely many times in σ. In the first case, s satisfies ¬p. In the second
case, there exists a path leading from si to sk, a q-state such that k ≥ i.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 49

Lecture 4: Model Checking Invariance and Response Properties A. Pnueli

Proof Continued
In the other direction, assume the existence of an F-set S and a reachable state
s which has a path leading to some state s1 ∈ S. We will show that there exists a
computation σ which contains s.

Since s is reachable and has a path leading to state s1 ∈ S, there exists a finite
sequence of states π leading from an initial state to s1 and passing through s. We
will show how π can be extended to a computation by an infinite repetition of the
following steps. At any point in the construction, we denote by end(π) the state
which currently appears last in π.

• We know that end(π) ∈ S has a successor s ∈ S. Append s to the end of π.

• Consider in turn each of the justice requirements J ∈ J . We append to π the
S-path π

J
connecting end(π) to a J-state.

• Consider in turn each of the compassion requirements (p, q) ∈ C. If there
exists an S-path πq, connecting end(π) to a q-state, we append πq to the end of π.
Otherwise, we do not modify π. We observe that if there does not exist an S-path
leading from end(π) to a q-state, then end(π) and all of its progeny within S must
satisfy ¬p.

It is not difficult to see that the infinite sequence constructed in this way is a
computation.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 50

Lecture 4: Model Checking Invariance and Response Properties A. Pnueli

Computing F-Sets

Assume an assertion ϕ which characterizes an F-set. Translating the
requirements 1–4 into formulas, we obtain the following requirements:

ϕ → reachable
D

ϕ → ρ ϕ Every ϕ-state has a ϕ-successor
ϕ → (ϕ ∧ ρ)∗ (ϕ ∧ J) For every J ∈ J
ϕ → ¬p ∨ (ϕ ∧ ρ)∗ (ϕ ∧ q) For every (p, q) ∈ C

This can be summarized as

ϕ →

reachable
D

∧ ρ ϕ ∧
∧

J∈J

(ϕ ∧ ρ)∗ (ϕ ∧ J) ∧
∧

(p,q)∈C

¬p ∨ (ϕ ∧ ρ)∗ (ϕ ∧ q)

Since we are interested in a maximal F-set, the computation can be expressed
as:

νϕ.

reachable
D

∧ ρ ϕ ∧
∧

J∈J

(ϕ ∧ ρ)∗ (ϕ ∧ J) ∧
∧

(p,q)∈C

¬p ∨ (ϕ ∧ ρ)∗ (ϕ ∧ q)

Verification and Synthesis of Reactive Programs, Rome, June, 2006 51

Lecture 4: Model Checking Invariance and Response Properties A. Pnueli

Algorithmic Interpretation

Computing the maximal fix-point as a sequence of iterations, we can describe the
computational process as follows:

Start by letting ϕ := reachable
D

. Then repeat the following steps:

• Remove from ϕ all states which do not have a ϕ-successor.

• For each J ∈ J , remove from ϕ all states which do not have a ϕ-path leading
to a J-state.

• For each (p, q) ∈ C, remove from ϕ all p-states which do not have a ϕ-path
leading to a q-state.

until no further change.

To check whether an FDS D is feasible, we compute for it the maximal F-set and
check whether it is empty. D is feasible iff the maximal F-set is not-empty.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 52

Lecture 4: Model Checking Invariance and Response Properties A. Pnueli

Example
As an example, consider the following FDS:

x : 0 x : 1 x : 2

x : 5

x : 4

x : 3

with the fairness requirements:
J1 : x 6= 1
C1 : (x = 3, x = 5)
C2 : (x = 2, x = 1)

We set ϕ0 : {0..5} and then proceed as follows:
• Removing from ϕ0 all (x = 2)-states which do not have a ϕ0-path leading to an

(x = 1)-state, we are left with ϕ1 : {0, 1, 3, 4, 5}.
• Successively removing from ϕ1 all states without successors, leaves ϕ2 : {3, 4}.
• Removing from ϕ2 all (x = 3)-states which do not have a ϕ2-path leading to a

(x = 5)-state, we are left with ϕ3 : {4}.
• No reasons to remove any further states from ϕ3 : {4}, so this is our final set.

We conclude that the above FDS is feasible.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 53

Lecture 4: Model Checking Invariance and Response Properties A. Pnueli

Verifying Response Properties Through Feasibility Checking
Let D : 〈V,Θ, ρ,J , C〉 be an FDS and p ⇒ q be a response property we wish
to verify over D. Let reachable

D
be the assertion characterizing all the reachable

states in D.

We define an auxiliary FDS Dp,q : 〈V,Θp,q, ρp,q,J , C〉, where

Θp,q : reachable
D
∧ p ∧ ¬q

ρp,q : ρ ∧ ¬q′

Thus, Θp,q characterizes all the D-reachable p-states which do not satisfy q, while
ρp,q allows any ρ-step as long as the successor does not satisfy q.

Claim 6. [Model Checking Response]
D |= p⇒ q iff Dp,q is unfeasible.

Proof: The claim is justifed by the observation that every computation of Dp,q

can be extendable to a computation of D which violates the reponse property p⇒
q. Indeed, let σ : sk, sk+1, . . . be a computation ofDp,q. By the definition of Θp,q,

we know that sk is a D-reachable p-state. Thus, there exists, a finite sequence
s0, . . . , sk, such that s0 is D-initial. The infinite sequence s0, . . . , sk−1, sk, sk+1, . . .

is a computation of D which contains a p-state at position k, and has no following
q-state. This sequence violates p⇒ q.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 54

Lecture 4: Model Checking Invariance and Response Properties A. Pnueli

Example: MUX-SEM
Following is the set of all reachable states of program MUX-SEM.

N1, T2, 1 T1, T2, 1 C1, T2, 0

N1, C2, 0 T1, C2, 0

N1, N2, 1 T1, N2, 1 C1, N2, 0

Assume we wish to verify the property T2 ⇒ C2. We start by forming
MUX-SEMT2,C2, whose set of reachable states is given by:

N1, T2, 1 T1, T2, 1 C1, T2, 0

First, we eliminate all (T2 ∧ y = 1)-states which do not have a path leading to a
C2-state. This leaves us with:

C1, T2, 0

Next, we eliminate all states which do not have a path leading to a ¬C1-state. This
leaves us with nothing. We conclude that MUX-SEM |= T2⇒ C2.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 55

Lecture 5: Temporal Testers A. Pnueli

Lectures Outline

• Overview of System Synthesis.

• Fair Discrete Systems and their Computations.

• Model Checking Invariance and response.

• Temporal Testers and general LTL Model Checking.

• Controller Synthesis via Games.

• Synthesis from Recurrence Specifications.

• Synthesis from Reactivity Specifications. – The general case.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 56

Lecture 5: Temporal Testers A. Pnueli

Model Checking General Temporal Formulas

Next, we consider methods for model checking general LTL formulas.

LetD be an FDS and ϕ an LTL formula. Assume we wish to check whetherD |= ϕ.
We proceed along the following steps:

• Construct a temporal acceptor A(¬ϕ). This is an FDS whose computations are
all the sequences falsifying ϕ.

• Form the parallel composition D ‖| A(¬ϕ). This is an FDS whose computations
are all computations of D which violate ϕ.

• Check whether the composition D ‖| A(¬ϕ) is feasible. D |= ϕ iff D ‖| T (¬ϕ) is
infeasible.

It only remains to describe the construction of an acceptor A(ψ) for a general LTL
formula ψ.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 57

Lecture 5: Temporal Testers A. Pnueli

Temporal Testers

The building blocks from which we construct acceptors are temporal testers. Let
ϕ be a temporal formula over vocabulary U , and let x 6∈ U be a boolean variable
disjoint from U .

In the following, let σ : s0, s1, . . . be an infinite sequence of states over U ∪ {x}.
We say that x matches ϕ in σ if, for every position j ≥ 0, the value of x at position
j is true iff (σ, j) |= ϕ.

A temporal tester for ϕ is an FDS T (ϕ) over U ∪ {x}, satisfying the requirement:

The infinite sequence σ is a computation of T (ϕ) iff x matches ϕ in σ.

A consequence of this definition is that every infinite sequence π of U -states can
be extended into a computation σ of T (ϕ) by interpreting x at position j ≥ 0 of σ
as 1 iff (π, j) |= ϕ.

We can view T (ϕ) as a (possibly non-deterministic) transducer which
incrementally reads the values of the variables U and outputs in x the current
value of ϕ over the infinite sequence.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 58

Lecture 5: Temporal Testers A. Pnueli

Construction of Temporal Testers

A formula ϕ is called a principally temporal formula (PTF) if the main operator of
p is temporal. A PTF is called a basic temporal formula if it contains no other PTF

as a proper sub-formula.

We start our construction by presenting temporal testers for the basic temporal
formulas.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 59

Lecture 5: Temporal Testers A. Pnueli

A Tester for p

The tester for the formula p is given by:

T (p) :

V : Vars(p) ∪ {x}
Θ : 1
ρ : x = p′

J = C : ∅

Claim 7.
T (p) is a temporal tester for p.

Proof:
Let σ be a computation of T (p). We will show that x matches p in σ. Let
j ≥ 0 be any position. By the transition relation, x = 1 at position j iff sj+1 |= p iff
(σ, j) |= p.

Let σ be an infinite sequence such that x matches p in σ. We will show that
σ is a computation of T (p). For any position j ≥ 0, x = 1 at j iff (σ, j) |= p,
iff sj+1 |= p. Thus, x satisfies x = p′ at every position j.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 60

Lecture 5: Temporal Testers A. Pnueli

A Tester for pU q

The tester for the formula pUq is given by:

T (pUq) :

V : Vars(p, q) ∪ {x}
Θ : 1
ρ : x = q ∨ (p ∧ x′)
J : q ∨ ¬x
C : ∅

Claim 8. T (pUq) is a temporal tester for pUq.

Proof:
Based on the expansion formula

pUq = q ∨ (p ∧ (pUq))

Verification and Synthesis of Reactive Programs, Rome, June, 2006 61

Lecture 5: Temporal Testers A. Pnueli

Why Do We Need the Justice Requirement
Reconsider the temporal tester for pUq:

T (pUq) :

V : Vars(p, q) ∪ {x}
Θ : 1
ρ : x = q ∨ (p ∧ x′)
J : q ∨ ¬x
C : ∅

We wish to show that the justice requirement q∨¬x is essential for the correctness
of the construction. Consider a state sequence σ : s0, s1, . . . in which q is
identically false and p is identically true at all positions. Obviously, (σ, j) 6|= p U q,
for all j ≥ 0, and the transition relation reduces to the equation

x = x′.

This equation has two possible solutions, one in which x is identically false and
the other in which x is identically true at all positions. Only x = 0 matches p U q.
This is also the only solution which satisfies the justice requirement.

Thus, the role of the justice requirement is to select among several solutions to
the transition relation equation, a unique one which matches the basic temporal
formula at all positions.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 62

Lecture 5: Temporal Testers A. Pnueli

A Tester for pWq

A supporting evidence for the significance of the justice requirements is provided
by the tester for the formula pWq:

T (pWq) :

V : Vars(p, q) ∪ {x}
Θ : 1
ρ : x = q ∨ (p ∧ x′)
J : ¬p ∨ x

C : ∅

Note that the transition relation of T (pWq) is identical to that of T (pUq), and they
only differ in their respective justice requirements.

The role of the justice requirement in T (pWq) is to eliminate the solution x = 0
over a computation in which p = 1 and q = 0 at all positions.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 63

Lecture 5: Temporal Testers A. Pnueli

Testers for the Derived Operators

Based on the testers for U and W, we can construct testers for the derived
operators and . They are given by

T (p) :

V : Vars(p) ∪ {x}
Θ : 1
ρ : x = p ∨ x′

J : p ∨ ¬x
C : ∅

T (p) :

V : Vars(p) ∪ {x}
Θ : 1
ρ : x = p ∧ x′

J : ¬p ∨ x

C : ∅

A formula such as p can be viewed as a “promise for an eventual p”. The
justice requirement p ∨ ¬x can be interpreted as suggesting:

Either fulfill all your promises or stop promising.

Note that once x = 0 in the tester T (p), it remains 0 and requires p = 0 ever
after.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 64

Lecture 5: Temporal Testers A. Pnueli

Testers for the Basic Past Formulas

The following are testers for the basic past formulas p and pSq:

T (p) :

V : Vars(p) ∪ {x}
Θ : x = 0
ρ : x′ = p

J : ∅
C : ∅

T (pSq) :

V : Vars(p, q) ∪ {x}
Θ : x = q

ρ : x′ = q′ ∨ (p′ ∧ x)
J : ∅
C : ∅

Note that testers for past formulas are not associated with any fairness
requirements. On the other hand, they have a non-trivial initial conditions.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 65

Lecture 5: Temporal Testers A. Pnueli

Testers for Compound Temporal Formulas

Up to now we only considered testers for basic formulas. The construction for
non-basic formulas is based on the following reduction principle. Let f(ϕ) be
a temporal formula containing one or more occurrences of the basic formula ϕ.
Then the temporal tester for f(ϕ) can be constructed according to the following
recipe:

T (f(ϕ)) = T (f(xϕ)) ‖| T (ϕ)

where, xϕ is the boolean output variable of T (ϕ), and f(xϕ) is obtained from f(ϕ)

by replacing every instance of ϕ by xϕ.

Following this recipe the temporal tester for an arbitrary formula f can be
decomposed into a synchronous parallel composition of smaller testers, one for
each basic formula nested within f .

When all possible substitution/composition steps are performed, we are left with
a (non-temporal) assertion. We refer to this assertion as the redux of the original
formula f , and denote it by redux(f).

Verification and Synthesis of Reactive Programs, Rome, June, 2006 66

Lecture 5: Temporal Testers A. Pnueli

Testers as Circuits

Having viewed testers as transducers, we can view their composition as a circuit
interconnection. For example, in the following diagram we show how a tester for
the compound formula ϕUψ can be constructed by interconnecting the testers for
ϕ, ψ, and the tester for the basic formula pUq.

T (pUq)
p

q

T (ϕ)

T (ψ)

Vars(ϕ, ψ)

Verification and Synthesis of Reactive Programs, Rome, June, 2006 67

Lecture 5: Temporal Testers A. Pnueli

Acceptors
Testers are the essential building blocks for the construction of an acceptor. An
acceptor for an LTL formula ϕ (over variables U) is an FDS A(ϕ) such that

The U -sequence σ satisfies ϕ iff σ is a U -projection of a computation of
A(ϕ).

Thus, unlike testers, an acceptor only accepts at position 0.

The construction of an acceptor is defined recursively as follows:

• For an assertion p,

A(p) :

V : Vars(p)
Θ : p

ρ : 1
J = C : ∅

• For a formula f(ϕ) containing one or more occurrences of the basic formula ϕ,

A(f(ϕ)) = A(f(xϕ)) ‖| T (ϕ)

Verification and Synthesis of Reactive Programs, Rome, June, 2006 68

Lecture 5: Temporal Testers A. Pnueli

Example: An Acceptor for ¬ p

Following is a tester for the formula ¬ p which is obtained by computing the
parallel composition A(¬x) ‖| T (x) ‖| T (p).

A(p) :

V : Vars(p) ∪ {x , x }
Θ : ¬x
ρ : (x = p ∧ x ′) ∧ (x = x ∨ x ′)
J : {¬p ∨ x , x ∨ ¬x }
C : ∅

Note that the redux of ¬ p is ¬x .

Verification and Synthesis of Reactive Programs, Rome, June, 2006 69

Lecture 5: Temporal Testers A. Pnueli

Model Checking General Temporal Formulas

To check whether D |= ϕ, perform the following steps:

• Construct the acceptor A(¬ϕ).

• Form the combined system C = D ‖| A(¬ϕ).

• Check whether C is feasible.

• Conclude D |= ϕ iff C is infeasible.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 70

Lecture 5: Temporal Testers A. Pnueli

Example

Consider the following system:

D : 0, p 1, p 2, p

For which we wish to verify the property p.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 71

Lecture 5: Temporal Testers A. Pnueli

Example: Continued

Composing the system with the acceptor A(¬ p), we obtain:

C :

2, p, x , x

1, p, x , x

1, p, x , x

2, p, x , x0, p, x , x

0, p, x , x

with the justice requirements ¬p ∨ x and x ∨ ¬x .

Eliminating all unreachable states and states with no successors, we are left with:

1, p, x , x 2, p, x , x0, p, x , x

State 2 is eliminated because it does not have a path leading to a ¬p ∨ x -state.
Then state 1 is eliminated. having no successors. Finally, 0 is eliminated because
it cannot reach a ¬p ∨ x -state. Nothing is left, hence the system satisfies the
property p.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 72

Lecture 5: Temporal Testers A. Pnueli

Correctness of the Algorithms

Claim 9.
For an FDS D and temporal formula ϕ, D |= ϕ iff C : D ‖| A(¬ϕ) is infeasible

Proof:
The proof is based on the observation that every computation of the combined
system C is a computation of D which satisfies the negation of ϕ. Therefore, the
existence of such a computation shows that not all computations of D satisfy ϕ,
and therefore, ϕ is not valid over D.

Verification and Synthesis of Reactive Programs, Rome, June, 2006 73

